The co-existence of multiple oak leaf flushes contributes to the large within-tree variation in chemistry, insect attack and pathogen infection

Álvaro Gaytán, Xoaquín Moreira, Bastien Castagneyrol, Inge Van Halder, Pieter De Frenne, Camille Meeussen, Bart G.H. Timmermans, Jan P.J.G. Ten Hoopen, Pil U. Rasmussen, Nick Bos, Raimo Jaatinen, Pertti Pulkkinen, Sara Söderlund, Felisa Covelo, Karl Gotthard and Ayco J.M. Tack

Acceptance date: 3 May 2022

SUPPORTING INFORMATION

Table S1. Differences between the first and the second oak leaf flush (*Quercus robur*) in the concentration of primary (nitrogen, phosphorus) and secondary compounds (flavonoids, hydroxycinnamic acids, condensed tannins and hydrolysable tannins) during the early, mid and late season. Shown are χ^2 values, degrees of freedom and p-values from linear mixed effect models, with significant p-values (p < 0.05) in bold.

Response variable	Predictor	χ^2	df	р
Nitrogen	Leaf flush	2454.81	1	<0.01
	Season	1128.95	2	<0.01
	Leaf flush \times Season	131.61	2	<0.01
Phosphorus	Leaf flush	306.02	1	<0.01
	Season	2331.29	2	<0.01
	Leaf flush × Season	210.46	2	<0.01
Flavonoids	Leaf flush	1616.96	1	<0.01
	Season	1615.63	2	<0.01
	Leaf flush \times Season	653.78	2	<0.01
Hydroxycinnamic acids	Leaf flush	392.40	1	<0.01
	Season	1165.19	2	<0.01
	Leaf flush \times Season	34.54	2	<0.01
Condensed tannins	Leaf flush	2239.21	1	<0.01
	Season	170.10	2	<0.01
	Leaf flush \times Season	506.86	2	<0.01
Hydrolysable tannins	Leaf flush	2411.10	1	<0.01
	Season	793.58	2	<0.01
	Leaf flush × Season	1136.94	2	<0.01

Table S2. Differences between the first and the second oak leaf flush (*Quercus robur*) in insect attack (percentage of free-feeding herbivory, proportion of leaves with leaf mines, proportion of leaves with galls) and pathogen infection (percentage of infection by powdery mildew on upper and lower leaf side) during the early, mid and late season. Shown are χ^2 values, degrees of freedom and p-values from linear mixed effect models, with significant p-values (p < 0.05) in bold.

Response variable	Predictor	χ^2	df	р
Herbivory (%)	Leaf flush	227.57	1	<0.01
	Season	130.39	2	<0.01
	Leaf flush × Season	4.17	2	0.12
Proportion of leaves with leaf	Leaf flush	73.71	1	<0.01
mines	Season	67.61	2	<0.01
	Leaf flush × Season	1.87	2	0.39
Proportion of leaves with	Leaf flush	24.48	1	<0.01
galls	Season	21.42	2	<0.01
	Leaf flush × Season	5.13	2	0.08
Infection by powdery mildew	Leaf flush	3453.22	1	<0.01
on upper leaf side (%)	Season	767.45	2	<0.01
	Leaf flush × Season	95.61	2	<0.01
Infection by powdery mildew	Leaf flush	809.22	1	<0.01
on lower leaf side (%)	Season	1006.55	2	<0.01
	Leaf flush \times Season	418.15	2	<0.01

Table S3. The effect of season, nitrogen, phosphorus and their interactions on the percentage of herbivory, separately for the first and second oak leaf flush (*Quercus robur*). Shown are χ^2 values, degrees of freedom and p-values from linear mixed effect models, with significant p-values (p < 0.05) in bold.

Response variable	Predictor	χ^2	df	р
Herbivory (%)	Season	125.97	2	<0.01
First flush	Nitrogen	24.46	1	<0.01
	Phosphorus	0.07	1	0.80
	Season × Nitrogen	23.66	2	<0.01
	Season × Phosphorus	40.89	2	<0.01
Herbivory (%)	Season	86.18	2	<0.01
Second flush	Nitrogen	9.91	1	<0.01
	Phosphorus	10.27	1	<0.01
	Season × Nitrogen	186.69	2	<0.01
	Season \times Phosphorus	132.43	2	<0.01

Table S4. The effect of season, flavonoids, hydroxycinnamic acids, condensed tannins, hydrolysable tannins and their interactions on the percentage of herbivory, separately for the first and second oak leaf flush (*Quercus robur*). Shown are χ^2 values, degrees of freedom and p-values from linear mixed effect models, with significant p-values (p < 0.05) in bold.

Response variable	Predictor	χ^2	df	р
Herbivory (%)	Season	107.37	2	<0.01
First flush	Flavonoids	0.12	1	0.72
	Hydroxycinnamic acids	0.16	1	0.69
	Condensed tannins	4.51	1	0.03
	Hydrolysable tannins	1.07	1	0.30
	Season \times Flavonoids	15.80	2	<0.01
	Season \times Hydroxycinnamic acids	13.21	2	<0.01
	Season \times Condensed tannins	38.91	2	<0.01
	Season \times Hydrolysable tannins	17.09	2	<0.01
Herbivory (%)	Season	64.40	2	<0.01
Second flush	Flavonoids	266.50	1	<0.01
	Hydroxycinnamic acids	6.18	1	<0.01
	Condensed tannins	4.03	1	0.045
	Hydrolysable tannins	8.04	1	<0.01
	Season \times Flavonoids	486.54	2	<0.01
	Season × Hydroxycinnamic acids	14.59	2	<0.01
	Season \times Condensed tannins	12.39	2	<0.01
	Season \times Hydrolysable tannins	117.64	2	<0.01

Table S5. The effect of season, nitrogen, phosphorus and their interactions on the proportion of leaves with leaf mines separately for the first and the second oak leaf flush (*Quercus robur*). Shown are χ^2 values, degrees of freedom and p-values from linear mixed effect models, with significant p-values (p < 0.05) in bold.

Response variable	Predictor	χ^2	df	р
Proportion of leaves	Season	283.28	2	<0.01
with leaf mines	Nitrogen	14.65	1	<0.01
First flush	Phosphorus	8.93	1	<0.01
	Season × Nitrogen	2.53	2	0.28
	Season × Phosphorus	6.90	2	0.03
Proportion of leaves	Season	38.10	2	<0.01
with leaf mines	Nitrogen	8.62	1	0.03
Second flush	Phosphorus	1.33	1	0.25
	Season × Nitrogen	2.56	2	0.28
	Season × Phosphorus	2.71	2	0.26

Table S6. The effect of season, flavonoids, hydroxycinnamic acids, condensed tannins, hydrolysable tannins and their interactions on the proportion of leaves separately for the first and the second oak leaf flush (*Quercus robur*). Shown are χ^2 values, degrees of freedom and p-values from linear mixed effect models, with significant p-values (p < 0.05) in bold.

Response variable	Predictor	χ^2	df	р
Proportion of leaves	Season	223.11	2	<0.01
with leaf mines	Flavonoids	0.47	1	0.50
First flush	Hydroxycinnamic acids	0.12	1	0.73
	Condensed tannins	11.19	1	<0.01
	Hydrolysable tannins	2.44	1	0.12
	Season \times Flavonoids	35.49	2	<0.01
	Season × Hydroxycinnamic acids	0.94	2	0.626
	Season \times Condensed tannins	10.36	2	<0.01
	Season \times Hydrolysable tannins	16.10	2	<0.01
Proportion of leaves	Season	28.46	2	<0.01
with leaf mines	Flavonoids	2.13	1	0.15
Second flush	Hydroxycinnamic acids	6.22	1	0.01
	Condensed tannins	22.74	1	<0.01
	Hydrolysable tannins	15.31	1	<0.01
	Season \times Flavonoids	29.86	2	<0.01
	Season × Hydroxycinnamic acids	2.51	2	0.29
	Season \times Condensed tannins	11.24	2	<0.01
	Season \times Hydrolysable tannins	17.12	2	<0.01

Table S7. The effect of season, nitrogen, phosphorus and their interactions on the proportion of leaves with galls separately for the first and the second oak leaf flush (*Quercus robur*). Shown are χ^2 values, degrees of freedom and p-values from linear mixed effect models, with significant p-values (p < 0.05) in bold.

Response variable	Predictor	χ^2	df	р
Proportion of leaves	Season	108.34	2	<0.01
with galls	Nitrogen	0.03	1	0.87
First flush	Phosphorus	7.91	1	<0.01
	Season × Nitrogen	1.10	2	0.58
	Season × Phosphorus	5.06	2	0.08
Proportion of leaves	Season	25.36	2	<0.01
with galls	Nitrogen	0.37	1	0.54
Second flush	Phosphorus	0.18	1	0.67
	Season × Nitrogen	1.29	2	0.52
	Season × Phosphorus	1.19	2	0.55

Table S8. The effect of season, flavonoids, hydroxycinnamic acids, condensed tannins, hydrolysable tannins and their interactions on the proportion of leaves separately for the first and the second oak leaf flush (*Quercus robur*). Shown are χ^2 values, degrees of freedom and p-values from linear mixed effect models, with significant p-values (p < 0.05) in bold.

Response variable	Predictor	χ^2	df	р
Proportion of leaves	Season	104.67	2	<0.01
with galls	Flavonoids	0.15	1	0.70
First flush	Hydroxycinnamic acids	0.18	1	0.67
	Condensed tannins	1.30	1	0.26
	Hydrolysable tannins	3.45	1	0.06
	Season \times Flavonoids	11.42	2	<0.01
	Season × Hydroxycinnamic acids	1.40	2	0.50
	Season \times Condensed tannins	27.76	2	<0.01
	Season \times Hydrolysable tannins	1.27	2	0.53
Proportion of leaves	Season	16.38	2	<0.01
with galls	Flavonoids	3.46	1	0.06
Second flush	Hydroxycinnamic acids	4.96	1	0.03
	Condensed tannins	0.04	1	0.84
	Hydrolysable tannins	0.38	1	0.54
	Season \times Flavonoids	8.32	2	0.02
	Season × Hydroxycinnamic acids	2.69	2	0.26
	Season \times Condensed tannins	22.31	2	<0.01
	Season \times Hydrolysable tannins	0.02	2	0.99

Table S9. The effect of seasons, nitrogen, phosphorus and their interactions on the percentage of infection by oak powdery mildew on upper leaf side separately for the first and the second oak leaf flush (*Quercus robur*). Shown are χ^2 values, degrees of freedom and p-values from linear mixed effect models, with significant p-values (p < 0.05) in bold.

Response variable	Predictor	χ^2	df	р
Infection by oak powdery	Season	735.64	2	<0.01
mildew on upper leaf side (%)	Nitrogen	42.59	1	<0.01
First flush	Phosphorus	31.97	1	<0.01
	Season × Nitrogen	97.43	2	<0.01
	Season × Phosphorus	130.29	2	<0.01
Infection by oak powdery	Season	198.23	2	<0.01
mildew on upper leaf side (%)	Nitrogen	33.07	1	<0.01
Second flush	Phosphorus	23.55	1	<0.01
	Season × Nitrogen	213.38	2	<0.01
	Season × Phosphorus	227.04	2	<0.01

Table S10. The effect of season, flavonoids, hydroxycinnamic acids, condensed tannins, hydrolysable tannins and their interactions on the percentage of infection by oak powdery mildew on upper leaf side separately for the first and the second oak leaf flush (*Quercus robur*). Shown are χ^2 values, degrees of freedom and p-values from linear mixed effect models, with significant p-values (p < 0.05) in bold.

Response variable	Predictor	χ^2	df	р
Infection by oak powdery	Season	604.03	2	<0.01
mildew on upper leaf side (%)	Flavonoids	8.80	1	<0.01
First flush	Hydroxycinnamic acids	0.18	1	0.67
	Condensed tannins	0.18	1	0.67
	Hydrolysable tannins	0.54	1	0.46
	Season \times Flavonoids	139.33	2	<0.01
	Season \times Hydroxycinnamic acids	112.60	2	<0.01
	Season \times Condensed tannins	31.98	2	<0.01
	Season \times Hydrolysable tannins	36.04	2	<0.01
Infection by oak powdery	Season	370.02	2	<0.01
mildew on upper leaf side (%)	Flavonoids	2.72	1	0.10
Second flush	Hydroxycinnamic acids	79.31	1	<0.01
	Condensed tannins	104.84	1	<0.01
	Hydrolysable tannins	100.32	1	<0.01
	Season \times Flavonoids	115.18	2	<0.01
	Season \times Hydroxycinnamic acids	28.62	2	<0.01
	Season \times Condensed tannins	23.14	2	<0.01
	Season \times Hydrolysable tannins	148.40	2	<0.01

Table S11. The effect of seasons, nitrogen, phosphorus and their interactions on the percentage of infection by oak powdery mildew on lower leaf side separately for the first and the second oak leaf flush (*Quercus robur*). Shown are χ^2 values, degrees of freedom and p-values from linear mixed effect models, with significant p-values (p < 0.05) in bold.

Response variable	Predictor	χ^2	df	р
Infection by oak powdery	Season	519.27	2	<0.01
mildew on lower leaf side (%)	Nitrogen	17.46	1	<0.01
First flush	Phosphorus	8.48	1	<0.01
	Season × Nitrogen	53.56	2	<0.01
	Season × Phosphorus	15.39	2	<0.01
Infection by oak powdery	Season	656.92	2	<0.01
mildew on lower leaf side (%)	Nitrogen	28.71	1	<0.01
Second flush	Phosphorus	97.40	1	<0.01
	Season × Nitrogen	190.97	2	<0.01
	Season × Phosphorus	545.62	2	<0.01

Table S12. The effect of seasons, flavonoids, hydroxycinnamic acids, condensed tannins, hydrolysable tannins and their interactions on the percentage of infection by oak powdery mildew on lower leaf side separately for the first and the second oak leaf flush (*Quercus robur*). Shown are χ^2 values, degrees of freedom and p-values from linear mixed effect models, with significant p-values (p < 0.05) in bold.

Response variable	Predictor	χ^2	df	р
Infection by oak powdery	Season	535.08	2	<0.01
mildew on lower leaf side (%)	Flavonoids	1.75	1	0.19
First flush	Hydroxycinnamic acids	1.79	1	0.18
	Condensed tannins	11.71	1	<0.01
	Hydrolysable tannins	0.96	1	0.33
	Season \times Flavonoids	13.10	2	<0.01
	Season × Hydroxycinnamic acids	6.34	2	0.042
	Season \times Condensed tannins	33.00	2	<0.01
	Season \times Hydrolysable tannins	20.22	2	<0.01
Infection by oak powdery	Season	148.70	2	<0.01
mildew on lower leaf side (%)	Flavonoids	180.64	1	<0.01
Second flush	Hydroxycinnamic acids	2.15	1	0.14
	Condensed tannins	12.34	1	<0.01
	Hydrolysable tannins	80.43	1	<0.01
	Season \times Flavonoids	476.92	2	<0.01
	Season \times Hydroxycinnamic acids	36.34	2	<0.01
	Season \times Condensed tannins	22.93	2	<0.01
	Season \times Hydrolysable tannins	36.86	2	<0.01

Table S13. The effect of nitrogen, phosphorus and their interactions on the percentage of herbivory separately for the early, mid and late season in oak leaves (*Quercus robur*). Shown are χ^2 values, degrees of freedom and p-values from linear mixed effect models, with significant p-values (p < 0.05) in bold.

6	`I , `I 'I ''			
Response variable	Predictor	χ^2	df	р
Herbivory (%)	Leaf flush	27.92	1	<0.01
Early season	Nitrogen	4.04	1	0.045
	Phosphorus	<.01	1	0.99
	Leaf flush × Nitrogen	<.01	1	0.92
	Leaf flush \times Phosphorus	1.19	1	0.28
Herbivory (%)	Leaf flush	60.86	2	<0.01
Mid season	Nitrogen	25.80	1	<0.01
	Phosphorus	14.93	1	<0.01
	Leaf flush × Nitrogen	26.00	2	<0.01
	Leaf flush × Phosphorus	168.89	2	<0.01
Herbivory (%)	Leaf flush	72.18	2	<0.01
Late season	Nitrogen	2.38	1	0.12
	Phosphorus	47.58	1	<0.01
	Leaf flush × Nitrogen	33.23	2	<0.01
	Leaf flush × Phosphorus	15.77	2	<0.01

Table S14. The effect of oak leaf flush (*Quercus robur*), flavonoids, hydroxycinnamic acids, condensed tannins, hydrolysable tannins and their interactions on the percentage of herbivory separately for the early, mid and late season. Shown are χ^2 values, degrees of freedom and p-values from linear mixed effect models, with significant p-values (p < 0.05) in bold.

Response variable	Predictor	χ^2	df	р
Herbivory (%)	Leaf flush	1.11	1	0.29
Early season	Flavonoids	9.82	1	<0.01
	Hydroxycinnamic acids	0.11	1	0.74
	Condensed tannins	9.76	1	<0.01
	Hydrolysable tannins	3.38	1	0.07
	Leaf flush × Flavonoids	8.20	1	<0.01
	Leaf flush \times Hydroxycinnamic acids	1.11	1	0.29
	Leaf flush \times Condensed tannins	2.29	1	0.13
	Leaf flush \times Hydrolysable tannins	4.19	1	0.04
Herbivory (%)	Leaf flush	33.03	2	<0.01
Mid season	Flavonoids	0.13	1	0.71
	Hydroxycinnamic acids	<.01	1	0.98
	Condensed tannins	3.83	1	0.05
	Hydrolysable tannins	0.84	1	0.36
	Leaf flush × Flavonoids	14.95	2	<0.01
	Leaf flush \times Hydroxycinnamic acids	10.90	2	<0.01
	Leaf flush \times Condensed tannins	0.21	2	0.65
	Leaf flush \times Hydrolysable tannins	15.72	2	<0.01
Herbivory (%)	Leaf flush	145.06	2	<0.01
Late season	Flavonoids	<.01	1	0.94
	Hydroxycinnamic acids	2.06	1	0.15
	Condensed tannins	1.33	1	0.25
	Hydrolysable tannins	0.16	1	0.69
	Leaf flush × Flavonoids	17.87	2	<0.01
	Leaf flush \times Hydroxycinnamic acids	14.70	2	<0.01
	Leaf flush \times Condensed tannins	47.59	2	<0.01
	Leaf flush \times Hydrolysable tannins	16.50	2	<0.01

Table S15. The effect of nitrogen, phosphorus and their interactions on the proportion of leaves with leaf mines separately for the early, mid and late season in oak leaves (*Quercus robur*). Shown are χ^2 values, degrees of freedom and p-values from linear mixed effect models, with significant p-values (p < 0.05) in bold.

Response variable	Predictor	χ^2	df	р
Proportion of leaves	Leaf flush	0.79	1	0.38
with leaf mines	Nitrogen	0.50	1	0.48
Early season	Phosphorus	0.76	1	0.38
	Leaf flush × Nitrogen	0.04	1	0.84
	Leaf flush \times Phosphorus	0.34	1	0.56
Proportion of leaves	Leaf flush	245.30	2	<0.01
with leaf mines	Nitrogen	32.91	1	<0.01
Mid season	Phosphorus	2.55	1	0.11
	Leaf flush × Nitrogen	3.39	2	0.18
	Leaf flush × Phosphorus	13.76	2	<0.01
Proportion of leaves	Leaf flush	119.48	2	<0.01
with leaf mines	Nitrogen	0.86	1	0.35
Late season	Phosphorus	0.87	1	0.35
	Leaf flush × Nitrogen	1.95	2	0.38
	Leaf flush \times Phosphorus	9.60	2	<0.01

Table S16. The effect of oak leaf flush (*Quercus robur*), flavonoids, hydroxycinnamic acids, condensed tannins, hydrolysable tannins and their interactions on the proportion of leaves with leaf mines separately for the early, mid and late season. Shown are χ^2 values, degrees of freedom and p-values from linear mixed effect models, with significant p-values (p < 0.05) in bold.

Response variable	Predictor	χ^2	df	р
Proportion of leaves	Leaf flush	0.50	1	0.48
with leaf mines	Flavonoids	<.01	1	0.99
Early season	Hydroxycinnamic acids	<.01	1	0.96
	Condensed tannins	0.27	1	0.61
	Hydrolysable tannins	0.12	1	0.73
	Leaf flush \times Flavonoids	2.66	1	0.10
	Leaf flush \times Hydroxycinnamic acids	0.59	1	0.44
	Leaf flush \times Condensed tannins	0.47	1	0.50
	Leaf flush \times Hydrolysable tannins	<.01	1	0.96
Proportion of leaves	Leaf flush	269.19	2	<0.01
with leaf mines	Flavonoids	0.940	1	0.33
Mid season	Hydroxycinnamic acids	0.162	1	0.69
	Condensed tannins	8.623	1	<0.01
	Hydrolysable tannins	0.537	1	0.46
	Leaf flush \times Flavonoids	37.58	2	<0.01
	Leaf flush \times Hydroxycinnamic acids	2.55	2	0.28
	Leaf flush \times Condensed tannins	3.17	2	0.08
	Leaf flush \times Hydrolysable tannins	16.04	2	<0.01
Proportion of leaves	Leaf flush	173.07	2	<0.01
with leaf mines	Flavonoids	4.30	1	0.04
Late season	Hydroxycinnamic acids	2.38	1	0.12
	Condensed tannins	3.18	1	0.08
	Hydrolysable tannins	<.01	1	0.94
	Leaf flush \times Flavonoids	12.20	2	<0.01
	Leaf flush × Hydroxycinnamic acids	4.37	2	0.11
	Leaf flush \times Condensed tannins	5.32	2	0.07
	Leaf flush \times Hydrolysable tannins	4.11	2	0.13

Table S17. The effect of nitrogen, phosphorus and their interactions on the proportion of leaves with galls separately for the early, mid and late season in oak leaves (*Quercus robur*). Shown are χ^2 values, degrees of freedom and p-values from linear mixed effect models, with significant p-values (p < 0.05) in bold.

Response variable	Predictor	χ^2	df	р
Proportion of leaves	Leaf flush	1.14	1	0.29
with galls	Nitrogen	4.34	1	0.04
Early season	Phosphorus	8.53	1	<0.01
	Leaf flush × Nitrogen	0.89	1	0.35
	Leaf flush \times Phosphorus	7.63	1	<0.01
Proportion of leaves	Leaf flush	123.66	2	<0.01
with galls	Nitrogen	6.17	1	0.01
Mid season	Phosphorus	7.42	1	<0.01
	Leaf flush × Nitrogen	5.53	2	0.06
	Leaf flush \times Phosphorus	0.29	2	0.86
Proportion of leaves	Leaf flush	16.69	2	<0.01
with leaf galls	Nitrogen	3.94	1	0.047
Late season	Phosphorus	0.01	1	0.92
	Leaf flush × Nitrogen	1.82	2	0.40
	Leaf flush \times Phosphorus	1.66	2	0.44

Table S18. The effect of oak leaf flush (*Quercus robur*), flavonoids, hydroxycinnamic acids, condensed tannins, hydrolysable tannins and their interactions on the proportion of leaves with galls separately for the early, mid and late season. Shown are χ^2 values, degrees of freedom and p-values from linear mixed effect models, with significant p-values (p < 0.05) in bold.

Response variable	Predictor	χ^2	df	р
Proportion of leaves	Leaf flush	0.75	1	0.39
with galls	Flavonoids	1.57	1	0.21
Early season	Hydroxycinnamic acids	1.54	1	0.22
	Condensed tannins	1.40	1	0.24
	Hydrolysable tannins	0.43	1	0.51
	Leaf flush \times Flavonoids	7.52	1	<0.01
	Leaf flush × Hydroxycinnamic acids	1.68	1	0.20
	Leaf flush \times Condensed tannins	0.27	1	0.61
	Leaf flush \times Hydrolysable tannins	8.36	1	<0.01
Proportion of leaves	Leaf flush	21.98	2	<0.01
with galls	Flavonoids	19.81	1	<0.01
Mid season	Hydroxycinnamic acids	0.01	1	0.91
	Condensed tannins	37.11	1	<0.01
	Hydrolysable tannins	0.27	1	0.61
	Leaf flush \times Flavonoids	46.48	2	<0.01
	Leaf flush \times Hydroxycinnamic acids	16.12	2	<0.01
	Leaf flush \times Condensed tannins	0.90	2	0.34
	Leaf flush \times Hydrolysable tannins	9.38	2	<0.01
Proportion of leaves	Leaf flush	53.82	2	<0.01
with galls	Flavonoids	0.32	1	0.57
Late season	Hydroxycinnamic acids	0.06	1	0.81
	Condensed tannins	3.67	1	0.06
	Hydrolysable tannins	0.28	1	0.60
	Leaf flush \times Flavonoids	2.94	2	0.23
	Leaf flush \times Hydroxycinnamic acids	5.16	2	0.08
	Leaf flush \times Condensed tannins	1.08	2	0.58
	Leaf flush \times Hydrolysable tannins	3.58	2	0.17

Table S19. The effect of nitrogen, phosphorus and their interactions on the percentage of infection by oak powdery mildew on upper leaf separately for the early, mid and late season in oak leaves (*Quercus robur*). Shown are χ^2 values, degrees of freedom and p-values from linear mixed effect models, with significant p-values (p < 0.05) in bold.

Response variable	Predictor	χ^2	df	р
Infection by oak powdery	Leaf flush	1778.97	1	<0.01
mildew on upper leaf side (%)	Nitrogen	23.71	1	<0.01
Early season	Phosphorus	23.81	1	<0.01
	Leaf flush \times Nitrogen	42.78	1	<0.01
	Leaf flush \times Phosphorus	30.45	1	<0.01
Infection by oak powdery	Leaf flush	450.72	2	<0.01
mildew on upper leaf side (%)	Nitrogen	88.03	1	<0.01
Mid season	Phosphorus	14.96	1	<0.01
	Leaf flush \times Nitrogen	61.87	2	<0.01
	Leaf flush \times Phosphorus	78.82	2	<0.01
Infection by oak powdery	Leaf flush	118.53	2	<0.01
mildew on upper leaf side (%)	Nitrogen	102.85	1	<0.01
Late season	Phosphorus	777.96	1	<0.01
	Leaf flush × Nitrogen	1.14	2	0.57
	Leaf flush \times Phosphorus	323.63	2	<0.01

Table S20. The effect of oak leaf flush (*Quercus robur*), flavonoids, hydroxycinnamic acids, condensed tannins, hydrolysable tannins and their interactions on the percentage of infection by oak powdery mildew on upper leaf side separately for the early, mid and late season. Shown are χ^2 values, degrees of freedom and p-values from linear mixed effect models, with significant p-values (p < 0.05) in bold.

Response variable	Predictor	χ^2	df	р
Infection by oak	Leaf flush	138.32	1	<0.01
powdery mildew on	Flavonoids	41.88	1	<0.01
upper leaf side (%)	Hydroxycinnamic acids	79.93	1	<0.01
Early season	Condensed tannins	0.26	1	0.61
	Hydrolysable tannins	5.07	1	0.02
	Leaf flush \times Flavonoids	121.17	1	<0.01
	Leaf flush \times Hydroxycinnamic acids	2.73	1	0.10
	Leaf flush \times Condensed tannins	7.28	1	0.01
	Leaf flush \times Hydrolysable tannins	13.80	1	<0.01
Infection by oak	Leaf flush	859.85	2	<0.01
powdery mildew on	Flavonoids	0.28	1	0.60
upper leaf side (%)	Hydroxycinnamic acids	23.23	1	<0.01
Mid season	Condensed tannins	62.24	1	<0.01
	Hydrolysable tannins	86.65	1	<0.01
	Leaf flush \times Flavonoids	44.96	2	<0.01
	Leaf flush \times Hydroxycinnamic acids	51.54	2	<0.01
	Leaf flush \times Condensed tannins	<.01	2	0.93
	Leaf flush \times Hydrolysable tannins	0.68	2	0.41
Infection by oak	Leaf flush	1834.36	2	<0.01
powdery mildew on	Flavonoids	6.05	1	0.01
upper leaf side (%)	Hydroxycinnamic acids	60.16	1	<0.01
Late season	Condensed tannins	95.37	1	<0.01
	Hydrolysable tannins	21.80	1	<0.01
	Leaf flush \times Flavonoids	95.85	2	<0.01
	Leaf flush × Hydroxycinnamic acids	69.41	2	<0.01
	Leaf flush \times Condensed tannins	25.36	2	<0.01
	Leaf flush \times Hydrolysable tannins	472.94	2	<0.01

Table S21. The effect of nitrogen, phosphorus and their interactions on the percentage of infection by oak powdery mildew on lower leaf side separately for the early, mid and late season in oak leaves (*Quercus robur*). Shown are χ^2 values, degrees of freedom and p-values from linear mixed effect models, with significant p-values (p < 0.05) in bold.

Response variable	Predictor	χ^2	df	р
Infection by oak powdery	Leaf flush	2.67	1	0.10
mildew on lower leaf side (%)	Nitrogen	6.57	1	0.01
Early season	Phosphorus	1.24	1	0.27
	Leaf flush × Nitrogen	61.73	1	<0.01
	Leaf flush × Phosphorus	10.15	1	<0.01
Infection by oak powdery	Leaf flush	264.46	2	<0.01
mildew on lower leaf side (%)	Nitrogen	23.36	1	<0.01
Mid season	Phosphorus	31.35	1	<0.01
	Leaf flush × Nitrogen	13.65	2	<0.01
	Leaf flush \times Phosphorus	4.72	2	0.09
Infection by oak powdery	Leaf flush	36.75	2	<0.01
mildew on lower leaf side (%)	Nitrogen	7.74	1	< 0.05
Late season	Phosphorus	935.84	1	<0.01
	Leaf flush × Nitrogen	137.92	2	<0.01
	Leaf flush \times Phosphorus	319.88	2	<0.01

Table S22. The effect of oak leaf flush (*Quercus robur*), flavonoids, hydroxycinnamic acids, condensed tannins, hydrolysable tannins and their interactions on the percentage of infection by oak powdery mildew on lower leaf side separately for the early, mid and late season. Shown are χ^2 values, degrees of freedom and p-values from linear mixed effect models, with significant p-values (p < 0.05) in bold.

Response variable	Predictor	χ^2	df	р
Infection by oak	Leaf flush	20.02	1	<0.01
powdery mildew on	Flavonoids	47.18	1	<0.01
lower leaf side (%)	Hydroxycinnamic acids	1.20	1	0.27
Early season	Condensed tannins	9.90	1	<0.01
	Hydrolysable tannins	0.08	1	0.78
	Leaf flush × Flavonoids	19.24	1	<0.01
	Leaf flush × Hydroxycinnamic acids	1.21	1	0.27
	Leaf flush \times Condensed tannins	46.57	1	<0.01
	Leaf flush \times Hydrolysable tannins	3.51	1	0.06
Infection by oak	Leaf flush	581.66	2	<0.01
powdery mildew on	Flavonoids	56.46	1	<0.01
lower leaf side (%)	Hydroxycinnamic acids	5.85	1	0.02
Mid season	Condensed tannins	4.39	1	0.04
	Hydrolysable tannins	3.27	1	0.07
	Leaf flush × Flavonoids	57.12	2	<0.01
	Leaf flush × Hydroxycinnamic acids	34.84	2	<0.01
	Leaf flush \times Condensed tannins	1.27	2	0.26
	Leaf flush \times Hydrolysable tannins	2.06	2	0.15
Infection by oak	Leaf flush	275.42	2	<0.01
powdery mildew on	Flavonoids	2.44	1	0.12
lower leaf side (%)	Hydroxycinnamic acids	2.42	1	0.12
Late season	Condensed tannins	109.18	1	<0.01
	Hydrolysable tannins	16.13	1	<0.01
	Leaf flush × Flavonoids	582.01	2	<0.01
	Leaf flush × Hydroxycinnamic acids	13.79	2	<0.01
	Leaf flush \times Condensed tannins	93.92	2	<0.01
	Leaf flush \times Hydrolysable tannins	221.60	2	<0.01

Table S23. The impact of latitude on the relative abundance of the first, second and third oak leaf flush (*Quercus robur*). To account for the hierarchical and repeated-measures design, we included country, population and tree identity as random intercepts. Shown are χ^2 values, degrees of freedom and p-values from a linear mixed effect model, with significant p-values (p < 0.05) in bold.

Response variable	Predictor	χ^2	df	р
Leaf flush	Latitude	16.52	1	<0.01
	Season	15.70	2	<0.01

Table S24. Results of paired tests comparing the concentration of primary (nitrogen, phosphorus), secondary compounds (flavonoids, hydroxycinnamic acids, condensed tannins and hydrolysable tannins), insect attack (percentage of free-feeding herbivory (%), proportion of leaves with leaf mines, proportion of leaves with galls) and pathogen infection (percentage of infection by powdery mildew on upper and lower leaf side) among seasons in oak leaves (*Quercus robur*). Shown are the groups compared, estimates, standard errors (SE), t-ratios and p-values. Significant p-values (p < 0.05) shown in bold.

Response variable	Flush	Contrast	Estimate	SE	t-ratio	р
Nitrogen	First	Early – Mid	1.61	0.21	7.78	<0.001
Nitrogen	First	Early – Late	6.57	0.21	31.83	<0.001
Nitrogen	First	Mid – Late	4.97	0.21	24.05	<0.001
Nitrogen	Second	Early – Mid	2.57	0.22	11.78	<0.001
Nitrogen	Second	Early - Late	2.32	0.22	10.52	< 0.001
Nitrogen	Second	Mid – Late	-0.25	0.17	-1.45	0.314
Nitrogen	Third	Mid – Late	4.62	0.58	7.99	< 0.001
Phosphorus	First	Early – Mid	0.53	0.01	38.56	<0.001
Phosphorus	First	Early - Late	0.21	0.01	15.03	< 0.001
Phosphorus	First	Mid – Late	-0.32	0.01	-23.52	<0.001
Phosphorus	Second	Early – Mid	0.65	0.01	50.43	<0.001
Phosphorus	Second	Early – Late	0.47	0.01	36.33	< 0.001
Phosphorus	Second	Mid – Late	-0.18	0.01	-17.64	<0.001
Phosphorus	Third	Mid – Late	0.71	0.03	21.62	<0.001
Flavonoids	First	Early – Mid	-0.49	0.23	-2.20	0.072
Flavonoids	First	Early – Late	4.97	0.23	22.12	< 0.001
Flavonoids	First	Mid – Late	5.47	0.23	24.32	<0.001
Flavonoids	Second	Early – Mid	6.92	0.60	11.62	< 0.001
Flavonoids	Second	Early – Late	21.77	0.60	36.07	<0.001
Flavonoids	Second	Mid – Late	14.85	0.46	32.25	< 0.001
Flavonoids	Third	Mid – Late	24.4	0.86	28.56	<0.001
Hydroxycinnamic acids	First	Early – Mid	-0.18	0.08	-2.30	<0.001
Hydroxycinnamic acids	First	Early - Late	2.20	0.08	28.44	< 0.001
Hydroxycinnamic acids	First	Mid – Late	2.38	0.08	30.74	< 0.001
Hydroxycinnamic acids	Second	Early – Mid	1.21	0.14	8.69	<0.001
Hydroxycinnamic acids	Second	Early - Late	-0.12	0.14	-0.88	0.656
Hydroxycinnamic acids	Second	Mid – Late	1.33	0.11	12.52	<0.001
Hydroxycinnamic acids	Third	Mid – Late	4.96	0.28	17.69	<0.001
Condensed tannins	First	Early – Mid	-0.70	0.10	-7.15	<0.001
Condensed tannins	First	Early – Late	-2.24	0.10	-22.89	<0.001
Condensed tannins	First	Mid – Late	-1.54	0.10	-15.73	<0.001
Condensed tannins	Second	Early – Mid	-0.04	0.28	-0.16	0.987
Condensed tannins	Second	Early – Late	3.69	0.28	13.12	<0.001
Condensed tannins	Second	Mid – Late	3.74	0.22	17.40	<0.001
Condensed tannins	Third	Mid – Late	-0.48	0.27	-1.73	0.085
Hydrolysable tannins	First	Early – Mid	-0.39	0.03	-11.78	<0.001
Hydrolysable tannins	First	Early – Late	-0.02	0.03	-0.48	0.880
Hydrolysable tannins	First	Mid – Late	0.37	0.03	1.30	0.841
Hydrolysable tannins	Second	Early – Mid	1.05	0.10	10.06	<0.001
Hydrolysable tannins	Second	Early – Late	3.59	0.11	34.10	<0.001
Hydrolysable tannins	Second	Mid – Late	2.55	0.08	31.69	<0.001
Hydrolysable tannins	Third	Mid – Late	3.41	0.07	51.42	<0.001
Herbivory (%)	First	Early – Mid	-1.73	0.31	-5.51	<0.001
Herbivory (%)	First	Early – Late	-3.28	0.31	-10.45	<0.001
Herbivory (%)	First	Mid – Late	-1.55	0.32	-4.93	<0.001
Herbivory (%)	Second	Early – Mid	-4.58	0.48	-9.53	<0.001
Herbivory (%)	Second	Early – Late	-5.29	0.49	-10.86	<0.001
Herbivory (%)	Second	Mid – Late	-0.71	0.37	-1.91	0.135
Herbivory (%)	Third	Mid – Late	-0.02	0.16	-0.14	0.888

Proportion of leaves with leaf mines	First	Early – Mid	-0.13	0.01	-11.83	<0.001
Proportion of leaves with leaf mines	First	Early – Late	-0.20	0.01	-16.99	<0.001
Proportion of leaves with leaf mines	First	Mid – Late	-0.06	0.01	-5.15	<0.001
Proportion of leaves with leaf mines	Second	Early – Mid	-0.07	0.01	-5.74	<0.001
Proportion of leaves with leaf mines	Second	Early – Late	-0.09	0.01	-7.53	<0.001
Proportion of leaves with leaf mines	Second	Mid – Late	-0.02	0.01	-2.47	0.036
Proportion of leaves with leaf mines	Third	Mid – Late	0.02	0.01	1.27	0.218
Proportion of leaves with galls	First	Early – Mid	-0.05	0.01	-4.85	<0.001
Proportion of leaves with galls	First	Early – Late	-0.11	0.01	-11.94	<0.001
Proportion of leaves with galls	First	Mid – Late	-0.07	0.01	-7.07	<0.001
Proportion of leaves with galls	Second	Early – Mid	-0.01	0.01	-2.28	0.060
Proportion of leaves with galls	Second	Early – Late	-0.03	0.01	-4.91	<0.001
Proportion of leaves with galls	Second	Mid – Late	-0.02	< 0.01	-3.55	0.001
Proportion of leaves with galls	Third	Mid – Late	< 0.01	0.01	-0.03	0.976
Infection by powdery mildew on	First	Early – Mid	-19.24	0.84	-22.80	<0.001
upper leaf side (%)						
Infection by powdery mildew on	First	Early – Late	-13.37	0.84	-15.84	<0.001
upper leaf side (%)						
Infection by powdery mildew on	First	Mid – Late	5.87	0.84	6.96	<0.001
upper leaf side (%)						
Infection by powdery mildew on	Second	Early – Mid	-15.26	1.14	-13.39	<0.001
upper leaf side (%)						
Infection by powdery mildew on	Second	Early – Late	-8.55	1.16	-7.61	<0.001
upper leaf side (%)						
Infection by powdery mildew on	Second	Mid – Late	6.70	0.88	7.61	<0.001
upper leaf side (%)						
Infection by powdery mildew on	Third	Mid – Late	-15.90	4.68	-3.40	<0.001
upper leaf side (%)						
Infection by powdery mildew on	First	Early – Mid	-3.68	0.41	-8.90	<0.001
lower leaf side (%)						
Infection by powdery mildew on	First	Early – Late	-10.58	0.41	-25.57	<0.001
lower leaf side (%)						
Infection by powdery mildew on	First	Mid – Late	-6.90	0.41	-16.66	<0.001
lower leaf side (%)						
Infection by powdery mildew on	Second	Early – Mid	-11.30	1.57	-7.19	<0.001
lower leaf side (%)						
Infection by powdery mildew on	Second	Early – Late	-28.40	1.59	-17.83	<0.001
lower leaf side (%)						
Infection by powdery mildew on	Second	Mid – Late	-17.10	1.21	-14.09	<0.001
lower leaf side (%)						
Infection by powdery mildew on	Third	Mid – Late	-28.8	2.65	-10.88	<0.001
lower leaf side (%)						

Table S25. Results of paired tests comparing the concentration of primary (nitrogen, phosphorus), secondary compounds (flavonoids, hydroxycinnamic acids, condensed tannins and hydrolysable tannins), insect attack (percentage of free-feeding herbivory (%), proportion of leaves with leaf mines, proportion of leaves with galls) and pathogen infection (percentage of infection by powdery mildew on upper and lower leaf side) among leaf flushes during the early, mid and late seasons in oak leaves (*Quercus robur*). Shown are the groups compared, estimates, standard errors (SE), t-ratios and p-values. Significant p-values (p < 0.05) shown in bold.

Response variable	Season	Contrast	Estimate	SE	t-ratio	р
Nitrogen	Early	First - Second	6.97	0.11	61.34	<0.001
Nitrogen	Mid	First - Second	10.64	0.19	57.44	<0.001
Nitrogen	Mid	First – Third	3.06	0.63	4.82	<0.001
Nitrogen	Mid	Second - Third	-7.58	0.63	-11.95	<0.001
Nitrogen	Late	First - Second	6.87	0.12	56.88	<0.001
Nitrogen	Late	First – Third	-1.07	0.23	-2.31	0.048
Nitrogen	Late	Second - Third	-6.94	0.23	-29.80	<0.001
Phosphorus	Early	First - Second	-0.28	0.01	-29.98	<0.001
Phosphorus	Mid	First - Second	0.21	< 0.01	21.03	<0.001
Phosphorus	Mid	First – Third	-0.57	0.03	-16.80	<0.001
Phosphorus	Mid	Second - Third	-0.78	0.03	-22.93	<0.001
Phosphorus	Late	First - Second	0.47	0.01	61.27	<0.001
Phosphorus	Late	First - Third	0.16	0.01	10.88	<0.001
Phosphorus	Late	Second - Third	-0.31	0.02	-21.22	<0.001
Flavonoids	Early	First - Second	-18.90	0.36	-52.83	<0.001
Flavonoids	Mid	First - Second	-11.80	0.34	-35.05	<0.001
Flavonoids	Mid	First - Third	-23.80	1.16	-20.63	<0.001
Flavonoids	Mid	Second - Third	-12.00	1.16	-10.40	<0.001
Flavonoids	Late	First - Second	-2.60	0.24	-10.91	<0.001
Flavonoids	Late	First - Third	1.24	0.45	2.78	0.015
Flavonoids	Late	Second - Third	3.84	0.46	8.35	<0.001
Hydroxycinnamic acids	Early	First - Second	0.62	0.07	8.56	<0.001
Hydroxycinnamic acids	Mid	First - Second	1.62	0.09	18.71	<0.001
Hydroxycinnamic acids	Mid	First - Third	-2.03	0.30	-6.86	<0.001
Hydroxycinnamic acids	Mid	Second - Third	-3.65	0.30	-12.32	<0.001
Hydroxycinnamic acids	Late	First - Second	0.60	0.05	12.09	<0.001
Hydroxycinnamic acids	Late	First - Third	1.10	0.09	12.79	<0.001
Hydroxycinnamic acids	Late	Second - Third	0.50	0.09	5.62	<0.001
Condensed tannins	Early	First - Second	-5.39	0.14	-38.38	<0.001
Condensed tannins	Mid	First - Second	-8.18	0.19	-43.57	<0.001
Condensed tannins	Mid	First - Third	-2.52	0.64	-3.91	<0.001
Condensed tannins	Mid	Second - Third	5.67	0.64	8.81	<0.001
Condensed tannins	Late	First - Second	-2.45	0.13	-18.99	<0.001
Condensed tannins	Late	First - Third	-0.28	0.24	-1.16	<0.001
Condensed tannins	Late	Second - Third	2.17	0.25	8.72	<0.001
Hydrolysable tannins	Early	First - Second	-4.08	0.05	-86.78	<0.001
Hydrolysable tannins	Mid	First - Second	-2.61	0.07	-37.87	<0.001
Hydrolysable tannins	Mid	First - Third	-3.04	0.24	-12.88	<0.001
Hydrolysable tannins	Mid	Second - Third	-0.43	0.24	-1.83	<0.001
Hydrolysable tannins	Late	First - Second	-0.40	0.04	-10.17	<0.001
Hydrolysable tannins	Late	First - Third	0.21	0.07	2.78	<0.001
Hydrolysable tannins	Late	Second - Third	0.61	0.08	7.97	<0.001
Herbivory (%)	Early	First - Second	2.48	0.36	6.94	<0.001
Herbivory (%)	Mid	First - Second	3.55	0.38	9.10	<0.001
Herbivory (%)	Mid	First – Third	9.49	1.34	7.11	<0.001
Herbivory (%)	Mid	Second - Third	5.95	1.34	4.45	<0.001
Herbivory (%)	Late	First - Second	5.41	0.53	10.20	<0.001
Herbivory (%)	Late	First – Third	9.69	0.99	9.79	<0.001
Herbivory (%)	Late	Second - Third	4.27	1.02	4.18	<0.001

Proportion of leaves with leaf mines	Early	First - Second	0.33	0.01	11.96	<0.001
Proportion of leaves with leaf mines	Mid	First - Second	0.22	0.01	16.61	<0.001
Proportion of leaves with leaf mines	Mid	First – Third	0.21	0.04	4.82	<0.001
Proportion of leaves with leaf mines	Mid	Second - Third	< 0.01	0.04	-0.04	0.999
Proportion of leaves with leaf mines	Late	First - Second	0.19	0.02	11.49	<0.001
Proportion of leaves with leaf mines	Late	First – Third	0.24	0.03	8.01	<0.001
Proportion of leaves with leaf mines	Late	Second - Third	0.16	0.03	7.75	0.008
Proportion of leaves with galls	Early	First - Second	0.03	0.01	2.25	0.025
Proportion of leaves with galls	Mid	First - Second	0.10	0.01	10.97	<0.001
Proportion of leaves with galls	Mid	First – Third	0.06	0.03	1.61	0.040
Proportion of leaves with galls	Mid	Second - Third	-0.05	0.03	-1.59	0.049
Proportion of leaves with galls	Late	First - Second	0.09	0.01	7.07	<0.001
Proportion of leaves with galls	Late	First – Third	0.08	0.02	3.29	0.003
Proportion of leaves with galls	Late	Second - Third	-0.01	0.03	-0.49	0.874
Infection by powdery mildew on	Early	First - Second	-28.60	1.30	-22.07	<0.001
upper leaf side (%)	-					
Infection by powdery mildew on	Mid	First - Second	-44.70	1.07	-41.73	<0.001
upper leaf side (%)						
Infection by powdery mildew on	Mid	First – Third	-25.10	3.67	-6.83	<0.001
upper leaf side (%)						
Infection by powdery mildew on	Mid	Second - Third	19.60	3.67	5.35	<0.001
upper leaf side (%)						
Infection by powdery mildew on	Late	First - Second	-53.40	1.28	-41.73	<0.001
upper leaf side (%)						
Infection by powdery mildew on	Late	First – Third	-32.10	2.39	-13.44	<0.001
upper leaf side (%)						
Infection by powdery mildew on	Late	Second - Third	21.20	2.47	8.61	<0.001
upper leaf side (%)						
Infection by powdery mildew on	Early	First - Second	-1.50	0.19	-7.92	<0.001
lower leaf side (%)						
Infection by powdery mildew on	Mid	First - Second	-11.50	0.57	-20.09	<0.001
lower leaf side (%)						
Infection by powdery mildew on	Mid	First – Third	12.80	1.96	6.54	<0.001
lower leaf side (%)						
Infection by powdery mildew on	Mid	Second - Third	24.30	1.96	12.41	<0.001
lower leaf side (%)						
Infection by powdery mildew on	Late	First – Second	-23.13	1.13	-20.48	<0.001
lower leaf side (%)						
Infection by powdery mildew on	Late	First – Third	-14.90	2.11	-7.07	<0.001
lower leaf side (%)						
Infection by powdery mildew on	Late	Second - Third	8.24	2.18	3.79	<0.001
lower leaf side (%)						

Figure S1. An example to illustrate how we distinguished leaves from different oak leaf flushes (*Quercus robur*), and to clarify our sampling strategy where we randomly sampled leaves within the subset of leaves belonging to a given flush. In the scenario depicted, the tree has one leaf flush during the early season, two leaf flushes during the mid season and three leaf flushes during the late season. Panel **a** illustrates the approach to distinguish between leaf flushes in each season. During the early season, only a single leaf flush was present. During the mid season, we could easily recognize leaves from the first and second leaf flush, as they differ in their shade of green. At this time point, we marked the places where the first leaf flush ends (in red) and the second leaf flush begins with coloured cable ties. During the late season, we could distinguish leaves belonging to the first and second flush with the help of the coloured cable ties, and we could recognize leaves from the third leaf flush by the lighter shade of green. In some locations, where the second leaf flush is only produced during the late part of the season, it was unnecessary to use cable ties. We do note that the cable ties were used to facilitate and speed up the process of distinguishing between the leaf flushes, as the leaf

flushes can also be easily (though not as quickly) distinguished anatomically by the nodes. Panel **b** illustrates an oak branch matching the late-season scenario depicted in panel a, where we randomly sampled: i) 15 leaves from the subset of leaves belonging to the first flush, ii) 15 leaves from the subset of leaves belonging to the second flush and iii) 15 leaves from the subset of leaves belonging to the third flush. Note that for each tree, we repeated this sampling for two branches, resulting in a total of 30 leaves from each leaf flush.

🚽 first leaf flush 🛛 🗕 second leaf flush

Figure S2. The effect of concentrations of **a**) nitrogen, **b**) phosphorus, **c**) flavonoids, **d**) hydroxycinnamic acids, **e**) condensed tannins and **f**) hydrolysable tannins on the percentage of free-feeding herbivory during the early season in oak leaves (*Quercus robur*). Shown are regression lines with their associated standard error (shaded area), separately for each leaf flush. Concentrations are expressed in mg g^{-1} of dry tissue.

🚍 first leaf flush 🖃 second leaf flush 🔤 third leaf flush

Figure S3. The effect of concentrations of **a**) nitrogen, **b**) phosphorus, **c**) flavonoids, **d**) hydroxycinnamic acids, **e**) condensed tannins and **f**) hydrolysable tannins on the percentage of free-feeding herbivory during the mid season in oak leaves (*Quercus robur*). Shown are regression lines with their associated standard error (shaded area), separately for each leaf flush. Concentrations are expressed in mg g–1 of dry tissue.

🚍 first leaf flush 🖃 second leaf flush 🔤 third leaf flush

Figure S4. The effect of concentrations of **a**) nitrogen, **b**) phosphorus, **c**) flavonoids, **d**) hydroxycinnamic acids, **e**) condensed tannins and **f**) hydrolysable tannins on the percentage of free-feeding herbivory during the late season in oak leaves (*Quercus robur*). Shown are regression lines with their associated standard error (shaded area), separately for each leaf flush. Concentrations are expressed in mg g–1 of dry tissue.

Figure S5. The effect of concentrations of **a**) nitrogen, **b**) phosphorus, **c**) flavonoids, **d**) hydroxycinnamic acids, **e**) condensed tannins and **f**) hydrolysable tannins on the proportion of leaves with leaf mines during the early season in oak leaves (*Quercus robur*). Shown are regression lines with their associated standard error (shaded area), separately for each leaf flush. Concentrations are expressed in mg g–1 of dry tissue.

first leaf flush = second leaf flush = third leaf flush

Figure S6. The effect of concentrations of **a**) nitrogen, **b**) phosphorus, **c**) flavonoids, **d**) hydroxycinnamic acids, **e**) condensed tannins and **f**) hydrolysable tannins on the proportion of leaves with leaf mines during the mid season in oak leaves (*Quercus robur*). Shown are regression lines with their associated standard error (shaded area), separately for each leaf flush. Concentrations are expressed in mg g–1 of dry tissue.

irst leaf flush - second leaf flush - third leaf flush

Figure S7. The effect of concentrations of **a**) nitrogen, **b**) phosphorus, **c**) flavonoids, **d**) hydroxycinnamic acids, **e**) condensed tannins and **f**) hydrolysable tannins on the proportion of leaves with leaf mines during the late season in oak leaves (*Quercus robur*). Shown are regression lines with their associated standard error (shaded area), separately for each leaf flush. Concentrations are expressed in mg g–1 of dry tissue.

Figure S8. The effect of concentrations of **a**) nitrogen, **b**) phosphorus, **c**) flavonoids, **d**) hydroxycinnamic acids, **e**) condensed tannins and **f**) hydrolysable tannins on the proportion of leaves with galls during the early season in oak leaves (*Quercus robur*). Shown are regression lines with their associated standard error (shaded area), separately for each leaf flush. Concentrations are expressed in mg g–1 of dry tissue.

- first leaf flush - second leaf flush - third leaf flush

irst leaf flush - second leaf flush - third leaf flush

Figure S10. The effect of concentrations of a) nitrogen, b) phosphorus, c) flavonoids,
d) hydroxycinnamic acids, e) condensed tannins and f) hydrolysable tannins on the proportion of leaves with galls during the late season in oak leaves (*Quercus robur*). Shown are regression lines with their associated standard error (shaded area), separately for each leaf flush. Concentrations are expressed in mg g–1 of dry tissue.

Figure S11. The effect of concentrations of **a**) nitrogen, **b**) phosphorus, **c**) flavonoids, **d**) hydroxycinnamic acids, **e**) condensed tannins and **f**) hydrolysable tannins in infection by oak powdery mildew (*Erysiphe* spp.) on the upper leaf side of the pedunculate oak *Quercus robur* during the early season. Shown are regression lines with their associated standard error (shaded area), separately for each leaf flush. Concentrations are expressed in mg g–1 of dry tissue.

irst leaf flush = second leaf flush = third leaf flush

Figure S12. The effect of concentrations of **a**) nitrogen, **b**) phosphorus, **c**) flavonoids, **d**) hydroxycinnamic acids, **e**) condensed tannins and **f**) hydrolysable tannins in infection by oak powdery mildew (*Erysiphe* spp.) on the upper leaf side of the pedunculate oak *Quercus robur* during the mid season. Shown are regression lines with their associated standard error (shaded area), separately for each leaf flush. Concentrations are expressed in mg g–1 of dry tissue.

Figure S13. The effect of concentrations of **a**) nitrogen, **b**) phosphorus, **c**) flavonoids, **d**) hydroxycinnamic acids, **e**) condensed tannins and **f**) hydrolysable tannins in infection by oak powdery mildew (*Erysiphe* spp.) on the upper leaf side of the pedunculate oak *Quercus robur* during the late season. Shown are regression lines with their associated standard error (shaded area), separately for each leaf flush. Concentrations are expressed in mg g–1 of dry tissue.

Figure S14. The effect of concentrations of **a**) nitrogen, **b**) phosphorus, **c**) flavonoids, **d**) hydroxycinnamic acids, **e**) condensed tannins and **f**) hydrolysable tannins in infection by oak powdery mildew (*Erysiphe* spp.) on the lower lower leaf side of the pedunculate oak *Quercus robur* during the early season. Shown are regression lines with their associated standard error (shaded area), separately for each leaf flush. Concentrations are expressed in mg g–1 of dry tissue.

irst leaf flush = second leaf flush = third leaf flush

Figure S15. The effect of concentrations of **a**) nitrogen, **b**) phosphorus, **c**) flavonoids, **d**) hydroxycinnamic acids, **e**) condensed tannins and **f**) hydrolysable tannins in infection by oak powdery mildew (*Erysiphe* spp.) on the lower leaf side of the pedunculate oak *Quercus robur* during the mid season. Shown are regression lines with their associated standard error (shaded area), separately for each leaf flush. Concentrations are expressed in mg g–1 of dry tissue.

irst leaf flush is second leaf flush is third leaf flush

Figure S16. The effect of concentrations of **a**) nitrogen, **b**) phosphorus, **c**) flavonoids, **d**) hydroxycinnamic acids, **e**) condensed tannins and **f**) hydrolysable tannins in infection by oak powdery mildew (*Erysiphe* spp.) on the lower leaf side of the pedunculate oak *Quercus robur* during the late season. Shown are regression lines with their associated standard error (shaded area), separately for each leaf flush. Concentrations are expressed in mg g–1 of dry tissue.

Figure S17. Differences among oak leaf flushes (*Quercus robur*) in the concentration of primary (**a**) nitrogen, **b**) phosphorus) and secondary compounds (**c**) flavonoids, **d**) hydroxycinnamic acids, **e**) condensed tannins and **f**) hydrolysable tannins) during the early, mid and late season. Concentrations are expressed in mg g⁻¹ of dry tissue. Bars represent means and error bars represent standard errors. Significant differences within leaf flushes among seasons are indicated by different letters above bars (p < 0.05).

NOTES S1: Example of HPLC chromatogram with all the compounds detected.

Table N1. List of compounds detected by HPLC in the example presented in Fig. A1. Shown are the peak identity in Fig. A1, retention time in minutes (RT), experimental mass (molar mass), major ions (MS/MS), detected compound and class of the detected compound.

Peak	RT	Experimental Mass	MS/MS (m/z)	Compound	Compound class	
1	2.5	m/z [M-H] 191.0567	127, 109, 93, 85	Quinic acid	Hydroxycinnamic acid	
2	4.6	457.0565	109, 121, 125, 137, 151, 159, 168, 179, 192, 287, 305,	Epigallocatechin gallate	Condensed tannin	
3	5.0	933.0695	915, 871, 613, 569, 493, 489, 467, 340, 300, 249, 125	Castalagin	Hydrolyzable tannin	
4	5.3	783.0697	481, 301, 275, 249, 169	Gallotannin	Hydrolyzable tannin	
5	5.4	1101.0800	1083, 1039, 995, 915, 613, 577, 569, 425	Ellagitannin (Punicalagin-like)	Hydrolyzable tannin	
6	5.5	337.0917	191, 163, 119	Coumaroyl quinic acid	Hydroxycinnamic acid	
7	6.2	367.1054	193, 191, 149, 134, 117	Feruloyl quinic acid	Hydroxycinnamic acid	
8	6.4	289.0558	109, 121, 123, 125, 137, 151	Epigallocatechin	Condensed tannin	
9	6.5	657.1848	367, 193	Feruloyl quinic acid derivative	Hydroxycinnamic acid	
10	6.7	463.0885	301	Quercetin hexoside	Flavonoid	
11	6.9	599.1054	447, 313, 285, 241, 169	Kaempferol galloyl hexoside derivative	Flavonoid	
12	7.2	739.1653	593, 453, 285, 229, 163, 145	Kaempferol coumaroyl derivative	Flavonoid	
13	7.5	781.1724	635, 557, 495, 285, 145	Kaempferol derivative	Flavonoid	
14	8.2	609.1460	300	Rutin	Flavonoid	
15	8.8	823.1921	677, 659, 617, 537, 495, 285, 163, 145	Kaempferol derivative	Flavonoid	

Figure N1. Example of HPLC chromatogram with all the compounds (peaks) detected. The identity of each compound is summarized in Table A1.