

New Phytologist Supporting Information

Dissecting the labdane-related diterpenoid biosynthetic gene clusters in rice reveals directional cross-cluster phytotoxicity

Riqing Li, Juan Zhang, Zhaohu Li, Reuben J. Peters and Bing Yang

Article acceptance date: 12 October 2021

The following Supporting Information is available for this article:

Primer	Sequence (5'-3')	Usage
F1	TGCTTTTAGATCGATAAGAAC	Mutation detection of c2BGC
R1	TGAGCAGGTTGCCGATGAGA	Mutation detection of c2BGC
F2	ACCGCTGTCATCCATAGCTCGC	Mutation detection of c2BGC
R2	AGTTCCGGTTCCTATTCGAAC	Mutation detection of c2BGC
F3	TTGAACCTAGCTAATGTGCTC	Mutation detection of c4BGC
R3	TGCATGTTCAGATTCATCCTG	Mutation detection of c4BGC
F4	GGCGGATTCTGCTTCGGCGAC	Mutation detection of c4BGC
R4	GTGAACATATCCTGCACAATG	Mutation detection of c4BGC
gCYP76M7/8-F	GTGTGAGCTCCGACCCGCAGTGGA	CRISPR/Cas9 construct of CYP76M7/8
gCYP76M7/8-R	AAACTCCACTGCGGGTCGGAGCTC	CRISPR/Cas9 construct of CYP76M7/8
CYP76M7-F	CTACGCCGGCGGCAAACCCC	Mutation detection of CYP76M7
CYP76M7-R	ACGAGGTTGAGGAGGCCAGT	Mutation detection of CYP76M7
CYP76M8-F	TACACTTGGTCGGCGGCG	Mutation detection of CYP76M8
CYP76M8-R	GGCTGACACCATGGCTCTT	Mutation detection of CYP76M8

Supporting Information Table S1 Primers for mutation detection in rice plants.

Population	Total No.	Indivi	dual NO. of a part	ticular genotype	X ² a
		WT	Heterozygous	homozygous	
<i>∆2bgc</i> (T2)	99	25	51	23	0.17
<i>∆4bgc</i> (T2)	107	27	54	26	0.03

Supporting Information Table S2 Segregation of T2 populations of rice mutants

 $^{a}X^{2}_{0.05}(1:2:1) = 5.99.$

Supporting Information Table S3 Primers for RT-PCR

Gene	Kitaake rice gene ID ^a	Forward primer (5'-3')	Reverse primer (5'-3')
OsCPS4	OsKitaake04g030200	ggttcttgcccaggagaatg	gaccttgtcgatgtggctat
СҮР99АЗ	OsKitaake04g030300	cctttagctcaacacacgtc	gtggtcttgtgggctcttgt
OsMAS	OsKitaake04g030500	tgtccgtcgtcaacagcag	gttggaagagtgaaatacatgc
OsKSL4	OsKitaake04g030600	gtggtcgtctccagaatgat	gacaccgtcttctctaacaac
CYP99A2	OsKitaake04g030800	gccctggtgatacatttggt	gagccgtatatccatcagatt
CYP76M5	OsKitaake02g214700	gtcgtgcctgtcatcgtcaa	cctggaggaagtgatgcaag
CYP76M8	OsKitaake02g214900	agactgccaatgtccttgct	cctgtgtaggcttatacttgt
CYP76M7	OsKitaake02g215000	cgtgtccgagaagttcaagt	gtgccactgggtcccgtat
OsKSL7	OsKitaake02g215400	cacctgttctactaccagac	gtcatccacattctgattacc
CYP71Z6	OsKitaake02g215500	gtgcgtaacatccgtcctaa	gtggtagcattacacactgg
CYP71Z7	OsKitaake02g215600	cgtcctccaagacagcacat	gctacacaaataggccagtc
OsCPS2	OsKitaake02g215700	agcagcagcaacgatgtcag	gagccatgctggtagacaca
OsKSL5	OsKitaake02g215800	cgcaggaagctcttctggtt	tcacagcgttcccaaaccag
OsKSL6	OsKitaake02g216000	tagagaagtgggacgaccat	gattcggcgatatgatccac
CYP76M6	OsKitaake02g216100	caaccaagaacgtacaccag	ggatggtgaggtacaacaag
PR1	OsKitaake07g021300	cgtcttcatcacctgcaa	tcagcgtacgatagtagta
PBZ	OsKitaake12g 174100	ctcaagatgatcgaggac	tggacatttctgcggctc
POX22.3	OsKitaake07g273000	acgacataaacgggccac	aggtgctaatgccatggct
Actin1	OsKitaake03g316400	ctcagcacattccagcagat	acagataggccggttgaaaa

^a Kitaake gene IDs are from JGI (Joint Genome Institute) website,

https://phytozome.jgi.doe.gov/pz/portal.html#!info?alias=Org_OsativaKitaake_er

Supporting Information Figure S1. Rice LRD biosynthesis. Green indicates gibberellin biosynthesis, blue text the enzymes encoded in the c4BGC, and red text the enzymes encoded in the c2BGC. Dashed arrows indicate multiple reactions. (a) Map of known diterpene cyclases, with indicated LRDs where known (??? indicates unknown metabolic fates). (b) Downstream map of (i) momilactone, (ii) phytocassane and (iii) oryzalexin biosynthesis showing known relevant enzymes.

TTGAACCTAGCTAATGTGCTCAAACAATAATGCCATGCAGGTGTGTTGAAGAAGTTCGAAAAGGATGGCAAGTT CTTCTGCTTGCACGGGGAGTCCAACCCATCCTCTGTCACCCCAATGTACAACACTTACCGGGCCTCCCAGCTCAAA TTTCCTGGCGATGACGGTGTCCTTGGGCGAGCTGAGGTGTTTTGCCGCTCATTCCTCCAAGACAGGAGAGGCTCA AACAGAATGAAGGCTTCTCAGGATCAGAGATCAGGGCGACCTCGAATTCCCCTTCGGCACAACGAACATCAAGG CAATTATtACTGGTAATAATTTATTTACTGGTGAATATATAGCACTAATTAAGATGTTATTTTTTCTACATTGTTGT TCATGTAGTCGATTTCATTGTGCAGGATATGTTCAC

Supporting Information Figure S2. Genomic DNA sequence of $\Delta c2bgc$ and $\Delta c4bgc$ mutations in rice. (**a**,**b**) Top, schematic of large deletions one chromosome 2 (**a**) and 4 (**b**). Bottom, the flanking genomic DNA sequence of large deletions. Red and green color indicates genomic DNA sequences flanking the gene cluster deletions, respectively.

Supporting Information Figure S3. Relative expression level of enzymatic genes from c2GBC and c4GBC in rice plants. (a) Gel images of RT-PCR amplicons using gene-specific primers for nine genes in c2GBC on RNA transcripts from $\Delta c2bgc$ and $\Delta c4bgc$ plant leaves. (b) Gel images of RT-PCR amplicons using gene-specific primers for four genes in c4GBC on RNA transcripts from $\Delta c2bgc$ and $\Delta c4bgc$ plant leaves.

Supporting Information Figure S4. Effect of $\Delta c2bgc$ and $\Delta c4bgc$ mutants of rice on drought resistance. (a, c) Representative pictures of wild-type (WT), $\Delta c2bgc$ and $\Delta c4bgc$ mutant plants in normal condition (continued watering) (a) and analysis of water loss in normal condition (continued watering) (b, d) Representative pictures of wild-type (WT), $\Delta c2bgc$ and $\Delta c4bgc$ mutant plants after drought stress treatment (withholding of water for 6 d) (b) and analysis of water loss during drought stress treatment (d) from pots with WT, $\Delta c2bgc$ and $\Delta c4bgc$ mutant plants (n = 6, error bars indicate SD). Asterisks represent significant differences derived from one-way ANOVA followed by Dunnett's multiple comparisons tests to compare the different lines against WT at each time point (*, p < 0.05 and **, p < 0.01; colors correlated to that for $\Delta c2bgc$ and $\Delta c4bgc$ mutant lines, respectively). Four independent experiments were performed with similar results. Error bars represent +/- SD.

CYP76M7 mutation site

WT		ATCCCGAGCTCCGACCCGCAGTGGAAGGCCCTGCGCGGGATCCAGGG
cyp76m7/8	#1	ATCCCGAGCTCCGACCCGCAG-GGAAGGCCCTGCGCGGGATCCAGGG
cyp76m7/8	#2	${\tt ATCCCGAGCTCCGACCCGCAGT}^{\tt T}{\tt GGAAGGCCCTGCGCGGGATCCAGGG}$
cyp76m7/8	#3	$\texttt{ATCCCGAGCTCCGACCCGCAGT}{\texttt{T}}\texttt{GGAAGGCCCTGCGCGGGATCCAGGG}$

CYP76M8 mutation site

WT	CCCGAGCTCCGACCCGCAGTGGAAGGCCCTGCGGGGGATCCACGCCTCG
<i>cyp76m7/8</i> #1	CCCGAGCTCCGACCTGGAAGGCCCTGCGGGGGATCCACGCCTCG
<i>cyp76m7/8</i> #2	CCCGAGCTCCGACCCGCAGTTGGAAGGCCCTGCGGGGGATCCACGCCTCG
<i>cyp76m7/8</i> #3	CCCGAGCTCCGACCCGCAGTTGGAAGGCCCTGCGGGGGATCCACGCCTCG

Supporting Information Figure S5. Mutations of *CYP76M7* and *CYP76M8* genes in *cyp76m7/8* double mutant lines. The *CYP76M7* and *CYP76M8* genes were mutated simultaneously using CRISPR/Cas9 approach in rice. "-" and letters in red color represent deletion and insertion mutations, respectively.

Supporting Information Figure S6. Effect of *cyp76m7, cyp76m8* and *cyp76m7/8* mutants on drought resistance in rice plants. (**a**, **c**) Representative pictures of wild-type (WT), *cyp76m7, cyp76m8* and *cyp76m7/8* mutant plants under normal condition (continued watering) (a), and analysis of water loss under normal condition (continued watering) (c) (n = 5, error bars indicate SD). (**b**, **d**) Representative pictures of wild-type (WT), *cyp76m7, cyp76m8* and *cyp76m7/8* mutant plants after drought stress treatment (withholding of water for 7 d) (b), and analysis of water loss after drought stress treatment (d) (n = 5, error bars indicate SD). Asterisks represent significant differences derived from one-way ANOVA followed by Dunnett's multiple comparisons tests to compare the different lines against WT (**, *p*< 0.01). Error bars represent +/- SD.