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DETAILED DESCRIPTION OF THE MULTI-PLANAR U-NET MODEL 
Overview 

The MPUnet is an open-source segmentation system that learns to segment medical 3D scans 

with high performance without human expert involvement. The system has been previously 

validated on more than 10 non-knee segmentation tasks and obtained a top-5 position in the 

2018 Medical Segmentation Decathlon despite being hyper-parameter search free – in the sense 

that the default settings have proven to give good results on variable medical image 

segmentation tasks – and data efficient (1). The MPUnet is simple and only requires a set of 

expert annotated scans to train on. The required number of training scans vary greatly 

depending on desired performance and task. For simpler tasks such as the segmentation of a 

healthy anatomical body, few (e.g., 20-30) samples may be sufficient, whereas hundreds of 

samples may be required to properly segment complex variable targets such as tumors. 

Deep learning knowledge is not required to use the system and the open-source code includes 

example scripts for training and applying the MPUnet. It uses a fixed model topology and 

hyper-parameter setting, eliminating the need for computationally intensive model selection 

searches, which are often impractical in clinical research. The system performs segmentation 

of high quality, which is facilitated by a multi-planar training approach, which applies a 

statistically efficient 2D model simultaneously across multiple planes spanning the volume in 

order to utilize most of the information contained in volumetric scans (1, 2). 

 

Segmentation Model 

The MPUnet framework relies on a single 2D fully convolutional network (FCN) model fit to 

image slices sampled isotropically along multiple viewing planes through the image volume. 

Using 2D FCNs for 3D segmentation is a way to limit the number of trainable parameters, 

which increases the statistical efficiency and is therefore a common approach in medical image 

analysis where labeled data is scarce. The FCN model is based on the relatively new, but 

already prevalent U-net (3) architecture. Compared to the original version, the total parameter 

count is approximately 2 times larger (to a total of ~60 million learnable parameters) because 

the number of filters across all layers is increased. Nearest neighbor up-sampling operations 



(4) are used in the up-sampling path followed by a standard convolution layer. Batch 

normalization (5) is employed between all convolution and up-convolution blocks. 

 

Multi-Planar Training and Prediction 

The 2D segmentation model is trained in a multi-planar fashion. The model is fit to 2D image 

slices sampled (isotropically) across a set of ! = 6 planes angled to each other. Perslev et al. 

(2) found that segmentation performance increased with !, and ! = 6 was chosen to balance 

computational load with performance. Bilinear and nearest-neighbor interpolation of the input 

scan is used to generate the image- and label map slices, respectively. During optimization, 

images from all these planes are fed to the (a priori plane-agnostic) model without additional 

information about the corresponding image plane, see Figure 1. 

This training setup forces the model to learn to segment the medical target of interest as seen 

from multiple views. The amount of training data increases ! times, but the different views of 

a volume are not independent of each other. In this way the extension of the training data 

resembles data augmentation (5), see below. When segmenting a new scan, the model first 

predicts along each plane in the isotropic scanner space creating a set of ! full segmentation 

volumes for each input scan. The segmentation volumes are mapped to the voxel space by 

assigning to each voxel the nearest predicted label (as measured in isotropic space) from each 

of the ! volumes. A final prediction score is computed for each voxel $ as a weighted sum 

%($)! = ∑ )",! ⋅ +",$,! + -!%
"&'  where %($)! is the score of class . at voxel $, +",$,! is the 

probability predicted from view / that voxel $ belongs to class ., and )",! and -! are 

parameters learned to maximize the overall segmentation performance. The scores %($)! 	are 

mapped to probabilities using the softmax function, and the parameters )",! and -! are chosen 

to minimize the cross-entropy loss on the validation dataset.  

The single neural network model plays the role of ! experts in an ensemble method, which can 

be viewed as a form of test time augmentation. When combining the ! segmentations, each 

class from each view has an individual trainable weight ()",!), which allows the model to 

exploit that some parts of the volume may be more easily segmented in one plane compared to 

others. The overall tendency of the ensemble to predict a given class can be tuned by the learned 

per-class bias parameters -!. The approach is illustrated in Figure 2. 

 



Augmentation and Class Balancing 

To increase the robustness of the segmentation model, the MPUnet employs data augmentation 

on top of the multi-view images (6, 7). In general, data augmentation refers to artificially 

boosting the size of the training dataset by applying various transformations to the real training 

data (in this sense, the multi-planar approach can be interpreted as augmentation through 

rotating the input volume). Specifically, during training, images are sampled on-the-fly from 

across the cohort, and with a probability of 1/3 random elastic deformations are applied to the 

sampled image (8), see Supplementary Figure 1. The elastic transformation is non-linear and 

may produce anatomically implausible images. However, the augmentation often leads to 

significantly improved performance by forcing the model to learn a more general 

representation of the structures to segment. This ultimately restricts the model from overfitting 

to the training data. Augmented images are weighted by a factor of 1/3 when computing the 

loss to ensure that the optimization considers primarily true images. Both the probability with 

which augmentation is applied and the loss function weighting factor were selected based on 

experience and were not systematically varied. 

The MPUnet uses the Adam optimizer (9) to minimize the standard cross-entropy loss function 

with no added regularization or class balancing terms. The ues of regularization was found 

unnecessary, as the combination of an efficient 2D model, multi-planar training and 

augmentation tends to reduce the overfitting to a negligible level. Instead of explicitly 

accounting for class imbalance in the loss function, each sampled batch is forced to contain a 

fraction of images displaying non-background compartments, and, when possible, it is further 

required that each batch contains a set of images that in union display all possible 

compartments. This scheme was empirically to effectively handle the class imbalance problem 

across many tasks. 



 
Supplementary Figure 1: Visualization of the effect of random elastic deformations.  

(a) Input image. (b) Augmented image. 

 

Hyperparameters 

Both the deep learning model topology and the optimization parameters of the MPUnet were 

entirely fixed (based on Perslev et al. (2)) or estimated from the training data from non-

intensive computations. For instance, the size of the sampled images input to MPUnet is 

heuristically selected based on the sizes and voxel resolutions of the input MRI volumes across 

the training set (see Perslev et al. (2) for details). Consequently, the framework will start 

training the model immediately without the need for running extensive hyperparameter cross-

validation experiments, which are typically needed when a segmentation model is applied to a 

new dataset, task, or scanner modality. In particular, the complexity (i.e., number of free 

parameters) of deep neural networks usually requires tuning to ensure that the model neither 

over- nor underfits to the problem at hand. Based on extensive empirical evidence this is usually 

not required for the MPUnet, which is unlikely to overfit. The minimal hyperparameter 

optimization in MPUnet does not only make it easy to use, but it also reduces the risk of 

unintentional model overfitting. 
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Supplementary Figure 2: Box-plots showing the distribution of dice scores

for the MPUnet, KIQ and the Panfilov 2D U-Net on the OAI dataset grouped

according to the KL-grade score of the individual MRIs.
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Supplementary Figure 3: Box-plots showing the distribution of dice

scores for the MPUnet, KIQ and the Panfilov 2D U-Net on the PROOF

dataset grouped according to the KL-grade score of the individual MRIs.


