Chemistry–A European Journal

Supporting Information

Proton Conduction at High Temperature in High-Symmetry Hydrogen-Bonded Molecular Crystals of Ru^{III} Complexes with Six Imidazole-Imidazolate Ligands

Makoto Tadokoro,* Masaki Itoh, Ryota Nishimura, Kensuke Sekiguchi, Norihisa Hoshino, Hajime Kamebuchi, Jun Miyazaki, Fumiya Kobayashi, Motohiro Mizuno, and Tomoyuki Akutagawa

Supporting Information

- Figure 1S. TG and TG-Mass images of 1.
- Figure 2S. DSC image of 1.
- Figure 3S. Schematic representation of isotropic crystal structure of 1.
- Figure 4S. tano image of dielectronic constant of 1.
- Figure 5S. Temperature-dependent PXRD patterns of 1.
- Figure 6S. (a) Crystal forms of 1 before and after heating.(b) Cycle measurements of proton conductivity of 1.
- Figure 7S. P-E curves measurements for the single crystal of 1.
- Figure 8S. The differential Fourier map of temperature-dependent X-ray crystal analyses for electron densities of H-bonding proton of **1**.
- Figure 9S. IR spectrum of $[Ru^{III}(HIm)_3(Im)_3](1)$.
- Figure 10S. The external form of the crystal of 1.
- Figure 11S. Water molecules are confined to two void spaces in crystal of 1
- Figure 12S. CV image of [Ru^{II}(HIm)₆]²⁺ in MeCN

(b)

Figure 1S

(a) TG image of 1: at 453 K H_2O molecules evaporate from the crystal of 1. (b) TG-EI-mass image at 488 K: The molecular weight 18 of H_2O are observed.

Figure 2S

The DSC image of the crystal of **1**: two endothermic peaks were observed at 467 K and 478 K to occure two kinds of H_2O by decomposition.

Figure 3S

The apperarences of H-bonding networks show three 2-D down veiews along each axis networks

Figure 4S

 $tan\delta~(\epsilon'/\epsilon")$ image of dielectric constant on frequency moodulation depending upon temperatures

Figure 5S

(a) PXRD patterns of simulation from X-ray crystal structure analysis of 1, (b)-(e) PXRD ptterns at the temperature range of 83, 180, 298, 430 K, respectively.

(b)

(a)

Figure 6S

(a) The appearance of crystal surface changed by heating until 480 K (b) The measurement of proton conductivity until 450 K: by a cycle measurement the proton conductivity increases from 2.55×10^{-5} S/cm at a first run to 3.44×10^{-5} S/cm at a second run.

Figure 7S

P-E curve measurements of the single crystal of **1** at 70, 150, 300, 410 K: at low temperatures at 70 K and 150 K, the crystal indicates paraelectric natures. But at high temperatures at 300 K and 400 K, the P-E curves are not hysterisis loops and open due to conductive components.

Figure 8S

The temperature-dependent X-ray crystal analyses at eight temperatures of 93, 113, 133, 173, 233, 298, 353, and 373 K: the half-tone dot meshs of a red color show electron densities of H-bonding proton on the differential Fourier map

IR spectrum of $[Ru^{III}(HIm)_3(Im)_3](1)$.

Figure 10S.

The external form of the crystal of **1** forms a five quadrangular -pyramid one.

Water molecules are confined to two void spaces of a small A site and a wide B one. They are formed in the crossover of two different chiral hexahedrons with red and blue lines.

In MeCN Electrolyte: 0.1 M n Bu₄NPF₆ WE: Pt (ϕ = 1.6 mm), CE: Pt, RE: Ag/Ag⁺, (Fc/Fc⁺ = 0.07 V)

Figure 12S.

CV image of [Rul^I(HIm)₆](PF₆)₂ in MeCN

[Ru(HIm) ₃ (Im) ₃]·1.5H ₂ O						
Formula	$C_{18}H_{24}N_{12}RuO_{1.5}$					
Crystal system	Cubic					
Space group	Pa-3 (#205)					
Temperature/K	93	113	133	173		
<i>a</i> , <i>b</i> , <i>c</i> /Å	16.785(17)	16.829(13)	16.830(19)	16.863(17)		
$V/Å^3$	4729(14)	4766(11)	4767(16)	4795(15)		
Ζ	8	8	8	8		
$D_{\rm calc}/{ m g\cdot cm^{-3}}$	1.490	1.479	1.478	1.470		
λ (Mo K α)/Å	0.71073	0.71073	0.71073	0.71073		
μ (Mo K α)/mm ⁻¹	0.701	0.696	0.695	0.691		
F(000)	2152	2152	2152	2152		
$R_{1,} w R_{2} (I > 2\sigma(I))$	0.0394, 0.1083	0.0366, 0.0964	0.0398, 0.1094	0.0388, 0.1016		
R_1 , wR_2 (for all data)	0.0438, 0.1124	0.0419, 0.1016	0.0446, 0.1152	0.0451, 0.1083		
GOF	1.101	1.068	1.050	1.063		
Reflections/Parameters	1815/99	1821/99	1823/99	1826/99		
CCDC	2167384	2167385	2167386	2167387		

Table 1S. Crystallographic data for 1.

Temperature / K	233	298	353	373
<i>a</i> , <i>b</i> , <i>c</i> / Å	16.888(19)	16.929(18)	17.000(19)	17.06(2)
$V/Å^3$	4817(16)	4852(15)	4913(16)	4964(17)
Ζ	8	8	8	8
$D_{\rm calc}$ / g cm ⁻³	1.463	1.453	1.435	1.420
λ (Mo Kα) / Å	0.71073	0.71073	0.71073	0.71073
μ (Mo K α) / mm ⁻¹	0.688	0.683	0.675	0.668
F(000)	2152	2152	2152	2152
$R_{1,} w R_{2} (I > 2\sigma(I))$	0.0376, 0.0972	0.0368, 0.0979	0.0393, 0.0971	0.0390, 0.0994
R_1 , wR_2 (for all data)	0.0437, 0.1029	0.0444, 0.1058	0.0503, 0.1081	0.0506, 0.1114
GOF	1.067	1.077	1.065	1.041
Reflections/Parameters	1828/99	1846/99	1871/99	1880/99
CCDC	2167388	2167389	2167390	2167391