

Supporting Information

Hydrogen Tunneling in Catalytic Hydrolysis and Alcoholysis of Silanes

N. Almenara, M. A. Garralda, X. Lopez, J. M. Matxain*, Z. Freixa*, M. A. Huertos*

Table of Contents

1.	General considerations	S-3
2.	Catalytic experiments	S-3
3.	¹ H NMR characterization of silanols and silylethers	S-4
4.	Topographic maps of silanes	S-11
5.	Catalytic studies	S-11
6.	NMR studies	S-15
7.	Table of rate constants and TOF _{1/2}	S-19
8.	Theoretical procedure	S-20
9.	Calculation of the theoretical Kinetic Isotope Effect by means of Eyring and Bigeleisen-Mayer approaches, including Wigner and Bell Inverse Parabola tunneling corrections	S-21
10.	Calculation of the KIE considering quantum tunneling by means of the WBK method	S-23
11.	References	S-28
12.	Cartesian Coordinates	S-29

1. General Considerations

All manipulations, unless otherwise stated, were performed under an atmosphere of nitrogen, using standard Schlenk techniques. Glassware was oven-dried at 110 °C overnight and flamed under vacuum prior to use. Dry and oxygen-free solvents employed. {Ir[SiMe(owere $C_6H_4SMe_2$](H)(PPh₃)(THF)}[BAr^F₄] (1), {IrCl[SiMe(o-C₆H₄SMe)₂](H)(PPh₃)} (2), Me₂PhSiD and Ph₃SiD were prepared as previously described.^[1] Et₃SiH, Et₃SiD, Me₂PhSiH, MePh₂SiH and Ph₃SiH were purchased from Merck and used without previous purification. MeOH, EtOH and PrOH were used dry and oxygen-free. NMR spectra were recorded on Bruker AVD 400 MHz spectrometer. ¹H spectra were referenced to the residual solvent signals. Chemical shifts are quoted in ppm and coupling constants in Hz.

2. Catalytic experiments

A closed reaction vessel equipped with a pressure transducer (Manonthemoon kinetic kit X102)^[2] was immersed in a thermostated ethylene glycol/water bath and charged with the catalyst (**1**, 4.2 mg, 0.0025 mmol; **2**, 1.9 mg, 0.0025 mmol; and [Ir(cod)CI]₂, 0.85 mg, 0.00125 mmol) in 1 mL of distilled THF and H₂O or alcohol (2.5 mmol). Once the pressure of the system was stabilized, the silane (0.25 mmol) was added, which was considered initial reaction time. The solution was left stirring until the pressure stabilized again, which was indicative that the reaction ended. Then, the reaction mixture was filtered through a small silica pad eluting with pentane to remove the catalyst, and the solvent was removed under vacuum. The residue was analyzed by ¹H NMR in CDCl₃. The quantity of gas evolved was calculated from the measured pressure inside the reaction vessel following the ideal gases law equation (reactor volume 13.2 mL).

3. ¹H NMR characterization of silanols and silylethers

Triethylsilanol

¹H NMR (400 MHz, CDCl₃): δ 2.33 (s, 1H, Si-OH), 0.98 (t, *J*_{*H*-*H*} = 8 Hz, 9H, -CH₃), 0.60 (q, *J*_{*H*-*H*} = 8 Hz, 6H, Si-CH₂). ¹H-²⁹Si HMBC NMR (400 MHz, CDCI₃): δ(²⁹Si) 18.8 ppm.

(bottom).

Dimethylphenylsilanol

¹H NMR (400 MHz, CDCl₃): δ 7.63 (m, 2H, aromatics), 7.42 (m, 3H, aromatics), 2.52 (s, 1H, Si-OH), 0.43 (s, 6H, Si-CH₃).

¹H-²⁹Si HMBC NMR (400 MHz, CDCI₃): δ(²⁹Si) 6.9 ppm.

Figure S2. ¹H NMR spectrum of dimethylphenylsilanol (top). ¹H-²⁹Si HMBC NMR spectrum of dimethylphenylsilanol (bottom).

0.0

1 (ppm)

SUPPORTING INFORMATION

Methyldiphenylsilanol

8.0

7.5

7.0

6.5

6.0

5.5

5.0

¹H NMR (400 MHz, CDCI₃): δ 7.65 (m, 4H, aromatics), 7.44 (m, 6H, aromatics), 2.71 (s, 1H, Si-OH), 0.70 (s, 3H, Si-CH₃).
¹H-²⁹Si HMBC NMR (400 MHz, CDCI₃): δ(²⁹Si) -2.8 ppm.

но 6.0 87 83 8.0 7.5 3.5 3.0 2.5 2.0 1.5 0.5 7.0 6.5 6.0 4.0 ppm 1.0 5.5 5.0 4.5

Figure S3. ¹H NMR spectrum of methyldiphenylsilanol (top). ¹H-²⁹Si HMBC NMR spectrum of methyldiphenylsilanol (bottom).

3.5

4.5 4.0 f2 (ppm) 2.5

2.0

1.5

10

3.0

Triphenylsilanol

¹H NMR (400 MHz, CDCI₃): δ 7.67 (m, 6H, aromatics), 7.43 (m, 9H, aromatics), 2.49 (s, 1H, Si-OH). ¹H-²⁹Si HMBC NMR (400 MHz, CDCI₃): δ(²⁹Si) -12.2 ppm.

Figure S4. ¹H NMR spectrum of triphenylsilanol. (*pentane, [†] PPh₃SiH) (top). ¹H-²⁹Si HMBC NMR spectrum of triphenylsilanol (bottom).

Triethylmethoxysilane

¹H NMR (400 MHz, CDCl₃): δ 3.50 (s, 3H, OCH₃), 0.99 (t, *J*_{*H*-*H*} = 8 Hz, 9H), 0.64 (q, *J*_{*H*-*H*} = 8 Hz, 6H). ¹H-²⁹Si HMBC NMR (400 MHz, CDCl₃): δ(²⁹Si) 19.9 ppm.

Figure S5. ¹H NMR spectrum of triethylmethoxysilane. ([†]MeOH, *water, [‡]THF, [¶][BAr^F₄] from precatalyst **1**) (top). ¹H-²⁹Si HMBC NMR spectrum of triethylmethoxysilane (bottom).

Triethylethoxysilane

¹**H NMR (400 MHz, CDCI₃):** δ 3.69 (q, *J*_{*H*-*H*} = 7 Hz, 2H, OCH₂CH₃), 1.19 (t, *J*_{*H*-*H*} = 7 Hz, 3H, OCH₂CH₃), 0.97 (t, *J*_{*H*-*H*} = 8 Hz, 9H), 0.59 (q, *J*_{*H*-*H*} = 8 Hz, 6H).

¹H-²⁹Si HMBC NMR (400 MHz, CDCl₃): δ(²⁹Si) 18.9 ppm.

Figure S6. ¹H NMR spectrum of triethylethoxysilane. ([†]EtOH, *water, [¶][BAr^F₄] from precatalyst **1**) (top). ¹H-²⁹Si HMBC NMR spectrum of triethylethoxysilane (bottom).

Triethylisopropoxysilane

¹H NMR (400 MHz, CDCI₃): δ 3.99 (sep, ³J_{H-H} = 6 Hz, 1H, CH ⁱPrO), 1.15 (d, ³J_{H-H} = 6 Hz, 6H, CH₃ ⁱPrO), 0.97 (t, ³J_{H-H} = 8 Hz, 9H), 0.60 (q, ³J_{H-H} = 8 Hz, 6H).

¹H-²⁹Si HMBC NMR (400 MHz, CDCl₃): δ(²⁹Si) 17.1 ppm.

Figure S7. ¹H NMR spectrum of triethylisopropoxysilane. ([†]PrOH, *water, [‡]acetone, [¶][BAr^F₄] from precatalyst **1**) (top). ¹H-²⁹Si HMBC NMR spectrum of triethylisopropoxysilane (bottom).

4. Topographic maps of silanes

Steric maps were evaluated with the SambVca 2.0 package.The radius of the sphere around the centre atom was set to: 3.5 Å or 5 Å, distance from the centre of the sphere: 2.26 Å, mesh spacing: 0.1 Å, H atoms omitted and atom radii: Bondi radii scaled by 1.17, as recommended by Cavallo.^[3]

Figure S8. Topographic maps and percent buried volume for Et₃SiH, Me₂PhSiH, MePh₂SiH and Ph₃SiH.

5. Catalytic studies

Hydrolysis of silanes using 1

Figure S9. Reaction profiles (equivalents of H₂ *vs* time) and first-order plots for the hydrolysis of different silanes using **1** (1 mol %) as precatalyst at 25 °C.

SUPPORTING INFORMATION

Alcoholysis of Et₃SiH using 1

Figure S10. Reaction profiles (equivalents of H₂ vs time) and first-order plots for the alcoholysis of Et₃SiH using **1** (1 mol %) as precatalyst at 25 °C.

Figure S11. Reaction profiles (equivalents of H₂ *vs* time) obtained for the hydrolysis of Et₃SiH using different concentrations of precatalyst **1** at 25 °C and TOF *vs* catalyst concentration plot.

Figure S12. a) Reaction profiles (equivalents of $H_2 vs$ time) obtained for the hydrolysis of Et_3SiH with precatalyst **1** (1 mol %) using different equivalents of water at 25 °C. b) Reaction profiles (equivalents of $H_2 vs$ time) obtained for the hydrolysis of Et_3SiH with precatalyst **1** (1 mol %) using different equivalents of silane at 25 °C and TOF vs equivalents of silane plot.

Thermodynamic study of the hydrolysis of Et₃SiH using 1 as catalyst

Figure S13. Reaction profiles (equivalents of H₂ *vs* time) and first-order plots for the hydrolysis of Et₃SiH with precatalyst **1** (1 mol %) at different temperatures (5-30 °C).

Kinetic isotope effect studies in the hydrolysis and methanolysis of Silanes using 1 as catalyst

Figure S14. KIE studies: Reaction profiles and first order plots for the hydrolysis of Et₃SiH with precatalyst **1** (1 mol %) at 25 °C.

Figure S15. Reaction profiles and first-order plots for the hydrolysis of Et₃SiD with precatalyst **1** (1 mol %). Temperature range 5–30 °C.

Figure S16. KIE studies: Reaction profiles and first-order plots for the methanolysis of Et₃SiH with precatalyst 1 (1 mol %) at 25 °C.

Figure S17. KIE studies: Reaction profiles the hydrolysis of PhMe₂SiH (left) and Ph₃SiH (right) with precatalyst 1 (1 mol %) at 25 °C.

Kinetic isotope effect study in the hydrolysis of Et₃SiH using [Ir(cod)CI]2 as catalyst

Figure S18. Reaction profiles and first-order plots for the KIE studies in the hydrolysis of Et₃SiH with [Ir(cod)Cl]₂ at 25 °C.

6. NMR studies

NMR studies of formation of H₂**/HD in the hydrolysis of trithylsilane**: High pressure NMR tube was charged with 0.00125 mmol of **1** (2.1 mg), 0.125 mmol of triethylsilane (Et₃SiH, 19.5 μ L; Et₃SiD 20 μ L), 1.25 mmol of water (H₂0, 22 μ L; D₂O 23 μ L) and THF-d₈ (0.5 mL). ¹H NMR spectra were performed after 30 minutes (full conversion). Spectra shown in Figure S19 have been normalized to Et₃Si-OH signals in order to estimate the approximate amount of gas (H₂, HD and D₂) formed. We have not been able to obtain useful ²H NMR spectra since D₂O and D₂ signals are overlapped.

Figure S19. ¹H NMR spectra of the catalytic hydrolysis of triethylsilane. Et₃SiH + H₂O (red). Et₃SiH + D₂O (green). Et₃SiD + H₂O (blue).

Figure S20. ¹H NMR spectra of **1** (10 mg, 5.95·10⁻³ mmol) dissolved in 0.5 mL of THF-d₈ (red). **1** + 100 eq.H₂O in THF-d₈ (green). **1** + 10 eq. Et₃SiH in THF-d₈ (blue)

Figure S21. ¹H NMR spectra of **1** (10 mg, 5.95·10⁻³ mmol) dissolved in 0.5 mL of CD₂Cl₂ (red). **1** + 100 eq.H₂O in CD₂Cl₂ (green). **1** + 10 eq. Et₃SiH in CD₂Cl₂ (green).

Figure S22. ¹H NMR spectra of **1** (10 mg, 5.95 · 10⁻³ mmol) dissolved in 0.5 mL of CD₂Cl₂ before (red) and after adding 10 eq. of Et₃SiH at -70 °C (green), -80°C (blue) and -90°C (purple).

Figure S24. ³¹P{¹H} NMR spectra of **1** (10 mg, 5.95·10⁻³ mmol) dissolved in 0.5 mL of CD₂Cl₂ before (bottom) and after adding 10 eq. of Et₃SiH, compound **3** (top) at -70 °C.

7. Table of rate constants and $TOF_{\frac{1}{2}}$

Table S1. Rate constants and TOF¹/₂ obtained for the hydrolysis and alcoholysis of hydrosilanes with iridium catalysts at different temperatures.

Silane	H ₂ O/Alcohol	Cat	Temp (°C)	k (s⁻¹M⁻¹)	TOF½ (h⁻¹)
Et₃SiH	H ₂ O	[lr(cod)Cl] ₂	25	19.06 ± 0.52	6276
Et₃SiH	H_2O	2	25	-	
Et₃SiH	H ₂ O	1	25	34.98 ± 0.45	20385
Me ₂ PhSiH	H ₂ O	1	25	219.23 ± 24.11	135678
MePh ₂ SiH	H ₂ O	1	25	64.23 ± 2.73	44776
Ph₃SiH	H_2O	1	25	1.58 ± 0.01	950
Et₃SiH	MeOH	1	25	22.31 ± 0.10	13107
Et₃SiH	EtOH	1	25	21.63 ± 0.12	11952
Et₃SiH	ⁱ PrOH	1	25	2.78 ± 0.01	1301
Et₃SiH	H_2O	1	30	47.49 ± 1.18	22388
Et₃SiH	H_2O	1	20	30.38 ± 0.37	16216
Et₃SiH	H_2O	1	15	26.67 ± 0.32	13825
Et₃SiH	H_2O	1	10	21.02 ± 0.23	10526
Et₃SiH	H ₂ O	1	5	15.48 ± 0.13	7463
Et ₃ SiH	H ₂ O	1 (0.5 mol %)	25	8.92 ± 0.22	10526
Et₃SiH	H ₂ O	1 (0.1 mol %)	25	1.38 ± 0.01	8221
Et₃SiH	D_2O	1	25	35.19 ± 0.93	17964
Et₃SiD	H_2O	1	30	(15.85 ± 0.04) ·10 ⁻²	85
Et₃SiD	H_2O	1	25	(10.10 ± 0.02) ·10 ⁻²	48
Et₃SiD	H_2O	1	20	(6.28 ± 0.04) ·10 ⁻²	43
Et₃SiD	H_2O	1	15	(4.61 ± 0.06) ·10 ⁻²	18
Et₃SiD	H_2O	1	10	(2.56 ± 0.02) ·10 ⁻²	15
Et₃SiD	H ₂ O	1	5	(1.64± 0.04) ·10 ⁻²	8
Et₃SiH	D_2O	[lr(cod)Cl] ₂	25	17.34 ± 0.47	5268
Et ₃ SiD	H_2O	[Ir(cod)Cl] ₂	25	8.45 ± 0.01	2692
Et₃SiH	MeOD	1	25	21.20 ± 0.09	11952
Et₃SiD	MeOH	1	25	(15.65 ± 0.02) ·10 ⁻²	76
Me ₂ PhSiD	H ₂ O	1	25	50.65 ± 1.5	25714
Ph₃SiD	H ₂ O	1	25	(9.40 ± 0.01) · 10 ⁻²	47

8. Theoretical Procedures

All calculations were carried out within the Density Functional Theory (DFT),^[4, 5] using the Gaussian16 program package.^[6] In order to determine the reaction mechanism, the following procedure was followed. First, geometry optimizations were performed by using the M06 exchange-correlation functional,^[7] combined with the 6-31+G(d,p) basis set for the non-metal atoms,^[8, 9] and the ECP60MDF Sttutgart-Cologne relativistic core potentials along with the aug-cc-pVDZ-PP basis set for Ir,^[10] taking into account solvent effect (THF) by means of the integral equation formalism of the polarized continuum model (IEFPCM).^[11] After the geometry optimizations, harmonic vibrational frequencies were obtained by analytical differentiation of gradients, at the same level of theory, to identify whether the characterized structures were true minima. Such frequencies were then used to evaluate the zero-point vibrational energy (ZPVE) and the thermal (T = 298 K) vibrational corrections to the Gibbs free energy (G^{corr}). Then, single-point calculations using the 6-311++G(2df,2p) basis set^[12] for non-metal atoms and same ECP combined with aug-cc-pVTZ-PP basis set for Ir,^[10] were performed on the optimized structures to refine the electronic energy (E_{elec}). In this vein, the Gibbs free energies (G^{sol}) of each species in solution were calculated as follows:

$G^{sol} = E_{elec} + G^{corr}$ equation (1)

Finally, these free energy values were used to calculate the ΔG values of the reaction mechanism. This reaction mechanism is depicted in Figure 7 of the manuscript, and the corresponding species are depicted in Figure S25.

Figure S25. Representation of the calculated geometries corresponding to the intermediates and transition states involved in the mechanism represented in Figure 7 of the manuscript.

9. Calculation of the theoretical Kinetic Isotope Effect by means of Eyring and Bigeleisen-Mayer approaches, including Wigner and Bell Inverse Parabola tunneling corrections

The theoretical Kinetic Isotope Effect (KIE), without the consideration of tunneling effects, is calculated as the ratio between the calculated reaction rate constant for H and D:

In order to calculate these reaction rate constants, Transition State Theory is applied. In this vein,

17 -	$\frac{k_b T Q^{TS}(T)}{2} e^{-V^{TS}/RT}$
к —	$hQ_r(T)$ e

T is the temperature, k_B stands for the Boltzmann constant, V^{TS} is the potential energy at the saddle point, and finally $Q_r(T)$ and $Q^{TS}(T)$ are harmonic (quantum) partition functions for the reactants and the saddle point. This equation can be rewritten in the following way as function of the free energy change (Eyring equation)

$$k = \frac{k_b T}{h} e^{-\Delta G/RT}$$

The calculated energy barriers for H and D are calculated by carrying out frequency calculations for both isotopes on the reactant complexes (C_0) and transition states (TS_1):

$$k_{\rm H} = \frac{k_{\rm b} T}{h} e^{-\Delta G_{\rm H}/RT} = 2188.62358 \text{ s}^{-1}$$
$$k_{\rm D} = \frac{k_{\rm b} T}{h} e^{-\Delta G_{\rm D}/RT} = 636.521429 \text{ s}^{-1}$$

Substituting these expressions in the KIE_{theo}^{Eyring} expression we obtain the following:

$$\text{KIE}_{\text{theo}}^{\text{Eyring}} = \frac{\text{k}_{\text{H}}}{\text{k}_{\text{D}}} = 3.4384$$

Other method to calculate Kinetic Isotope Effects is the Bigeleisen-Mayer method.^[13, 14] This method is more sophisticated than the Eyring one, but no tunneling corrections are included. Hence, Wigner tunneling correction^[15-17] and the Bell Inverse Parabola^[18] correction have been considered as well. Both Wigner and Bell's methods are one dimensional approaches for tunneling.

In Wigner approach, tunnel corrections are considered very simply as a function of the imaginary frequency of the reaction coordinate at the TS structure.

$$k^{W} = 1 + \left(\frac{h[w]}{k_{B}T}\right)^{2} \frac{1}{24}$$

According to the calculated imaginary frequency for H (-589 cm⁻¹), and D (-428 cm⁻¹) in TS₁, the correction factor would take the following values for $\overline{k_H^W}$ and $\overline{k_D^W}$.

k_H^W	= 1 +	$\frac{1}{24}$	$\left(\frac{6.626 * 10^{-34} [589 * 3 * 10^{10}]}{1.30 \ 10^{-23} \ 298}\right)^2$	= 1.392
k_D^W	= 1 +	$\frac{1}{24}$	$\left(\frac{6.626 * 10^{-34} [428 * 3 * 10^{10}]}{1.30 \ 10^{-23} \ 298}\right)^2$	= 1.201

Hence, considering Wigner tunneling correction and the calculated imaginary frequencies for H and D, the corrected KIE would be increased by a factor of $\frac{kH}{k_D^W} = 1.159$, which is not enough to explain the large observed experimental KIE values.

In the Bell's approach, the shape of the PES at the TS is approached as an inverse parabola. It is a bit more sophisticated than Wigner's approach, but large errors are associated to these methods for H transfer. Nevertheless, they may be used as indicative of tunneling when they increase the calculated Bigeleisen KIE value.^[19] We have calculated the KIE values according to these 3 methods, namely, Bigeleisen-Mayer, Wigner and Bell as implemented in the p-quiver program.^[20] and are collected in Table S2 along with the Eyring KIE value.

Table S2: The calculated KIE values using the Eyring, Bigeleisen-Mayer, Wigner and Bell Inverse Parabola methods.

	Eyring	Bigeleisen-Mayer	Wigner	Bell Inverse
				Parabola
KIE	3.4384	3.3243	3.6449	3.7741

As can be seen, the very approximate tunneling corrections of Wigner and Bell Inverse Parabola slightly increase the KIE, suggesting the importance of tunneling in this reaction. Discussion of the results are included in the manuscript as well.

10. Calculation of the KIE considering quantum tunneling by means of the WBK method

In order to calculate the Potential Energy Surfaces for H/D transfer tunneling, we focused on the imaginary frequency of the TS1 structure. Its value is calculated to be -589 cm⁻¹ for H transfer. Visualization of this normal mode shows the H transfer from HSi(Et)₃ to Ir catalyst, as expected for this H/D transfer process. IRC calculations^[21,22] confirmed this fact. Hence, in this process, the water molecule coordinated to the catalyst in C₀ must be decoordinated while H is transferred. We have calculated the PES for such process by means of geometry optimizations with restrictions, without considering any further correction in the electronic energies. First, the Ir-Si distance was reduced by 0.1 A, until the water decomplexation was observed. This occurred at Ir-Si distance of 4.4 A approximately, similar to the Ir-Si distance in the optimized TS₁ structure. Then, Ir-H distance was reduced systematically, by 0.1 A, fixing the Ir-Si distance to 4.4 A. Calculated PES is depicted in Figure S26. Notice that the maximum of the curve (Δ E of around 55 kJ/mol) is in agreement with the calculated barrier for TS₁ (Δ G = 53.93 kJ/mol).

Figure S26: Schematic representation of calculated PES for H/D tunneling from C₀ to C₁. Black dashed lines stand for H vibrational levels, and red dashed lines for D vibrational levels.

10.1 Tunneling at 298 K

Hence, we have used this PES for calculating the tunneling effects via the Wentzel-Kramers-Brillouin WBK semiclassical approach.^[23] First of all, we calculate all the available vibrational levels for H and D, from which tunneling may occur. These vibrational levels are those corresponding to the Si-H(D) stretching in the H(D)Si(Et)₃ moiety in C₀, as calculated by Gaussian 16. According to the harmonic approximation, the vibrational energy levels are calculated to be:

$$\mathbf{G}(\mathbf{v}) = \left(\mathbf{v} + \frac{1}{2}\right) \overline{\mathbf{v}_{\mathbf{e}}}$$

Harmonic vibrational frequencies for the mentioned vibrational modes are calculated to be 2146.2 cm⁻¹ (25.76 kJ/mol) and 1539.3 cm⁻¹ (18.4 kJ/mol) for H and D, respectively. Representing these energy levels in the calculated PES, two vibrational levels are available for H (at 12.84 kJ/mol and 38.51 kJ/mol, black dashed lines in Figure S26) and three for D (at 9.21 kJ/mol, 27.62 kJ/mol and 46.04 kJ/mol, red dashed lines in Figure S26). We are aware that this harmonic approach is accurate near C₀, while the accuracy decreases near TS1 due to the anharmonicity of the PES. Nevertheless, from a qualitative point of view this approach is sufficient to take into account the tunneling effects from excited vibrational levels. Hence, in order to calculate the tunneling transmission coefficient for H and D, the probability of tunneling from all available energy levels should be considered, along with the population of each level.

According to the Wentzel-Kramers-Brillouin (WKB) semiclassical approach,^[23] the probability of tunneling from each level can be calculated by the next expression

$$P(E) = e^{-2 \int_{x_1}^{x_2} dx \sqrt{\frac{2m}{\hbar^2} (V(x) - E)}}$$

being V(x) the calculated one-dimensional PES and E the energy associated to the vibrational level. The population of each vibrational level (PB_i) can be calculated according to Boltzmann distribution function for a given temperature. The calculated values are collected in Table S3.

	Н		D		
Vib. Level	PBv	P _v (E)	Vib. Level (v)	PBv	P _v (E)
(v)					
0	0.999968	1.35922 x 10 ⁻¹⁰	0	0.999405	2.48568 x 10- ¹⁶
1	3.18287 x 10 ⁻⁵	2.54155 x 10⁻⁴	1	5.94487 x 10 ⁻⁴	3.21735 x 10⁻ ⁹
-	-	-	2	3.53625 x 10 ⁻⁷	1.20253 x 10⁻³

Table S3: Population	of different vibrational	levels at 298 K,	and the calculate	d probability	of tunneling fr	om each
level, for H and D.						

Having into account these values, the transmission probability (τ) is calculated by averaging the tunneling probability from each energy level taking into account its population.

$$\tau = \sum_{\nu=0}^{n} PB_{\nu} \cdot P_{\nu}(E)$$

Notice that in this formulation the value of τ ranges from 0 to 1, and its physical meaning is to provide the probability of tunneling per event. Hence, in order to obtain the effect of tunneling in the rate constant, one should multiply this probability by the number of events occurring during a second, i.e. the vibrational

frequency. So, the tunneling rate (k^{tun}) would be obtained as the product of and the frequency the vibration takes place:

$$k^{tun} = \overline{v_e} \cdot \tau$$

In this vein, in order to move from C0 to C1 in the reaction mechanism, H/D have two paths. One, moving above the barrier (Eyring or Bigeleisen), and the other by moving through tunneling. Hence, the reaction rate constant would be the sum of both events.

$$\mathbf{k} = k^{Eyr} + k^{tun}$$

If the tunneling effect is negligible, then the rate constant is governed by the barrier height, but as tunneling importance increases its influence in the rate constant is more important. Taking this into account, we may define the total theoretical Kinetic Isotopic Effect as

$$KIE^{Theo} = \frac{k_H}{k_D} = \frac{k_H^{Ey} + k_H^{tun}}{k_D^{Ey} + k_D^{tun}}$$

It could be compared it to KIE without considering tunneling, regardless considering Eyring or Bigeleisen methods (KIE^{Ey}, KIE^B) and the KIE considering only tunneling:

In Table S4 we provide all these results, calculated according to the procedure described above.

Table S4: Calculated transmission probability (τ), tunneling and no-tunneling rate constans (k^{tun} and k^{Eyr}) in s⁻¹, and calculated Eyring KIE (KIE^{Eyr}), Bigeleisen KIE (KIE^B), tunneling KIE (KIE^{tun}) and total theoretical KIE (KIE^{theo}).

	τ	k ^{tun} (s⁻¹)	k ^{Eyr} (s⁻¹)	KIE ^{Eyr}	KIE ^{tun}	KIE ^{theo}	KIE ^{exp}
				(KIE ^B)			
Н	8.22534 x 10 ⁻⁹	3.32199 x 10 ⁶	2.2117 x 10 ³	3.44 (3.32)	26.85	26.73	346
D	4.27159 x 10 ⁻	1.23739 x 10⁵	6.43631 x 10 ²				
	10						

According to the calculated values, we observe that $k^{tun} \gg k^{Ey}$, and, as a consequence, $KIE^{theo} \approx KIE^{tun}$. Hence, tunnelling is crucial to understand the large experimental KIE values.

10.2 Influence of the Temperature in the KIE

The experimental KIEs are affected by the Temperature, and we have calculated also the theoretical KIE^{theo} at different temperatures (assuming that $\overline{\text{KIE}^{\text{theo}} \approx \text{KIE}^{\text{tun}}}$), and compared to the experimental ones (KIE^{Exp}). First, we collect the occupation of vibrational levels and their corresponding tunneling probability for different temperatures, in Table S5, and then, in Table S6, the calculated transmission probability, tunneling rate constans (k^{tun}) in s⁻¹, and calculated Eyring KIE (KIE^{Eyr}), tunneling KIE (KIE^{tun}) and total theoretical KIE (KIE^{theo}), at different temperatures (K) are given.

		Н		D		
Т	Vib.	PBv	P _v (E)	Vib.	PB _v	P _v (E)
	Level (v)			Level (v)		
278	0	0.999985	1.35922 x 10 ⁻¹⁰	0	0.999651	2.48568 x 10⁻¹⁰
	1	1.51169 x 10⁻⁵	2.54155 x 10 ⁻⁴	1	3.48592 x 10 ⁻⁴	3.21735 x 10⁻ ⁹
	-	-	-	2	1.21559 x 10 ⁻⁷	1.20253 x 10⁻³
283	0	0.999982	1.35922 x 10 ⁻¹⁰	0	0.999599	2.48568 x 10⁻¹⁰
	1	1.83901 x 10⁻⁵	2.54155 x 10 ⁻⁴	1	4.01189 x 10 ⁻⁴	3.21735 x 10 ⁻⁹
	-	-	-	2	1.61017 x 10 ⁻⁷	1.20253 x 10 ⁻³
288	0	0.999978	1.35922 x 10 ⁻¹⁰	0	0.99954	2.48568 x 10 ⁻¹⁶
	1	2.22204 x 10 ⁻⁵	2.54155 x 10 ⁻⁴	1	4.59473 x 10 ⁻⁴	3.21735 x 10⁻ ⁹
	-	-	-	2	2.11212 x 10 ⁻⁷	1.20253 x 10 ⁻³
293	0	0.999973	1.35922 x 10 ⁻¹⁰	0	0.999476	2.48568 x 10 ⁻¹⁶
	1	2.66758 x 10⁻⁵	2.54155 x 10 ⁻⁴	1	5.2379 x 10 ⁻⁴	3.21735 x 10 ⁻⁹
	-	-	-	2	2.745 x 10 ⁻⁷	1.20253 x 10 ⁻³
298	0	0.999968	1.35922 x 10 ⁻¹⁰	0	0.999405	2.48568 x 10⁻¹⁰
	1	3.18287 x 10⁻⁵	2.54155 x 10 ⁻⁴	1	5.94487 x 10 ⁻⁴	3.21735 x 10 ⁻⁹
	-	-	-	2	3.53625 x 10 ⁻⁷	1.20253 x 10 ⁻³
303	0	0.999962	1.35922 x 10 ⁻¹⁰	0	0.999328	2.48568 x 10 ⁻¹⁶
	1	3.77564 x 10⁻⁵	2.54155 x 10 ⁻⁴	1	6.71909 x 10 ⁻⁴	3.21735 x 10⁻ ⁹
	-	-	-	2	4.51765 x 10 ⁻⁷	1.20253 x 10 ⁻³

Table S5: Population of different vibrational levels at 278, 283, 288, 293, 298 and 303 K, and the calculated probability of tunneling from each level, for H and D.

Table S6: Calculated transmission probability (τ), tunneling rate constans (k ^{tun}) in s ⁻¹ , and calculated tunneling KI	Е
(KIE ^{tun}) and total theoretical KIE (KIE ^{theo}), different temperatures (K).	

		1	· · · ·		
Т		τ	k ^{tun} (s⁻¹)	KIE ^{tun}	KIE Exp
278	Н	3.9780 x 10 ⁻⁹	1.6066 x 10 ⁶	37.65	943
	D	1.4730 x 10 ⁻¹⁰	4.2670 x 10 ⁴		
283	Н	4.8099 x 10 ⁻⁹	1.9426 x 10 ⁶	34.40	821
	D	1.9492 x 10 ⁻¹⁰	5.6464 x 10 ⁴		
288	Н	5.7834 10 ⁻⁹	2.3357 x10 ⁶	31.56	578
	D	2.5547 10 ⁻¹⁰	7.4004 10 ⁴		
293	Н	6.9157 x 10 ⁻⁹	2.7931 x 10 ⁶	29.06	487
	D	3.3178 x 10⁻¹⁰	9.6110 x 10 ⁴		
298	Н	8.2253 x 10 ⁻⁹	3.3212 x 10 ⁶	26.85	346
	D	4.2716 x 10 ⁻¹⁰	1.2374 10x⁵		
303	Н	9.7319 x 10 ⁻⁹	3.9304 x 10 ⁶	24.88	299
	D	5.4542 x 10 ⁻¹⁰	1.5800 x 10⁵		

As can be observed from the values given in Table S6, the behavior of the $\underline{KIE^{exp}}$ with temperature is correctly described by the $\underline{KIE^{theo}}$. This behavior comes from the fact that $\underline{k_n^{tun}}$ increases with the temperature more than $\underline{k_H^{tun}}$, once higher vibrational levels become available for D. As a consequence, the KIE decreases.

11. References

- a) Synthesis of {Ir[SiMe(o-C₆H₄SMe)₂](H)(PPh₃)(THF)}[BAr^F₄] (1) and {IrCl[SiMe(o-C₆H₄SMe)₂](H)(PPh₃)} (2): S. Azpeitia, A. Rodriguex-Dieguez, M. A. Garralda, M. A. Huertos, *ChemCatChem*, 2018, *10*, 2210. b) Synthesis of Me₂PhSiD and Ph₃SiD: N. Gandhamsetty, S. Park, S. Chang, *J. Am. Chem. Soc.* 2015, *137*, 15176.
- [2] <u>www.manonthemoontech.com</u>
- [3] L. Falvine, R. Credendino, A. Poater, A. Petta, L. Serra, R. Oliva, V.Scarano, L. Cavallo. Organometallics, 2016, 35, 2286.
- [4] P. Hohenberg, W. Kohn, *Physical Review*, **1964**, *136 (3B)*, B864-B871.
- [5] W. Kohn, L. J. Sham, *Physical Review* **1965**, *140* (4A), A1133-A1138.
- [6] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, F. Williams, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian 16 Rev. B.01, Wallingford, CT, **2016**.
- [7] Y. Zhao, D. G. Truhlar, *Theor. Chem. Acc.*, **2008**, *120*, 215.
- [8] P. C. Hariharan, J. A. Pople, *Theor. Chem. Acc.*, **1973**, 28, 213.
- [9] M. M. Francl, W. J. Pietro, W. J. Hehre, J. S. Binkley, D. J. DeFrees, J. A. Pople, M. S. Gordon, J. Chem. Phys., 1982, 77, 3654.
- [10] D. Figgen, K. A. Peterson, M. Dolg, H. Stoll, J. Chem. Phys. 2009, 130, 164108.
- [11] G. Scalmani, M. J. Frisch, J. Chem. Phys. 2010, 132, 114110.
- [12] R. Krishnan, J. S. Binkley, R. Seeger, J. A. Pople, J. Chem. Phys. 1980, 72, 650.
- [13] J. Bigeleisen and M. G. Mayer, J. Chem. Phys. 1947, 15, 261.
- [14] M. Wolfsberg, Acc. Chem. Res. 1972, 5, 225.
- [15] E. P. Wigner, Z. Phys. Chem., Abt. 6, 19, 203 (1932).
- [16] B. C. Garrett and D. G. Truhlar, J. of Phys. Chem., 83, 200, 1979
- [17] R. P. Bell, The tunnel effect in Chemistry, ISBN 978-0-412-21340-3, Chapman and Hall, 1980.
- [18] R. P. Bell. Chem. Soc. Rev. 1974, 3, 513.
- [19] J.E. Bercaw, G. S. Chen, J. A. Labinger and B. -L. Lin, Organometallics, 2010, 29, 4354-4359.
- [20] T. L. Anderson, E. E. Kwan, PyQuiver 2020, www.github.com/ekwan/PyQuiver
- [21] K. Fukui, Acc. Chem. Res. 1981, 14, 363-368.
- H. P. Hratchian and H. B. Schlegel, in Theory and Applications of Computational Chemistry: The First 40 Years, Ed. C. E. Dykstra, G. Frenking, K. S. Kim, and G. Scuseria (Elsevier, Amsterdam, 2005) 195-249.
- [23] N. Froman and P. O. Froman, Wkb approximation, contributions to the theory; North Holland Publishing Company: Amsterdam, **1965**.

12. Cartesian Coordinates

2-THF at Solv/Set2

. Compound: C'1

Sym	ibol X	Y	Z
C	-6.189285	-1.139725	-1.946509
0	-6.042703	0.082100	-1.210854
С	-6.450583	1.196272	-2.018295
С	-6.597322	0.646735	-3.425944
С	-7.043747	-0.786110	-3.149831
0	-5.445295	1.342127	1.290704
Si	-1.843401	0.754433	0.885862
С	-1.302746	1.821986	2.338290
С	-2.441889	2.689957	2.878827
С	-2.825807	-0.712160	1.537596
С	-3.535889	-1.578689	0.503831
С	-2.649713	1.779700	-0.471556
С	-2.840347	1.069424	-1.811933
0	-7.880523	0.452861	2.382016
С	-7.930936	-0.842520	1.763581
C	-8.836475	-0.686506	0.554622
C	-9.808652	0.385994	1.033741
C	-8.8/4620	1.307083	1.796166
0	0.098654	4.929206	1.590580
C	2.575840	2.646308	2.261561
5	2.235844	0.878066	1.933078
	3.939319	0.296471	1./50/54
	4.049090	0.299400	0.490220
C	6 565057	-0.121203	1 567/6/
C C	5 920372	-0.550094	2 803015
C C	4 598074	-0.37 1032	2.003013
Si	3 503076	0.793073	-1 013861
C	4 224229	0.092547	-2 598465
lr	1 296190	0 423139	-0 363458
S	0.923382	2.747214	-0.896744
Č	2.550586	3.510147	-1.056580
C	3.674467	2.689138	-1.141052
С	4.918448	3.326172	-1.251861
С	5.020528	4.715127	-1.272490
С	3.874077	5.504760	-1.181108
С	2.624437	4.902411	-1.069444
Р	1.415138	-1.900497	-0.159996
С	-0.073194	-2.740689	-0.855378
С	-0.534113	-3.935055	-0.287693
С	-1.598563	-4.625659	-0.862226
С	-2.214043	-4.135993	-2.011864
С	-1.763650	-2.947542	-2.582265
С	-0.703372	-2.253144	-2.005652
С	2.791566	-2.755074	-1.023411

С	4.065004	-2.808545	-0.443877
С	5.125484	-3.401969	-1.121766
С	4.929335	-3.943253	-2.390720
С	3.666844	-3.889551	-2.977040
Ĉ	2 602425	-3 300804	-2 297741
č	1 470925	-2 551388	1 558511
č	0.685860	_1 002575	2 516718
č	0.000000	2 26/071	2,976090
Č	1 259552	2.304371	1 109669
č	1.300003	-3.409700	4.190000
	2.132240	-4.134073	3.249/0/
	2.183660	-3.695256	1.935677
C	0.407384	2.815192	-2.646624
Н	-5.585352	0.811910	0.487647
Н	-6.220888	1.137916	1.844462
Н	-0.579965	0.155893	0.221215
Н	-3.614350	2.136131	-0.080788
Н	-2.026207	2.681856	-0.595545
Н	-3.150713	1.768421	-2.600761
Н	-3.615548	0.295457	-1.740632
Н	-1.917248	0.576479	-2.151822
н	-4.315111	-1.005156	-0.011508
н	-2 844059	-1 954863	-0 260864
н	-4 018614	-2 449942	0.966188
н	-2 145098	-1 310308	2 154922
н	-3 563708	-0.274042	2.104022
Ц	-0.000700	2 165320	2.227.000
Ц	0.403330	1 161702	2.0000070
Ц	2 785776	3 /10815	2 12/838
	-2.705770	2 001091	2.124030
Ľ	2 129202	2.091001	3.100317
	-2.120303	0.100691	1 070602
	0.003332	0.100001	-1.070093
	-0.000000	2.321911	-2.720040
	0.320000	3.000004	-2.939071
н	1.141689	2.290110	-3.263217
н	3.623347	0.444834	-3.446547
н	5.252027	0.450056	-2.747189
н	4.232085	-1.002509	-2.612339
н	1.723012	5.507231	-0.981577
Н	3.952912	6.588915	-1.186867
Н	5.997569	5.186184	-1.351178
Н	5.827917	2.726573	-1.310149
Н	3.251842	3.057519	1.505842
Н	1.625743	3.192424	2.249212
Н	3.030737	2.714975	3.253277
Н	4.079359	-0.154662	3.861839
Н	6.442824	-0.925898	3.688280
Н	7.597245	-0.884008	1.488224
Н	6.393002	-0.146173	-0.534672
Н	4.238943	-2.387768	0.544902
Н	6.107164	-3.436575	-0.653861
Н	5.757831	-4.406846	-2.920599
Н	3,504668	-4.310893	-3.966129
Н	1.621295	-3.274690	-2.768176
Н	0.112360	-1.022709	2.236030

Н	0.007055	-1.842246	4.553936
Н	1.322207	-3.851484	5.223335
Н	2.695361	-5.042089	3.529026
Н	2.774079	-4.244296	1.205749
Н	-0.362920	-1.323271	-2.457030
Н	-2.242047	-2.550837	-3.475308
Н	-3.046033	-4.675718	-2.458128
Н	-1.946989	-5.549078	-0.405895
Н	-0.066638	-4.336143	0.609544
Н	-0.623606	5.282583	2.121763
Н	-0.314970	4.605261	0.780396
Н	-8.335136	-1.564284	2.488272
Н	-6.905512	-1.146304	1.506488
Н	-9.317152	-1.625101	0.260932
Н	-8.250325	-0.310304	-0.295440
Н	-10.331245	0.898629	0.220040
Н	-10.559863	-0.045889	1.707866
Н	-9.357382	1.874584	2.598823
Н	-8.376575	2.017585	1.114791
Н	-5.191521	-1.497434	-2.253544
Н	-6.634152	-1.892866	-1.282897
Н	-6.886368	-1.466125	-3.992240
Н	-8.109485	-0.809882	-2.884363
Н	-7.305651	1.220215	-4.030919
Н	-5.625813	0.649056	-3.938989
Н	-5.694786	1.986768	-1.923314
Н	-7.407362	1.582931	-1.628614

• Compound: C_0

Sym	ibol X	Y	Z
C	0.751606	-3.523529	1.437762
Č	0.542922	-2.448620	0.567288
Č	-0.713230	-1.830965	0.547241
Ċ	-1.733624	-2.259187	1.391098
C	-1.506472	-3.318166	2.269040
C	-0.266283	-3.950357	2.287839
P	1.789339	-1.850355	-0.648082
Ċ	1.213823	-2.680057	-2.192633
C	0.596754	-3.935867	-2.114700
C	0.209785	-4.605013	-3.271328
С	0.428950	-4.028132	-4.521481
С	1.041261	-2.781262	-4.609477
С	1.434249	-2.110826	-3.451960
lr	1.934812	0.452194	-0.923186
S	2.043647	2.759233	-1.588771
С	2.836744	2.768517	-3.230698
S	0.790317	0.959531	1.254119
С	0.784279	2.744711	1.646072
С	2.037051	0.417951	2.448803
С	1.589206	0.020712	3.707158
С	2.520961	-0.390049	4.659282
С	3.879307	-0.386942	4.346354
С	4.305785	0.005262	3.077717
С	3.393398	0.404179	2.093234
Si	3.856149	0.819327	0.293454
С	5.507761	0.066236	-0.187077
С	4.128742	2.709359	0.229933
С	3.345365	3.517047	-0.596789
С	3.491610	4.903492	-0.656064
С	4.466436	5.511375	0.129126
С	5.266054	4.734927	0.968182
С	5.094510	3.353820	1.016516
С	3.327831	-2.756936	-0.239427
С	4.074924	-3.370167	-1.250274
С	5.284792	-3.993045	-0.950371
С	5.757570	-4.012412	0.359804
С	5.020021	-3.399272	1.371363
С	3.815209	-2.770622	1.073403
0	-0.078155	0.520637	-2.316101
0	-4.933361	-1.162242	1.868776
0	-7.003287	0.717149	1.268275
0	-7.301773	0.226662	-1.483090
С	-4.000435	2.073030	2.777057
С	-2.822897	1.481323	2.002312
Si	-2.911223	1.802567	0.140372
С	-3.563556	3.532007	-0.224917
С	-2.639949	4.638804	0.283296
С	-3.896885	0.489895	-0.785645
С	-3.979891	0.729087	-2.292130

Н	0.522510	0.023330	3.933012
Н	2.184799	-0.713357	5.641364
Н	4.607476	-0.704992	5.089192
Н	5.370237	-0.029893	2.842217
Н	5 723626	2 765960	1 686715
н	6 020749	5 210544	1 590183
ц	1 503017	6 500/01	0.003031
	4.333347	0.390401 5 501404	1 200109
	2.040307	0.074700	-1.300190
н	5.737250	0.374798	-1.215387
н	6.313627	0.437753	0.459658
Н	5.507835	-1.027786	-0.146705
Н	2.178842	2.206044	-3.898684
Н	2.928966	3.801995	-3.574884
Н	3.814830	2.284752	-3.163111
Н	0.127769	3.236903	0.921514
Н	0.380521	2.870612	2.655205
Н	1.793326	3.163896	1.589021
н	3.716449	-3.366904	-2.278520
H	5 856042	-4 467002	-1 744785
н	6 699827	-4 502548	0 592264
н	5 3828//	-3 402466	2 307161
Ľ	2 260274	2 282206	1 97/506
	3.200074	-2.203390	1.074000
	1.704455	-4.047003	1.401023
н	-0.088153	-4.786078	2.960210
н	-2.298811	-3.658457	2.932954
Н	-2.705306	-1.762417	1.368131
Н	-0.902517	-1.006169	-0.140016
Н	1.923844	-1.141403	-3.530167
Н	1.218363	-2.325196	-5.580499
Н	0.122073	-4.550774	-5.424170
Н	-0.266367	-5.579514	-3.194695
Н	0.416330	-4.399932	-1.146256
н	2.823339	0.089388	-2.201938
н	-1.500562	1,762403	-0.405245
н	-4 909483	0 456093	-0.356650
н	-3 458499	-0.498315	-0 571989
Ц	-5.450435	-0.490515	2 806431
ц Ц	4.505200	1 655079	2 5 2 1 4 0 4
	-4.521422	1.000970	-2.521494
п	-2.988104	0.821464	-2.758173
н	-4.564594	3.620780	0.225257
н	-3./11283	3.632461	-1.309884
Н	-3.054847	5.638790	0.108706
Н	-2.451102	4.550770	1.362425
Н	-1.664357	4.600509	-0.221568
Н	-2.778385	0.390650	2.153382
Н	-1.875613	1.878890	2.395128
Н	-3.956938	1.812876	3.842556
Н	-4.014325	3.168830	2.714705
Н	-4.964890	1,720435	2.387549
Н	-6.255665	0.171240	1.569137
н	-7 076714	0 512547	0.317462
C	-5 514206	-2 20120-1	1 21202
č	_7 /1556/	1 571151	_1 065/06
Ц	0 202752	0 202460	2 7101420
п	-0.393732	-0.303400	-2.112119

Н	-0.830461	0.919649	-1.849343
С	-8.872227	1.933478	-1.759383
Н	-6.706582	2.190968	-1.400071
Н	-7.138423	1.605428	-3.031596
Н	-9.194449	2.778771	-2.374822
С	-9.553176	0.617646	-2.125611
Н	-9.052092	2.183069	-0.704650
Н	-10.560896	0.516673	-1.712122
Н	-9.623885	0.521541	-3.216566
С	-8.587839	-0.416881	-1.558005
Н	-8.500180	-1.316068	-2.179282
Н	-8.868920	-0.725454	-0.539517
Н	-5.861696	-1.959345	0.227086
Н	-4.737194	-3.060213	1.066136
С	-6.629950	-2.792436	2.139072
Н	-6.612327	-3.884031	2.218685
С	-6.331713	-2.104224	3.485800
Н	-7.617110	-2.505290	1.761774
Н	-7.073650	-1.324550	3.692215
Н	-6.332169	-2.798500	4.331516
С	-4.965008	-1.471584	3.260906
Н	-4.148324	-2.176293	3.497783
Н	-4.794705	-0.542276	3.815112

• Compound: TS_1

Sym	nbol	Х	Y	Z
С	-2.9	44616	3.500785	-0.163706
С	-3.8	54756	2.658647	0.475942
С	-5.1	24205	3.188980	0.749109
С	-5.4	55967	4.496106	0.402320
С	-4.5	21791	5.309103	-0.240155
С	-3.2	56392	4.809892	-0.532915
Si	-3.4	03115	0.841844	0.871982
С	-4.6	46365	-0.151947	-0.162447
С	-4.3	18157	-0.463561	-1.487127
С	-5.2	09158	-1.117072	-2.337481
С	-6.4	67729	-1.476004	-1.860650
С	-6.8	13520	-1.198729	-0.539265
С	-5.9	10232	-0.544482	0.295987
S	-2.6	70587	-0.078771	-2.132723
С	-3.0	75886	1.402377	-3.121035
S	-1.2	92998	2.881424	-0.548054
C	-0.3	91090	3.649170	0.841216
lr	-1.3	26907	0.523362	-0.083380
Р	-1.0	50176	-1.682570	0.599167
C	-0.2	24968	-2.792384	-0.614650
C	0.4	95840	-2.252709	-1.681468
C	1.1	52521	-3.089274	-2.583441
	1.0	92138	-4.470608	-2.425845
	0.3	15451	-5.018073	-1.301007
	-0.2	01/04	-4.100204	-0.402000
	-2.0	40000	-2.073302	1.012023
	-2.9	01457	-2.930320	2.321000
	-4.1 / Q	70351	-3.037973	2.300079
C	-4.0	88723	-3 880030	0 221100
C C	-	3/01/	-3 1507/0	-0.038525
C C	-0.0	04912	-1 825531	2 111575
C C	1.0	78597	-2 705233	2 187500
C C	1.0	37049	-2 794284	3 354803
Č	1.5	10973	-2.020152	4.464422
Ċ	0.4	31636	-1.139464	4.398156
C	-0.3	09482	-1.032921	3.226375
C	-3.7	39990	0.605693	2.708107
Ō	0.1	42000	1.372977	-3.691912
Č	3.2	22919	0.090944	-2.712054
С	3.8	64913	0.910530	-3.830386
Si	2.9	67670	1.013086	-1.083214
0	4.9	61951	1.267884	-0.921190
С	2.7	60125	2.896470	-1.143906
С	3.3	65433	3.717188	-0.006401
С	2.9	08538	-0.065063	0.464896
С	2.6	29872	0.675338	1.769693
0	5.9	51324	1.573132	1.592858
0	6.2	48715	-0.959838	-1.611232

С	6.082132	2.800989	2.333773
Н	5.299807	1.438810	-0.006492
С	6.751264	-1.330051	-2.908066
н	5.461781	0.477910	-1.258814
H	0 932782	0 815019	-1 205180
н	3 228830	3 198832	-2 093708
н	1 602071	3 125572	_1 2503/1
Ľ	2 172500	1 797021	0 1/6/52
	J.172309	2 502062	-0.140452
	4.403702	3.392902	0.049797
	2.955299	3.430730	0.972040
н	3.417913	1.407725	1.993266
н	1.670538	1.210394	1.724238
н	2.569685	-0.017692	2.620402
н	2.136492	-0.827988	0.294343
Н	3.865447	-0.610201	0.527562
Н	2.256973	-0.298885	-3.053260
Н	3.842757	-0.788717	-2.470547
Н	3.212726	1.735828	-4.143382
Н	4.822097	1.353543	-3.527268
Н	4.053316	0.295438	-4.718826
Н	-0.579731	0.884510	1.273579
Н	0.632093	3.264734	0.813155
Н	-0.389976	4.734042	0.702744
Н	-0.872405	3.372195	1.783355
Н	-3.029278	1.207115	3.289947
Н	-4.749833	0.953565	2.963631
Н	-3.655475	-0.442251	3.020048
н	-2.521568	5.428844	-1.046036
н	-4.780848	6.327043	-0.520715
H	-6.448522	4.881402	0.624323
Н	-5.875452	2.564867	1.234706
H	-3 557893	2 159442	-2 493902
H	-2 126034	1 764544	-3 526158
н	-3 744699	1 103786	-3 932607
н	-4 916355	-1 357515	-3 358905
н	-7 168567	-1 988054	-2 515796
н	-7 787786	-1 497286	-0 158300
н	-6 10585/	-0 3/3803	1 320351
Ц	3 040163	2 085001	1.073168
	5 096142	4 262101	-1.073100
	-3.000142 5.794521	-4.202101	1 7/1006
	-0.704001	2 955254	2 617507
	-4.391142	-3.0000004	3.01/39/
	-2.329053	-2.392023	3.103230
н	0.547207	-1.168403	-1.796819
н	1.706843	-2.65/25/	-3.414252
Н	1.601045	-5.122994	-3.1320/1
Н	0.325462	-0.096677	-1.23265/
Н	-0.839498	-4.624336	0.363614
Н	-1.130578	-0.318870	3.1/8246
Н	0.1/2507	-0.524450	5.256758
Н	2.098743	-2.096452	5.376254
Н	2.683794	-3.475960	3.392295
Н	1.351516	-3.319867	1.332227
Н	0.386683	1.200582	-2.758132

Н	0.563448	2.210611	-3.912668
С	7.887771	-2.291415	-2.624546
Н	5.923381	-1.763171	-3.480218
Н	7.106829	-0.427348	-3.427543
Н	8.604117	-2.348292	-3.449189
С	8.476396	-1.696847	-1.348668
Н	7.497280	-3.299593	-2.435990
Н	9.081208	-2.404266	-0.774246
Н	9.102770	-0.828447	-1.589164
С	7.228747	-1.261347	-0.598873
Н	7.379250	-0.364096	0.017323
Н	6.827120	-2.061409	0.039352
С	6.615163	2.393653	3.694035
Н	6.741342	3.472449	1.773211
Н	5.089126	3.270413	2.417449
Н	6.355073	3.112888	4.475910
С	5.964242	1.026387	3.881063
Н	7.707966	2.296150	3.665939
Н	6.462456	0.402080	4.628353
Н	4.911831	1.139689	4.173983
С	6.068816	0.447828	2.483040
Н	5.280564	-0.275508	2.235371
Н	7.047101	-0.029444	2.320564

• Compound: **C**₁

Sym	bol X	Y	Z
С	-2.774740	3.688138	0.063096
С	-3.731576	2.947665	0.757404
С	-4.862926	3.651739	1.200126
С	-5.024877	5.012277	0.953195
С	-4.052622	5.714772	0.239758
С	-2.919604	5.048963	-0.215708
Si	-3.509971	1.046822	0.991048
С	-4.903873	0.361811	-0.134265
С	-4.605454	0.004594	-1.452672
С	-5.573958	-0.471863	-2.337125
С	-6.891747	-0.596069	-1.905478
С	-7.221965	-0.258190	-0.593687
С	-6.237683	0.212916	0.272739
S	-2.893700	0.071408	-2.061159
С	-3.021796	1.546508	-3.128743
S	-1.261420	2.874390	-0.515782
C	-0.123147	3.529203	0.752144
lr	-1.441532	0.521306	-0.080457
Р	-1.358067	-1.690985	0.51/910
C	-0.683548	-2.896912	-0./101/0
C	0.016963	-2.461293	-1.835255
C	0.535521	-3.378150	-2.749629
C	0.358550	-4.743132	-2.546044
	-0.344391	-5.190591	-1.426813
	-0.800473	-4.2/4/31	-0.319995
	-2.900090	-2.329009	0.910197
C	-3.301213	-2.010141	2.219304
C	-4.000202	-3.400757	2.400990
C	-5.451050	-3.710401	0.000031
C	-3 800030	-2 851331	-0 1/6/06
C C	-0.337574	-1 991148	2 025827
C C	0.647193	-2 980532	2.020027
Č	1 378770	-3 180687	3 259073
Č	1.126171	-2.404360	4.385910
Č	0.148406	-1.410968	4.332862
C	-0.567384	-1.198887	3.159208
С	-4.040505	0.724334	2.782532
0	0.338567	0.979061	-3.498120
С	3.309191	-0.749569	-2.763177
С	4.133092	-0.182388	-3.917851
Si	3.439591	0.202255	-1.166100
0	5.197580	0.284642	-0.919208
С	2.941852	2.004385	-1.264872
С	3.632544	2.957752	-0.287543
С	2.785995	-0.761466	0.289485
С	2.936610	-0.095139	1.654548
0	6.667701	-1.699978	-0.871517
0	6.669099	1.541999	0.725912

С	6.476406	1.823803	2.129353
Н	5.641340	0.877107	-0.229437
С	6.928380	-2.031297	0.517291
Н	5 764290	-0 596666	-0.952633
н	0 054344	0 372512	-0.912034
ü	2 002122	2 244742	2 20204
	3.090130	2.344743	-2.290042
п	1.850520	2.012000	-1.107753
Н	3.240215	3.977234	-0.380711
Н	4.714240	3.015469	-0.468952
Н	3.492637	2.649610	0.757402
Н	3.981584	0.167349	1.875778
Н	2.341120	0.825927	1.715096
Н	2.589786	-0.755586	2.459651
Н	1.722139	-0.957438	0.085230
н	3 281469	-1 747021	0 273124
н	2 242379	-0 762289	-3 033432
Ц	2.242070	1 705165	2 555800
	2 940756	-1.795105	-2.333033
	5.040750	0.049301	-4.101020
н	5.206463	-0.175498	-3.688602
н	3.997871	-0.770922	-4.832080
Н	-0.578203	0.788076	1.230300
Н	0.843345	3.038942	0.609316
Н	-0.022609	4.609656	0.616870
Н	-0.517109	3.292156	1.744046
Н	-3.306220	1.164227	3.470518
Н	-5.016870	1.170691	3.015004
н	-4.106556	-0.351056	2,992664
Н	-2 155360	5 582025	-0 780597
н	_4 179083	6 775156	0.034458
н	-5 015102	5 527305	1 307075
ü	-0.01010Z	2 121/12	1 7/5/0/
	-0.044000	3.121413	0.646440
п	-3.340459	2.410411	-2.545110
н	-2.029963	1.708595	-3.560951
н	-3.744966	1.344365	-3.923212
Н	-5.297700	-0.760834	-3.351068
Н	-7.652627	-0.971069	-2.586267
Н	-8.247076	-0.367838	-0.245324
Н	-6.516318	0.464317	1.297043
Н	-3.503911	-2.656108	-1.174679
Н	-5.696028	-3.681933	-0.747422
Н	-6.420803	-4.166788	1.585827
н	-4 908850	-3 617868	3 481073
н	-2 709509	-2 595831	3 062696
н	0 1/5258	_1 301330	_1 00/06/
н Ц	1 070090	2 020275	2 6 2 7 4 9 0 4
	0.750450	-3.020375	-3.02/409
п	0.759458	-5.459119	-3.239872
н	-0.491597	-0.200089	-1.2020/4
н	-1.42124/	-4.63/529	0.344960
Н	-1.311514	-0.404350	3.118647
Н	-0.053208	-0.793825	5.205454
Н	1.691991	-2.566400	5.300474
Н	2.147436	-3.950040	3.285030
Н	0.864578	-3.597865	1.218999
		0.050504	0 550070

Н	0.609111	1.900646	-3.574172
Н	6.887823	-3.122746	0.618722
С	8.308334	-1.476808	0.799869
Н	6.126224	-1.589416	1.121589
Н	8.798503	-1.986871	1.633736
С	9.009466	-1.696401	-0.538089
Н	8.243192	-0.404622	1.034259
Н	9.890529	-1.062819	-0.675019
Н	9.323155	-2.742629	-0.637854
С	7.916676	-1.371742	-1.539640
Н	7.965040	-1.950526	-2.466011
Н	7.889994	-0.300639	-1.790432
С	7.592927	2.784790	2.487213
Н	5.484410	2.281631	2.260647
Н	6.507873	0.873326	2.674929
Н	7.342811	3.411560	3.347445
Н	8.512361	2.230838	2.719216
С	7.759804	3.566300	1.187379
Н	8.715853	4.091477	1.112271
С	7.621968	2.466600	0.155106
Н	6.951394	4.301070	1.075272
Н	7.236785	2.795249	-0.817516
Н	8.571170	1.931775	-0.000985

• Compound: C₂

Sym	ibol X	Y	Z
С	-5.576430	-2.636713	-1.758271
С	-4.346842	-1.959181	-1.717451
С	-3.424486	-2.283492	-2.714692
С	-3.678589	-3.245213	-3.695793
С	-4.910354	-3.890089	-3.711134
С	-5.862361	-3.583000	-2.738224
Si	-3.902628	-0.671458	-0.359287
lr	-1.715985	0.109478	-0.936843
Р	-1.734296	1.811429	0.584537
C	-0.374674	3.062600	0.438500
C	0.150312	3.748210	1.539797
C	1.145305	4.708838	1.365264
C	1.610560	5.013467	0.08/2/9
C	1.073677	4.355329	-1.018363
C	0.088546	3.385463	-0.842470
5	-1.790413	-1.489078	-2.121013
	-1.923840	-0.521390	-4.200010
C	-3.007999	-1.730039	1.232399
C	2 181107	2.103702	2 813353
C	3 265350	-2.044020	2.013333
C	-4 556138	-2 887713	3 202671
C C	-4 756851	-2.007710	2 042010
S	-0.951309	-1 618013	0.688575
C C	-0 670148	-3 210724	-0 164457
Č	-5.504508	0.308969	-0.093470
Č	-3.157894	2.984385	0.551690
Č	-3.448777	3.793311	1.657852
Č	-4.475179	4.730877	1.596887
С	-5.208920	4.890131	0.421729
С	-4.908343	4.108805	-0.690350
С	-3.890811	3.159414	-0.623422
С	-1.642607	1.234869	2.324505
С	-0.408766	0.866110	2.876284
С	-0.344307	0.294345	4.144461
С	-1.511205	0.068876	4.871339
С	-2.744519	0.408368	4.320589
С	-2.810181	0.980782	3.053803
0	1.775554	0.820360	0.108325
Si	3.621873	-0.170755	-0.491657
C	4.469388	1.049209	0.673136
C	4.723221	2.420332	0.041768
C	3.300507	0.338/44	-2.2/6/84
C	2.572593	-0.749494	-3.069436
C	2.785934	-1.715052	0.18/3/0
	2.100090	-1.805372	0.000270
0	5.217491 6.024475	-1.1250/6	-U.YXXX/X 1 070000
0	0.024173 7 104769	-2.009312 0 606508	1.012220 -1.613443
0	1.107/00	0.0000000	1.010-770

Н	-1.162565	-3.091694	3.114856
Н	-3.100910	-3.813849	4.501643
Н	-5.407831	-3.186904	3.810356
Н	-5.775981	-1.868877	1.765832
Н	-6.332120	-2.420452	-1.002182
Н	-6.825585	-4.088744	-2.742013
Н	-5.123691	-4.634262	-4.474787
н	-2.922104	-3.489596	-4.440703
н	-5.755124	0.875015	-0.999603
H	-6.354245	-0.349165	0.132863
Н	-5.409134	1.030161	0.729585
H	-1.010864	0.072889	-4.336261
H	-1.995453	-1.204587	-5.115958
H	-2.798913	0.133686	-4.215018
H	0 116176	-3 064737	-0.911118
H	-0 342949	-3 945694	0 576810
н	-1 588476	-3 553443	-0 652092
н	-3 784601	1 228685	2 634531
H	-3 663082	0 215089	4 870289
H	-1 460357	-0.381327	5 860208
H	0 622288	0.018142	4 560901
Н	0.510684	1.011728	2.308789
н	-0.202408	3.527512	2.545549
Н	1.554993	5.221558	2.232466
Н	2.389661	5.760435	-0.046435
Н	1.427206	4.589088	-2.020233
H	-0.308665	2.849164	-1.704019
Н	-3.672151	2.534469	-1.487254
Н	-5.473072	4.228370	-1.612307
Η	-6.010476	5.623640	0.374559
Н	-4.698490	5.341763	2.468553
Н	-2.880008	3.691305	2.580679
Н	-2.226477	1.203343	-1.980925
Н	-0.133029	0.421695	-1.539680
Н	4.270787	0.556376	-2.747706
Н	2.727218	1.275530	-2.304354
Н	2.457687	-0.470755	-4.123686
Н	3.116151	-1.702935	-3.038536
Н	1.563758	-0.926349	-2.669852
Н	3.268723	-2.602645	-0.246201
Н	1.756344	-1.712289	-0.197824
Н	2.226151	-2.705857	2.049719
Н	3.772580	-1.843415	2.129550
Н	2.242472	-0.941369	2.150871
Н	3.855815	1.153776	1.579159
Н	5.424406	0.613106	1.001709
Н	5.213474	3.103342	0.746091
Н	5.369184	2.336326	-0.842669
Н	3.794090	2.909446	-0.282590
Н	5.950800	-0.539634	-1.322816
Н	5.581916	-1.703187	-0.262370
С	7.459268	1.369423	-2.782270
С	6.701446	-2.022972	2.219280
Н	0.969074	0.590483	-0.429115

Н	1.789384	1.789303	0.113134
С	6.592750	-3.091328	3.291194
Н	7.748649	-1.825220	1.948394
Н	6.220295	-1.073432	2.487002
Н	7.404297	-3.031630	4.021878
Н	5.639752	-3.001130	3.829095
С	6.612552	-4.369471	2.458170
Н	6.211815	-5.239942	2.985221
С	5.761441	-3.971891	1.267768
Н	7.636157	-4.602100	2.138032
Н	6.007309	-4.499708	0.340723
Н	4.688399	-4.102014	1.477585
С	8.479012	2.381294	-2.294543
Н	7.885918	0.687713	-3.531133
Н	6.546465	1.817952	-3.191572
Н	9.145692	2.720228	-3.092462
Н	7.974231	3.260215	-1.871493
С	9.190473	1.599518	-1.194248
Н	9.733053	2.233968	-0.487781
С	8.030423	0.870183	-0.544149
Н	9.899212	0.883833	-1.629888
Н	8.301567	-0.085795	-0.080284
Н	7.530305	1.501021	0.208224

• Compound: TS_2

Sym	ibol X	Y	Z
C	0.508967	1.870482	-2.211502
С	-0.021278	2.508281	-1.087049
С	0.514320	3.740803	-0.691753
С	1.564646	4.315251	-1.401271
С	2.093470	3.665654	-2.516130
С	1.561973	2.444410	-2.921333
Р	-1.406814	1.768050	-0.115881
С	-2.834577	2.824925	-0.568078
С	-2.863176	3.476363	-1.805663
С	-3.983670	4.210240	-2.189812
С	-5.084070	4.303953	-1.340964
С	-5.065518	3.652018	-0.108849
С	-3.951094	2.911286	0.272949
lr	-1.612351	-0.509428	-0.446498
S	-1.583430	-2.818247	-1.132297
С	-1.290886	-2.791894	-2.932940
С	-3.289605	-3.415349	-1.111386
С	-4.326418	-2.505406	-0.901493
С	-5.627311	-3.029951	-0.876809
С	-5.868994	-4.389889	-1.053975
С	-4.805774	-5.269858	-1.259105
С	-3.502154	-4.784172	-1.282562
Si	-3.951228	-0.644965	-0.623451
С	-5.001584	0.255268	-1.902278
С	-4.609005	-0.271334	1.130928
С	-3.734742	-0.404474	2.218358
С	-4.101344	-0.064260	3.519675
С	-5.387466	0.416226	3.760265
С	-6.286849	0.543583	2.703262
С	-5.898014	0.201592	1.408496
S	-2.041878	-1.002602	1.964625
С	-2.312498	-2.786482	2.248879
С	-0.954978	2.276386	1.596391
С	0.043142	1.532890	2.238407
С	0.487480	1.884525	3.508171
С	-0.068081	2.983173	4.161578
С	-1.055230	3.734936	3.529688
С	-1.491312	3.389853	2.251463
0	1.444295	-2.075930	0.565993
Si	3.190580	-1.690437	0.089413
С	3.307228	-0.168026	1.197325
С	3.101255	1.150848	0.454827
С	3.973743	-3.294321	0.700161
С	4.375637	-4.254210	-0.419681
0	5.400195	-1.192791	-0.469782
С	2.761201	-1.507881	-1.749144
С	3.780501	-1.129862	-2.814647
0	7.013027	-1.654852	1.696503
0	6.124964	1.427617	-1.200904

С	5.727018	2.203163	-2.341656
Н	5.619191	-0.300157	-0.806571
С	7.933885	-0.556741	1.798564
Н	5.970275	-1.338492	0.316125
Н	0.190572	-0.474571	-0.335469
Н	2.293149	-2.473624	-2.008571
Н	1.927355	-0.787488	-1.769831
Н	3.316893	-1.112733	-3.809299
Н	4.623178	-1.828040	-2.846516
Н	4.193364	-0.128373	-2.637575
Н	3.854615	1.285420	-0.333470
Н	2.116936	1.199613	-0.030889
н	3.166499	2.016329	1.129289
Н	2.556506	-0.281662	1.993512
Н	4.286254	-0.175704	1.697466
Н	3.264467	-3.782258	1.383476
н	4.847354	-3.037122	1.316011
Н	3,509026	-4.561256	-1.020633
Н	5.096615	-3.786555	-1.101594
Н	4.835022	-5.169025	-0.025430
Н	-1.523728	-0.132963	-1.996377
Н	-0.303986	-2.346679	-3.089326
H	-1.307606	-3.818536	-3.308536
Н	-2.061141	-2.183015	-3.414220
н	-4 613449	0.017046	-2 901363
н	-6 050643	-0.067343	-1 866765
н	-4 972028	1 343160	-1 774216
н	-2 661431	-5 461203	-1 428420
н	-4 990319	-6.333103	-1 391375
н	-6 888162	-4 768893	-1 025781
н	-6 473040	-2 361831	-0 707907
н	-3 101389	-3 171876	1 595176
H	-1 366123	-3 295686	2 044079
н	-2 587247	-2 929748	3 297295
н	-3 383307	-0 161025	4 333360
н	-5 680958	0 696932	4 768878
н	-7.289952	0.922650	2.886870
H	-6.608288	0.334833	0.591394
Н	-3.960816	2.394873	1.232456
H	-5.923123	3.712331	0.558049
H	-5.956002	4.880946	-1.639497
Н	-3.992903	4.712138	-3.154357
Н	-2.008460	3.414058	-2.477657
Н	0.481083	0.669142	1.738473
H	1 265990	1 295797	3 988994
H	0 271388	3 255131	5 158195
H	-1 486025	4 600625	4 027188
Н	-2.245597	4.005549	1.766976
Н	0.106583	0.909450	-2.524772
Н	1.969935	1.929269	-3.789167
Н	2,916874	4.114097	-3.069239
н	1.974376	5.269827	-1.078772
н	0.119064	4.256369	0.182603
Н	0.623838	-1.246448	0.099345

Н	1.141569	-2.963681	0.328044
С	9.279190	-1.187098	2.099146
Н	7.956220	-0.018467	0.834593
Н	7.566840	0.126428	2.572595
Н	10.117887	-0.547597	1.808741
Н	9.367359	-1.406800	3.170943
С	9.188748	-2.479229	1.293240
Н	9.893868	-3.249772	1.618302
С	7.742265	-2.884762	1.518080
Н	9.369474	-2.275817	0.229762
Н	7.300968	-3.431212	0.673947
Н	7.622366	-3.490344	2.427492
С	6.127764	3.629342	-2.017321
Н	6.214615	1.784942	-3.228858
Н	4.632632	2.121327	-2.468918
Н	5.540460	4.367718	-2.572387
С	5.891371	3.670783	-0.510560
Н	7.188883	3.792560	-2.245563
Н	6.424054	4.480629	-0.003525
Н	4.818661	3.778826	-0.297186
С	6.384166	2.298083	-0.086282
Н	5.869836	1.896095	0.797858
Н	7.466999	2.302373	0.110221

• Compound: C₃

Sym	bol X	Y	Z
С	-3.480554	3.085748	0.019421
С	-2.313925	2.787647	-0.695172
С	-2.076132	3.431800	-1.912339
С	-3.006730	4.337442	-2.419865
С	-4.175561	4.611135	-1.714568
С	-4.406696	3.990193	-0.487567
Р	-1.138433	1.581687	0.033308
lr	-1.782396	-0.663878	0.240254
Si	-3.710514	-0.522729	-1.111210
С	-4.260735	-2.328157	-1.389299
С	-3.600896	-3.384319	-0.760494
С	-4.027517	-4.709960	-0.862215
С	-5.138881	-5.002437	-1.644888
С	-5.815493	-3.973166	-2.299612
С	-5.383163	-2.657271	-2.165175
S	-2.142924	-3.060578	0.250831
С	-0.839904	-3.747895	-0.826040
C	-0.656431	2.436870	1.588892
C	-0.617813	3.837808	1.625359
Č	-0.128675	4.501254	2.745738
Č	0.330680	3.775516	3.844042
Č	0.288527	2.384336	3.820753
C	-0.207370	1.720656	2,700840
C	0.371595	1.724345	-1.004684
C	1.531876	2.344809	-0.532956
C	2.670287	2.411849	-1.335806
C	2.655596	1.872798	-2.617557
Č	1.496836	1.266165	-3.102697
Č	0.367425	1.181858	-2.297441
S	-3.345952	-0.242112	2.150815
C	-4.897864	0.284579	1.383264
Č	-5.867789	0.819452	2.232389
C	-7.059654	1.292279	1.690865
С	-7.262319	1.239497	0.312497
С	-6.277071	0.711289	-0.517689
С	-5.069975	0.217956	-0.002535
С	-3.877905	-1.832378	2.871216
С	-3.755443	0.330455	-2.785293
0	1.659514	-2.905924	1.194799
Si	2.911898	-1.878094	0.690991
C	4.568304	-2.708058	1.001043
C	4.873146	-2.951260	2.478848
Č	2.777365	-0.269230	1.662087
C	3.988479	0.649454	1.514418
C	2.560213	-1.600695	-1.122819
C	2.888106	-2.789413	-2.023389
Ō	5.666390	-0.400261	-1.558631
Ō	8.012044	-1.580275	-0.503746
0	5.906215	2.429797	-1.338146

Н	5.335988	-2.067410	0.536540
Н	1.721715	-3.258830	2.088066
Н	-5.688273	0.879140	3.304997
Н	-7.820633	1.713473	2.343092
Н	-8.186224	1.621109	-0.116056
Н	-6.448222	0.699563	-1.594416
Н	-5.936492	-1.869300	-2.676504
Н	-6.686857	-4.198317	-2.910033
н	-5.479307	-6.030615	-1.738202
Н	-3.500126	-5.504756	-0.336805
Н	-2.919333	-0.012849	-3.407036
Н	-4.683005	0.091865	-3.321055
Н	-3.691956	1.420554	-2.688955
H	0.113167	-3.544562	-0.324936
Н	-0.997709	-4.826365	-0.909853
Н	-0.882612	-3.266276	-1.806428
H	-2 994021	-2 304127	3 308685
н	-4 615314	-1 630019	3 651813
н	-4 311213	-2 477688	2 101071
н	-1 164996	3 234799	-2 473005
н	-2 812055	4 830688	-3.369062
н	-4 900831	5 316144	-2 113467
н	-5 309327	4 208676	0.078594
н	-3 667627	2 625567	0.070004
н	-0 957144	4 417402	0.768146
н	-0 101920	5 588095	2 757872
н	0.716692	4 294936	4 717730
н	0.639015	1 800883	4 674951
н	-0 234441	0.633773	2 705570
н	-0.523309	0.682711	-2 678091
н	1 478855	0.839252	-4 102749
н	3 552115	1 909282	-3 233613
н	3 583025	2 866436	-0 952496
н	1 568352	2 765337	0 470744
н	-0.978656	-0.884272	-1 118095
н	-0 510562	-0.995623	1 580513
н	3 141800	-0.333023	-1 439444
н	1 498246	-1 317464	-1 217141
н	2 575140	-2 614298	-3 060943
н	3 969367	-2 977728	-2 039212
н	2 397440	-3 712483	-1 683532
н	4 588333	-3 656486	0 441662
н	1 877189	0.000400	1 299476
н	2 584481	-0.495502	2 723537
Ц	3 820770	1 627236	1 0887/0
Ц	1 887701	0.213707	1.900740
Ц	1 228212	0.213707	0.456107
н	-0.086083	_1 110010	0.430107
Ц	-0.000903 5 8/5552	-7 120720	2 630/00
Ц	1 802/70	-3.439730	2.030499
Ц	4 120806	-2.012201	2 0/22021
Ц	5 722007	-3.333209 0 560217	_1 500777
Ц	5.155991 6 500650	-0.705511	-1.000111
$\hat{\mathbf{C}}$	6 1022002	2 728095	-1.200042
	0.400030	2.1 00000	-0.031307

С	7.967826	-2.957085	-0.912334
С	7.258454	3.983835	-0.202428
Н	5.556649	2.927307	0.642647
Н	6.956520	1.864062	0.345285
Н	7.336302	4.569363	0.718518
Н	8.272415	3.717809	-0.528400
С	6.511538	4.699262	-1.323759
Н	7.108769	5.456141	-1.840749
С	6.133777	3.535523	-2.222360
Н	5.607673	5.183906	-0.928852
Н	5.221210	3.707482	-2.807235
Н	6.948470	3.278896	-2.915960
С	8.032921	-3.781434	0.365040
Н	7.048039	-3.121764	-1.490669
Н	8.828738	-3.149869	-1.567843
Н	8.529361	-4.744738	0.214431
С	8.785765	-2.849306	1.310423
Н	7.021844	-3.976347	0.747468
Н	8.622819	-3.075674	2.369152
Н	9.864808	-2.890363	1.113211
С	8.230287	-1.495835	0.907964
Н	8.910398	-0.658857	1.099764
Н	7.270721	-1.287262	1.413639

• Compound: C₄

Symbo	ol X	Y	Z
C	8.027633	-1.285137	0.704150
0	7.834651	-1.409817	-0.707881
С	7.866360	-2.795417	-1.087362
С	7.976242	-3.588357	0.207072
С	8.662681	-2.592863	1.138616
0	5.457272	-0.331715	-1.797716
0	5.799311	2.481130	-1.455174
С	6.389817	2.631851	-0.157282
С	7.311239	3.833766	-0.261472
С	6.564522	4.693947	-1.275709
С	6.069536	3.641862	-2.251562
С	2.585344	2.636284	-1.287129
С	1.469182	2.504594	-0.462385
С	0.339202	1.812432	-0.907845
С	0.341752	1.269287	-2.199375
С	1.447005	1.421007	-3.028876
С	2.577813	2.094090	-2.567936
Р	-1.129823	1.560552	0.169842
С	-0.592936	2.191198	1.804352
С	-0.478986	3.563578	2.061484
С	0.020879	4.009734	3.280521
С	0.414894	3.091249	4.253728
С	0.300124	1.725551	4.008673
С	-0.206386	1.279713	2.790185
С	-2.334443	2.826910	-0.388346
С	-3.346660	3.234112	0.490359
С	-4.301974	4.157846	0.083741
С	-4.266182	4.677320	-1.209951
С	-3.262690	4.279153	-2.088367
С	-2.295798	3.362082	-1.678259
lr	-1.776996	-0.682714	0.268707
S	-3.579388	-0.272888	1.973994
С	-4.368753	-1.830730	2.509449
Si	-3.506354	-0.575300	-1.237500
C	-3.220238	0.016764	-2.992989
S	-2.027331	-3.076084	0.242260
C	-0.847059	-3.708386	-0.997252
C	-4.199237	-2.34/6/8	-1.315454
C	-3.570343	-3.392371	-0.636070
C	-4.087572	-4.687721	-0.605062
C	-5.269298	-4.95///2	-1.288431
C	-5.920857	-3.936944	-1.980686
C	-5.392691	-2.648595	-1.987033
C	-4.876280	0.421150	-0.390312
C	-4.925/10	0.450526	1.008821
	-5.95/895	1.080/99	1.701750
	-0.9//105	1.702250	0.904352
	-0.941003	1.709130	-0.408902
	-0.901040	1.073441 2.880470	
0	1.002000	-2.009410	1.119909

Si	2.782490	-1.882092	0.571565
С	2.415067	-1.621332	-1.242009
С	2.770926	-2.801322	-2.143785
С	4.444065	-2.715636	0.854506
С	4.785220	-2.936626	2.327549
С	2.685326	-0.270431	1.533666
С	3.887517	0.653626	1.358659
Н	5.198601	-2.077166	0.363795
Н	1.633603	-3.257442	2.003340
Н	-5.957659	1.100372	2.790732
Н	-7.787135	2.197004	1.514802
Н	-7.725563	2.213171	-0.969589
н	-5.886915	1.095500	-2.175389
Н	-5.925645	-1.860722	-2.521014
Н	-6.847505	-4.146057	-2.509926
н	-5.684590	-5.962320	-1.274201
Н	-3.574925	-5.473750	-0.052515
Н	-2.417714	-0.571278	-3.455668
H	-4.128017	-0.134420	-3.592244
н	-2 957076	1 080295	-3 039902
н	0 148625	-3 524868	-0 582244
н	-1 020884	-4 781055	-1 119755
н	-0.987377	-3 175702	-1 942493
н	-3 611947	-2 408921	3 046478
н	-5 194575	-1 590436	3 183791
н	-4 735952	-2 393066	1 645109
н	-1 504529	3 078154	-2 370081
н	-3 220835	4 689142	-3 094615
н	-5.016633	5 396705	-1 529008
н	-5 078487	4 468987	0 778905
н	-3 383685	2 842099	1 506519
н	-0 772384	4 287864	1 302576
н	0 106876	5 076975	3 469557
н	0 808240	3 442099	5 204785
н	0.603034	1 004320	4 764084
н	-0.289600	0 207582	2 610771
н	-0 516912	0 700654	-2 554441
н	1 435906	0 986841	-4 025949
н	3 460544	2 177019	-3 199073
н	3 478916	3 137995	-0.917904
н	1.504362	2.920348	0.542765
H	-0.706468	-0.896221	-0.888754
Н	2.971840	-0.728243	-1.562155
н	1 345839	-1 366231	-1 326906
н	2 438791	-2 641101	-3 177671
н	3 857447	-2 954263	-2 173757
н	2 317762	-3 740855	-1 796227
н	4 457671	-3 671011	0.307234
н	1 770747	0 244796	1 197420
Н	2 522637	-0 498744	2 599509
н	3 733157	1 621985	1 857352
н	4 803368	0 212393	1 777688
н	4 088857	0 854160	0 296293
Н	5.763136	-3.418744	2.464968
	2		

Н	4.813818	-1.990164	2.884999
Н	4.047324	-3.580993	2.825034
Н	5.509562	0.639309	-1.814985
Н	6.315218	-0.625229	-1.441679
Н	5.587796	2.805142	0.579394
Н	6.899325	1.694740	0.105169
Н	7.469765	4.326414	0.702483
Н	8.289408	3.536325	-0.661288
Н	7.187873	5.454942	-1.754469
Н	5.714409	5.197654	-0.794549
Н	5.149180	3.925612	-2.777765
Н	6.836403	3.394453	-3.001083
Н	6.956680	-3.023065	-1.660655
Н	8.736131	-2.952997	-1.740220
Н	8.533492	-4.521050	0.078186
Н	6.977308	-3.839376	0.588289
Н	8.504758	-2.808043	2.200460
Н	9.743766	-2.570477	0.950063
Н	8.650413	-0.402365	0.887227
Н	7.050295	-1.130190	1.195605
Н	5.386207	-3.310683	6.050300
Н	5.891752	-3.216766	5.513920