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In this appendix, we sketch a proof of consistency for the weighted and risk set adjusted Kaplan-Meier
estimator, given appropriate density ratio weights. Recall that we define T' as the survival time, C' as
the censoring time, and E as the entry time. We observe Y = min(7T, C) conditional on Y > E, with
d = I(T < C) as the event indicator. The observed event times are x;,j = 1,...,m. Z is a vector of
confounders such that Y L E|Z

We begin by deriving the product form of the survival probability, given independently right-censored
data.
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Then, the weighted and risk set adjusted Kaplan-Meier estimator for each term in this expression is

given by
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where w; is a weight for subject i. Specifically,
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the density ratio comparing the covariate distributions of the non-truncated and left truncated datasets.

To show consistency, we compute the expectations of the numerator and the denominator. First the



expectation of the numerator is:
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Similarly, for the denominator, we can obtain:



Therefore, by applying the continuous mapping theorem:

. nP(E <z;)P(Y =z;,0=1)
F@) = = pE< )PV = o))

= P(Y = 2,6 = 1]Y > z;),

as required.



