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S1 Supplementary figures

Figure S1: Oriented images of Piezo vesicles 1, 2, and 4 in Fig. 4 of the main text obtained by cryo-EM

tomography (left panel) with traced mid-membrane vesicle profiles (cyan dots). Interpolation of the

traced vesicle profiles and left-right averaging of the interpolated vesicle profiles about r = 0 yields the

symmetrized Piezo vesicle profiles (red curves), with the lines of maximal length from Piezo’s CED to

the interpolated vesicle profiles corresponding to the vesicle symmetry axes (right panels). Scale bars,

26 nm. We use the same scale bars in the left and right panels. The corresponding results for Piezo

vesicle 3 in Fig. 4 of the main text are shown in Fig. 2 of the main text.
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Figure S2: Oriented Piezo vesicle images obtained by cryo-EM tomography, traced vesicle profiles,

and symmetrized vesicle profiles as in Fig. S1, but for Piezo vesicles 5–7 in Fig. 4 of the main text.

Scale bars, 26 nm. We use the same scale bars in the left and right panels.
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S2 Derivation of the Hamilton equations

As explained in the main text, the free membrane bending energy of Piezo vesicles can be rewritten as

G̃M =

∫ sb

0
dsL

(
ψ, ψ̇, r, ṙ, ḣ

)
, (S1)

where the Lagrangian

L
(
ψ, ψ̇, r, ṙ, ḣ

)
= πKb r

(
ψ̇ +

sinψ

r

)2

+ 2πλar + λr(s) (ṙ − cosψ) + λh(s)
(
ḣ− sinψ

)
, (S2)

in which we use the same notation as in Eq. (4) of the main text. Subject to suitable boundary

conditions, the Hamilton equations define the extremal functions ψ(s), r(s), and h(s) that make

Eq. (S1) with Eq. (S2) stationary. The purpose of this section is to derive the Hamilton equations for

Eq. (S1) with Eq. (S2).

As described in the main text, the generalized momenta associated with the generalized displace-

ments (shape variables) ψ, r, and h in Eq. (S1) with Eq. (S2) are defined by [1]

pψ ≡
∂L

∂ψ̇
= 2πKbr

(
ψ̇ +

sinψ

r

)
, (S3)

pr ≡
∂L

∂ṙ
= λr , (S4)

ph ≡
∂L

∂ḣ
= λh . (S5)

As pointed out in the main text, the Hamiltonian associated with the Lagrangian in Eq. (S2), obtained

through a Legendre transformation, is given by [1]

H ≡ pψψ̇ + prṙ + phḣ− L . (S6)

S2.1 Variation of the energy functional

The energy functional in Eq. (S1) takes the general form

J [ψ, r, h] =

∫ s2

s1

dsF
(
s, ψ, ψ′, r, r′, h, h′

)
, (S7)

where, throughout this section, we use the notation ψ′ ≡ dψ/ds, etc. It is instructive to allow, in

principle, both boundaries of the integration domain, s1 and s2, to be variable. In this section, we

denote the values of ψ(s), r(s), and h(s) at s = s1 and s = s2 by

ψ(si) = ψi , (S8)

r(si) = ri , (S9)

h(si) = hi , (S10)
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where i = 1, 2. The extremal functions of J in Eq. (S7) can be determined through the calculus of

variations using standard methods [2–4]. For completeness, we summarize here this calculation.

The perturbed functional in Eq. (S7) takes the form

J
[
ψ̂, r̂, ĥ

]
=

∫ ŝ2

ŝ1

dsF
(
s, ψ̂, ψ̂′, r̂, r̂′, ĥ, ĥ′

)
, (S11)

where we define the perturbed functions as

ψ̂(s) ≡ ψ(s) + εηψ(s) , (S12)

r̂(s) ≡ r(s) + εηr(s) , (S13)

ĥ(s) ≡ h(s) + εηh(s) , (S14)

in which ε is small and the functions ηψ,r,h(s) are arbitrary. At the boundaries, we have

ŝi = si + εSi , (S15)

ψ̂(ŝi) = ψi + εΨi , (S16)

r̂(ŝi) = ri + εRi , (S17)

ĥ(ŝi) = hi + εHi , (S18)

where i = 1, 2 and, depending on the boundary conditions under consideration (see Sec. S3), Si, Ψi,

Ri, and Hi may be arbitrary or zero.

Introducing, for convenience, the notation

F ≡ F
(
s, ψ, ψ′, r, r′, h, h′

)
, (S19)

F̂ ≡ F
(
s, ψ̂, ψ̂′, r̂, r̂′, ĥ, ĥ′

)
, (S20)

we have that

J
[
ψ̂, r̂, ĥ,

]
− J [ψ, r, h, ] =

∫ s2

s1

ds
(
F̂ − F

)
+

∫ ŝ2

s2

dsF̂ −
∫ ŝ1

s1

dsF̂ . (S21)

Expanding F̂ to O(ε) about (s, ψ, ψ′, r, r′, h, h′), Eq. (S21) yields the following leading-order change

in J :

δJ =

∫ s2

s1

ds

(
εηψ

∂F

∂ψ
+ εη′ψ

∂F

∂ψ′
+ εηr

∂F

∂r
+ εη′r

∂F

∂r′
+ εηh

∂F

∂h
+ εη′h

∂F

∂h′

)
+

∫ s2+εS2

s2

dsF −
∫ s1+εS1

s1

dsF (S22)

=

∫ s2

s1

ds

(
εηψ

∂F

∂ψ
+ εη′ψ

∂F

∂ψ′

)
+

∫ s2

s1

ds

(
εηr

∂F

∂r
+ εη′r

∂F

∂r′

)
+

∫ s2

s1

ds

(
εηh

∂F

∂h
+ εη′h

∂F

∂h′

)
+F
∣∣
s=s2

εS2 − F
∣∣
s=s1

εS1 (S23)
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=

∫ s2

s1

ds εηψ

(
∂F

∂ψ
− d

ds

∂F

∂ψ′

)
+

∫ s2

s1

ds εηr

(
∂F

∂r
− d

ds

∂F

∂r′

)
+

∫ s2

s1

ds εηh

(
∂F

∂h
− d

ds

∂F

∂h′

)
+

[
εηψ

∂F

∂ψ′

]s=s2
s=s1

+

[
εηr

∂F

∂r′

]s=s2
s=s1

+

[
εηh

∂F

∂h′

]s=s2
s=s1

+ F
∣∣
s=s2

εS2 − F
∣∣
s=s1

εS1 , (S24)

where we obtained Eq. (S24) via integration by parts.

Note that Eqs. (S12) and (S16) with Eq. (S15) imply that

ψ̂(ŝi) = ψi + εΨi (S25)

= ψ(si + εSi) + εηψ(si + εSi) = ψi + εSiψ
′(si) + εηψ(si) + . . . (S26)

To O(ε), we therefore have that

Ψi = ηψ(si) + Siψ
′(si) . (S27)

Upon rearranging Eq. (S27), and carrying out an analogous analysis for r(s) and h(s), we find

ηψ(si) = Ψi − Siψ′(si) , (S28)

ηr(si) = Ri − Sir′(si) , (S29)

ηh(si) = Hi − Sih′(si) (S30)

to O(ε). Substitution of Eqs. (S28)–(S30) into Eq. (S24) yields

δJ = ε

{∫ s2

s1

ds ηψ

(
∂F

∂ψ
− d

ds

∂F

∂ψ′

)
+

∫ s2

s1

ds ηr

(
∂F

∂r
− d

ds

∂F

∂r′

)
+

∫ s2

s1

ds ηh

(
∂F

∂h
− d

ds

∂F

∂h′

)
+
∂F

∂ψ′

∣∣∣∣
s=s2

Ψ2 −
∂F

∂ψ′

∣∣∣∣
s=s1

Ψ1 +
∂F

∂r′

∣∣∣∣
s=s2

R2 −
∂F

∂r′

∣∣∣∣
s=s1

R1 +
∂F

∂h′

∣∣∣∣
s=s2

H2 −
∂F

∂h′

∣∣∣∣
s=s1

H1

+

(
F − ψ′ ∂F

∂ψ′
− r′∂F

∂r′
− h′ ∂F

∂h′

) ∣∣∣∣
s=s2

S2 −
(
F − ψ′ ∂F

∂ψ′
− r′∂F

∂r′
− h′ ∂F

∂h′

) ∣∣∣∣
s=s1

S1

}
. (S31)

Identifying F with the Lagrangian L, F ≡ L, the Hamiltonian of the system takes the form in Eq. (S6).

Equation (S31) can then be rewritten as

δJ = ε

{∫ s2

s1

ds ηψ

(
∂L

∂ψ
− d

ds

∂L

∂ψ′

)
+

∫ s2

s1

ds ηr

(
∂L

∂r
− d

ds

∂L

∂r′

)
+

∫ s2

s1

ds ηh

(
∂L

∂h
− d

ds

∂L

∂h′

)
+pψ

∣∣
s=s2

Ψ2 − pψ
∣∣
s=s1

Ψ1 + pr
∣∣
s=s2

R2 − pr
∣∣
s=s1

R1 + ph
∣∣
s=s2

H2 − ph
∣∣
s=s1

H1

−H
∣∣
s=s2

S2 +H
∣∣
s=s1

S1

}
, (S32)

where we have used the definitions of the generalized momenta in Eqs. (S3)–(S5).

The extremal functions of the functional in Eq. (S7) satisfy δJ = 0. Noting that the functions

ηψ,r,h(s) are arbitrary, the first line of Eq. (S32) thus yields the Euler-Lagrange equations satisfied by

the extremal ψ(s), r(s), and h(s) (see also Sec. S2.2). The terms in the second line of Eq. (S32) mandate

that the extremal ψ(s), r(s), and h(s) satisfy fixed-value (Ψi = 0, Ri = 0, or Hi = 0) or natural (zero-

force; pψ = 0, pr = 0, or ph = 0) boundary conditions. Natural boundary conditions thereby mean
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that the extremal ψ(s), r(s), and h(s) are such that the functional in Eq. (S7) is stationary under

arbitrary perturbations εΨi, εRi, or εHi at the respective domain boundaries. Finally, the terms in

the third line of Eq. (S32) show that, if one or both of the limits of integration s1 and s2 in Eq. (S7)

can be freely adjusted when minimizing Eq. (S7), then the extremal functions of Eq. (S7) must satisfy

H = 0 at the corresponding s = si to ensure that δJ = 0 for arbitrary perturbations εSi. Note that, if

H does not explicitly depend on s, then H is conserved along s and H = 0 for some s implies H = 0

for all s (see Sec. S2.2).

S2.2 From the Euler-Lagrange to the Hamilton equations

The (three) Euler-Lagrange equations implied by the first line of Eq. (S32) are formulated in terms of

the Lagrangian of the system, the generalized displacements ψ(s), r(s), and h(s), and the generalized

velocities ψ̇(s), ṙ(s), and ḣ(s), where, as in the main text, we use in this section the notation ψ̇ ≡

dψ/ds, etc. Following the Hamiltonian formulation of classical mechanics one may, alternatively,

use the generalized momenta in Eqs. (S3)–(S5) instead of the generalized velocities ψ̇(s), ṙ(s), and

ḣ(s) to specify the state of the system, with the Hamilton equations taking the place of the Euler-

Lagrange equations [1, 4]. Note, in particular, that the Hamiltonian in Eq. (S6) is a function of the

generalized displacements and the generalized momenta, rather than the generalized displacements

and the generalized velocities. We follow here Ref. [1] to provide, based on Sec. S2.1, a derivation of

the Hamilton equations for Piezo vesicles.

To derive the Hamilton equations for Eq. (S1) with Eq. (S2) we first note that, in terms of the

generalized momenta in Eqs. (S3)–(S5), the Euler-Lagrange equations implied by the first line of

Eq. (S32) can be rewritten as

ṗψ =
∂L

∂ψ
, (S33)

ṗr =
∂L

∂r
, (S34)

ṗh =
∂L

∂h
. (S35)

Next, from the Legendre transformation in Eq. (S6) one finds that

∂H

∂pψ
= ψ̇ , (S36)

∂H

∂pr
= = ṙ , (S37)

∂H

∂ph
= ḣ . (S38)
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Similarly, we have from Eq. (S6) that

∂H

∂ψ
= −∂L

∂ψ
= −ṗψ , (S39)

∂H

∂r
= −∂L

∂r
= −ṗr , (S40)

∂H

∂h
= −∂L

∂h
= −ṗh , (S41)

where, for the second equalities, we used the Euler-Lagrange equations in Eqs. (S33)–(S35). Combining

Eqs. (S36)–(S41) we obtain the Hamilton equations for Eq. (S1) with Eq. (S2),

ψ̇ =
∂H

∂pψ
=

1

r

(
pψ

2πKb
− sinψ

)
, (S42)

ṙ =
∂H

∂pr
= cosψ , (S43)

ḣ =
∂H

∂ph
= sinψ , (S44)

ṗψ = −∂H
∂ψ

=
(pψ
r
− ph

)
cosψ + pr sinψ , (S45)

ṗr = −∂H
∂r

=
pψ
r2

(
pψ

4πKb
− sinψ

)
+ 2πλa , (S46)

ṗh = −∂H
∂h

= 0 , (S47)

as in Eqs. (5)–(10) of the main text. While the Euler-Lagrange equations in Eqs. (S33)–(S35) are a

set of three differential equations and generally involve derivatives up to second order, the Hamilton

equations in Eqs. (S42)–(S47) constitute a set of six first-order differential equations [1]. The solutions

of Eqs. (S42)–(S47), subject to the boundary conditions mandated by the second and third lines of

Eq. (S32), specify the extremal functions ψ(s), r(s), and h(s) of Eq. (S1) with Eq. (S2), from which

the membrane bending energy can be calculated by substituting these extremal functions back into

Eqs. (1) or (2) of the main text and evaluating the integral.

Finally, note that the Hamiltonian in Eq. (S6) associated with Piezo vesicles only depends on s

through the generalized displacements ψ(s), r(s), and h(s) and the generalized momenta pψ(s), pr(s),

and ph(s). In particular, H in Eq. (S6) does not explicitly depend on s. As a result, the value of H

is constant with s [1],

dH

ds
=
∂H

∂ψ
ψ̇ +

∂H

∂r
ṙ +

∂H

∂h
ḣ+

∂H

∂pψ
ṗψ +

∂H

∂pr
ṗr +

∂H

∂ph
ṗh = 0 , (S48)

where the last equality follows from the Hamilton equations in Eqs. (S42)–(S47), which means that

H is conserved along s.

7



S3 Boundary conditions

In this section we expand on the discussion of boundary conditions in the main text [5–8]. Note,

in particular, that the variational calculation in Sec. S2.1 shows that two distinct kinds of boundary

conditions may determine the membrane shape and elastic energy of Piezo vesicles: fixed-value or

natural boundary conditions on the generalized displacements (shape variables) ψ(s), r(s), and h(s)

[see the second line of Eq. (S32)], and boundary conditions arising from the variable length of the

integration domain in Eq. (S1) [see the third line of Eq. (S32)]. For the membrane bending energy in

Eq. (S1) with Eq. (S2) we have the integration limits s1 = 0 and s2 = sb in the third line of Eq. (S32),

with sb being variable.

As discussed in the main text, the basic geometric properties of Piezo vesicles immediately yield

the boundary conditions

ψ(0) = 0 , (S49)

r(0) = 0 , (S50)

h(0) = 0 , (S51)

ψ(sb) = π − α , (S52)

r(sb) = rb (S53)

on the shape variables ψ(s), r(s), and h(s). However, these boundary conditions alone are not sufficient

to solve the Hamilton equations in Eqs. (5)–(10) of the main text, or to ensure that the energy

functional is stationary in Eq. (S32).

To proceed, first note that, from the definition of pψ(s) in Eq. (S3), we have

pψ(0) = 2πKb lim
s→0

[
r

(
ψ̇ +

sinψ

r

)]
= 2πKb lim

s→0

(
rψ̇
)

+ 2πKb lim
s→0

(sinψ) = 0 , (S54)

where we assumed that ψ̇(0) is finite and used Eqs. (S49) and (S50), yielding the boundary condition

pψ(0) = 0.

Second, we note that, since the membrane bending energy in Eq. (S1) with Eq. (S2) does not

depend on the absolute value of h, we can arbitrarily set h(s) = 0 at s = 0 without loss of generality,

resulting in the boundary condition in Eq. (S51). Having fixed h(0) = 0, we assume that h(sb) and,

hence, h(sb) − h(0) can be varied when minimizing the membrane bending energy in Eq. (S1) with

Eq. (S2). From the second line of Eq. (S32) we see that we then must have ph(sb) = 0 for the

first variation of Eq. (S1) with Eq. (S2) to be equal to zero. From the Hamilton equation for ṗh(s),

Eq. (S47), it thus follows that ph(s) = 0 for 0 ≤ s ≤ sb, yielding

ph(0) = 0 . (S55)
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Equation (S55) implies that the system satisfies natural (zero-force) boundary conditions on h(s) not

only at s = sb but also at s = 0.

Third, we consider constraints arising from the variable length of the integration domain in Eq. (S1)

with Eq. (S2). Note that the Lagrangian in Eq. (S2) does not depend on the absolute value of s.

Without loss of generality, we therefore use s = 0 as the lower limit of integration in Eq. (S1).

However, because the length of the integration domain in Eq. (S1) with Eq. (S2) is not fixed, we

allow the value of the upper limit of integration, s = sb, to be varied when minimizing the membrane

bending energy. As shown in Sec. S2.1, stationarity of Eq. (S1) with Eq. (S2) then requires that the

Hamiltonian of the system vanishes at s = sb [see the third line of Eq. (S32)]:

H
∣∣
s=sb

= 0 . (S56)

The Hamiltonian associated with Piezo vesicles in Eq. (S6) does not explicitly depend on s. As a result,

H is conserved along s [see Eq. (S48)] [1]. Equation (S56) thus yields H = 0 for 0 ≤ s ≤ sb [5, 6].

We therefore have H = 0 at s = 0, which implies that Eq. (S1) with Eq. (S2) is also stationary with

respect to variations in the lower limit of the integration domain. Furthermore, note from Eq. (S6)

that

H = πKbr

(
ψ̇2 − sin2 ψ

r2

)
− 2πλar + λr cosψ + λh sinψ (S57)

and that, by L’Hôpital’s rule together with the geometric relation ṙ = cosψ, the two principal curva-

tures ψ̇ and sinψ/r must be equal to each other at s = 0,

lim
s→0

sinψ

r
= ψ̇(0) , (S58)

where we used the boundary conditions in Eqs. (S49) and (S50). Assuming that λa is finite, Eqs. (S57)

and (S4) thus yieldH = pr(s) at s = 0, where we have again used the boundary conditions in Eqs. (S49)

and (S50) together with Eqs. (S5) and (S55). Since H = 0 at s = 0, one therefore finds [5]

pr(0) = 0 , (S59)

as stated in the main text. Equations (S49)–(S51), (S54), (S55), and (S59) provide the initial con-

ditions for the generalized displacements and generalized momenta in Eq. (12) of the main text,

while Eqs. (S52) and (S53) specify the values of the shape variables ψ(s) and r(s) at the Piezo dome

boundary. Note that solutions of the Euler-Lagrange or Hamilton equations satisfying these boundary

conditions indeed yield a vanishing first variation of the membrane bending energy in Eq. (S1) with

Eq. (S2) [see Eq. (S32)].
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S4 Solving the Hamilton equations

We used Mathematica [9] to numerically solve the six Hamilton equations and area equation in

Eqs. (5)–(11) of the main text subject to the initial conditions in Eq. (12) of the main text and

the experimental constraints in Eq. (13) of the main text to obtain the shape of the free membrane

in Piezo vesicles (see Fig. 4 of the main text as well as Fig. 1 of our companion paper). We used an

analogous numerical solution approach to solve, instead, Eqs. (5)–(11) with Eq. (12) in the main text

subject to the constraints A(sb) = AP , ψ(sb) = −α, and r(sb) = rb associated with the minimization

of the Piezo dome bending energy (see Fig. 5A of the main text), or the constraints A(sb) = AF ,

ψ(sb) = π − α, and r(sb) = rb associated with Figs. 2 and 3 in our companion paper. For all of

these calculations it is useful to rewrite Eqs. (5)–(11) of the main text in dimensionless form. To this

end we use, for all calculations pertaining to the minimization of the free membrane bending energy

in Piezo vesicles, as the unit of length the spatial scale Lc =
√
AF , which characterizes the spatial

extent of the free membrane in Piezo vesicles. For all calculations pertaining to the minimization of

the Piezo dome bending energy we use, instead, as the unit of length the spatial scale Lc =
√
AP ,

which characterizes the spatial extent of the Piezo dome. In either case we use as the unit of energy

the characteristic energy scale in Eqs. (1) and (2) of the main text, Kb. We thus make the change of

variables s→ s̄ = s
Lc

, r → r̄ = r
Lc

, λa → λ̄a = L2
c

Kb
λa, u0 → ū0 = Lcu0, etc.

The Hamilton equations in Eqs. (5)–(10) of the main text involve the factors 1
r and 1

r2
while, from

the initial conditions in Eq. (12) of the main text, we have r(s) → 0 as s → 0. Furthermore, it is,

in general, non-trivial to impose the limit in Eq. (S58) in a numerical solution scheme. To address

these difficulties, we start the numerical solution of Eqs. (5)–(11) of the main text not at s̄ = 0 but at

some small s̄ = s̄0 > 0. The (approximate) initial conditions at s̄ = s̄0 can be obtained by expanding

the functions entering Eqs. (5)–(11) of the main text about s̄ = 0, substituting these expansions into

Eqs. (5)–(11) of the main text, setting s̄ = s̄0, directly imposing the initial conditions in Eq. (12)

of the main text together with Eq. (S58) and ψ̇(0) ≡ u0, and solving the resulting equations for the

values of the shape variables, generalized momenta, and membrane area at s̄ = s̄0, to leading order in

s̄0 in each equation. We set s̄0 = 10−8.

For given values of λa, sb, and u0 the above procedure allows numerical solution of Eqs. (5)–

(11) of the main text subject to the initial conditions in Eq. (12) of the main text. We employ a

shooting method [10,11] to determine values of λa, sb, and u0 that satisfy the constraints in Eq. (13)

of the main text (Fig. 4 of the main text as well as Fig. 1 of our companion paper), the constraints

A(sb) = AP , ψ(sb) = −α, and r(sb) = rb associated with the minimization of the Piezo dome bending

energy (Fig. 5A of the main text), or the constraints A(sb) = AF , ψ(sb) = π − α, and r(sb) = rb
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associated with Figs. 2 and 3 in our companion paper. In this shooting method, the values of λa,

sb, and u0 are iteratively adjusted so that the respective constraints are satisfied. This is achieved

conveniently and efficiently in Mathematica [9] by nesting the NDSolve-command, used to numerically

solve Eqs. (5)–(11) of the main text, inside the FindRoot-command, used to adjust the values of λa,

sb, and u0 so as to satisfy the respective constraints. To initialize the numerical optimization carried

out by the FindRoot-command, it is thereby necessary to specify starting values for λa, sb, and u0.

In dimensionless form, useful sets of starting values for the scenarios considered here are given by(
λ̄a, s̄b, ū0

)
= (−1, 1, π) for the minimization of the free membrane bending energy in the present

paper (Fig. 4 of the main text) and in our companion paper (Figs. 1–3 of our companion paper), and

by
(
λ̄a, s̄b, ū0

)
= (−10, 1,−π) for the minimization of the Piezo dome bending energy (Fig. 5A of the

main text). When carrying out a series of related shooting calculations with only minor changes to

the constraints imposed on the Piezo vesicle shape, it is generally convenient to initialize
(
λ̄a, s̄b, ū0

)
using the optimized values of

(
λ̄a, s̄b, ū0

)
obtained for a ‘nearby’ (the preceding) solution. A general

caveat is that the shooting method does not necessarily yield a unique solution to boundary value

problems such as studied here.
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