
Elastic properties and shape of the Piezo dome underlying
its mechanosensory function

Supplementary Information

Christoph A. Haselwandter1, Yusong R. Guo2, Ziao Fu2, and Roderick MacKinnon2

1Department of Physics and Astronomy and Department of Quantitative and Computational Biology,

University of Southern California, Los Angeles, United States.

2Laboratory of Molecular Neurobiology and Biophysics, Howard Hughes Medical Institute,

The Rockefeller University, New York, United States.

S1 Supplementary figures

Figure S1: Mechanics of the Piezo dome. Same plots as in Fig. 3 of the main text but using,

instead of AP = 450 nm2, the Piezo dome areas (A) AP = 410 nm2 and (B) AP = 490 nm2. We

have the fits KP = 17 ± 2.1 kBT and RP = 40 ± 11 nm in panel A and KP = 18 ± 2.0 kBT and

RP = 45± 13 nm in panel B.
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Figure S2: Toy model of the protein and lipid contributions to Piezo dome mechanics.

The sum of the bending energy of the Piezo protein, GpP (RP ) = 0.25Kb
2 AP

(
2
RP
− 2

Rp
0

)2
, assuming

the protein bending rigidity to be roughly equal to the lipid bilayer bending rigidity Kb and using

an intrinsic protein radius of curvature Rp0 = 10.2 nm [1] (left panel) and of the bending energy of

the lipid bilayer inside the Piezo dome, GlP (RP ) = 0.75Kb
2 AP

(
2
RP

)2
, with bending rigidity Kb and

zero intrinsic curvature (middle panel) yields a total Piezo dome energy GpP +GlP −G0 (black curve

in right panel) that is (qualitatively) similar to the mean curvature Piezo dome energy in Eq. (3) of

the main text with KP ≈ 18 kBT and R0 ≈ 42 nm, GMC
P (RP ) (grey curve in right panel). We set

AP = 450 nm2. In the right panel, we shifted the total Piezo dome energy by the constant G0 so that

GpP + GlP − G0 = 0 at the value of RP minimizing GpP + GlP . In the expressions for GpP (RP ) and

GlP (RP ) used here, we assumed that the area of a Piezo dome in a membrane comprises approximately

75% lipid bilayer and 25% protein. The minimum of GpP + GlP − G0 is thus at R = 4Rp0 = 40.8 nm,

close to the minimum of GMC
P (RP ) at RP = R0 ≈ 42 nm, with a comparable energy difference to

Piezo dome states with RP →∞. Differentiating GpP +GlP with respect to RP , one finds a force curve

for the Piezo dome that is comparable to FMC
P (RP ) in Eq. (4) of the main text (see Fig. 3 of the

main text).
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S2 Calculating Piezo’s membrane footprint

For Figs. 1–3 of the main text, we calculated the shape and elastic energy of the free membrane in

Piezo vesicles as described in our companion paper. We calculated the shape and elastic energy of

Piezo’s membrane footprint in asymptotically planar membranes, Fig. 4 of the main text, based on the

theory developed in Ref. [2]. Reference [2] shows that the membrane footprint contribution to Piezo’s

tension-dependent gating is, in general, comparable to the contribution due to the Piezo dome itself.

In this section we summarize the theoretical approach in Ref. [2] used for Fig. 4 of the main text.

As discussed in Ref. [2], the contributions to the shape energy of the Piezo-membrane system

in Eq. (5) of the main text arising from Piezo’s membrane footprint take the following form in the

arclength parameterization of surfaces [3, 4]:

GM = πKb

∫ sb

0
ds r

[(
ψ̇ +

sinψ

r

)2

+
2

λ2
(1− cosψ)

]
, (S1)

where sb is the (fixed) length of the integration domain (membrane compartment size) and λ =
√
Kb/γ

is the characteristic decay length of membrane shape deformations. Throughout this section, we use

the same notation as in our companion paper (see, in particular, Fig. 3B of our companion paper). As

in Ref. [2], we calculated the extremal membrane footprint shapes, and corresponding elastic footprint

energies, implied by Eq. (S1) from the Hamilton equations associated with Eq. (S1), which we solved

numerically using a shooting method analogous to the approach used in our companion paper [5, 6].

This shooting method provides an improved version of the numerical approach employed in Ref. [2]—

in particular, it allows for a straightforward representation of the boundary conditions fixing the

physical properties of Piezo’s membrane footprint, and is conveniently and efficiently implemented

in Mathematica [7].

S2.1 Hamilton equations

Following Ref. [2], the geometric relations ṙ = cosψ and ḣ = sinψ can be incorporated into the

membrane deformation energy in Eq. (S1) as

GM = πKb

∫ sb

0
dsL

(
ψ, ψ̇, r, ṙ, ḣ

)
, (S2)

where the Lagrangian is

L = r

[(
ψ̇ +

sinψ

r

)2

+
2

λ2
(1− cosψ)

]
+ λr (ṙ − cosψ) + λh

(
ḣ− sinψ

)
, (S3)

in which the Lagrange multipliers λr(s) and λh(s) may both vary with s. The generalized momenta

pψ, pr, and ph associated with the generalized displacements ψ, r, and h in Eq. (S2) with Eq. (S3) are
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defined by [8]

pψ ≡
∂L

∂ψ̇
= 2r

(
ψ̇ +

sinψ

r

)
, (S4)

pr ≡
∂L

∂ṙ
= λr , (S5)

ph ≡
∂L

∂ḣ
= λh . (S6)

It is convenient to solve the Hamilton equations for Eq. (S2) with Eq. (S3) in dimensionless form.

Denoting the characteristic spatial scale by Lc, we thus define the following dimensionless variables:

s̄ ≡ 1

Lc
s , ψ̄ ≡ ψ , r̄ ≡ 1

Lc
r , h̄ ≡ 1

Lc
h , (S7)

p̄ψ ≡ pψ , p̄r ≡ Lc pr , p̄h ≡ Lcph , λ̄ =
1

Lc
λ . (S8)

In terms of the dimensionless variables in Eqs. (S7) and (S8), the Hamilton equations associated with

Piezo’s membrane footprint [2] are given by

ψ̄′ =
p̄ψ
2r̄
− sin ψ̄

r̄
, (S9)

r̄′ = cos ψ̄ , (S10)

h̄′ = sin ψ̄ , (S11)

p̄′ψ =

(
p̄ψ
r̄
− p̄h

)
cos ψ̄ +

(
2r̄

λ̄2
+ p̄r

)
sin ψ̄ , (S12)

p̄′r =
p̄ψ
r̄

(
p̄ψ
4r̄
− sin ψ̄

r̄

)
+

2

λ̄2
(
1− cos ψ̄

)
, (S13)

p̄′h = 0 , (S14)

where we denote with f ′ the derivative of some function f with respect to s̄, f ′ ≡ df/ds̄.

S2.2 Boundary conditions

In order to find the dominant (lowest-energy) shape and associated energy of Piezo’s membrane

footprint we need to solve Eqs. (S9)–(S14) subject to suitable boundary conditions. As discussed in

our companion paper, the general form of these boundary conditions can be derived from the calculus

of variations [9–11]. Following Ref. [2], the boundary conditions for Piezo’s membrane footprint in

asymptotically planar membranes are, in dimensionless form, given by

ψ̄(0) = α , (S15)

ψ̄(s̄b) = 0 , (S16)

r̄(0) = R̄P sinα , (S17)

4



h̄(0) = −R̄P cosα , (S18)

p̄r(s̄b) = 0 , (S19)

p̄h(0) = 0 , (S20)

where s̄b = sb/Lc, R̄P = RP /Lc, and the Piezo dome (cap) contact angle

α = cos−1
(

1− AP
2πR2

P

)
. (S21)

We used here the Piezo dome (cap) area AP = 450 nm2. The boundary condition in Eq. (S20)

is obtained from Eq. (S14) together with the natural (zero-force) boundary condition p̄h(s̄b) = 0 [2].

Based on Eq. (S17) we use here Lc = RP sinα as the characteristic spatial scale of the system, resulting

in r̄(0) = 1 and h̄(0) = − cotα in Eqs. (S17) and (S18), respectively. We set s̄b = 5λ̄ to calculate

Piezo’s membrane footprint in large (asymptotically planar) membranes.

S2.3 Solving the Hamilton equations

The six Hamilton equations in Eqs. (S9)–(S14) must be solved subject to the six boundary conditions

in Eqs. (S15)–(S20), which we achieve through a shooting method analogous to that employed in our

companion paper. In particular, we directly impose the initial conditions in Eqs. (S15), (S17), (S18),

and (S20), and impose the boundary conditions at s̄ = s̄b in Eqs. (S16) and (S19) by introducing the

variables p̄ψ;0 and p̄r;0,

p̄ψ(0) = p̄ψ;0 , (S22)

p̄r(0) = p̄r;0 . (S23)

We determine the values of p̄ψ;0 and p̄r;0 in Eqs. (S22) and (S23) from the boundary conditions in

Eqs. (S16) and (S19) through a shooting method. In this shooting method, the values of p̄ψ;0 and

p̄r;0 are iteratively adjusted so that Eqs. (S16) and (S19) are satisfied. Similarly as described in

our companion paper, this is achieved conveniently and efficiently in Mathematica [7] by nesting the

NDSolve-command, used to numerically solve Eqs. (S9)–(S14) subject to Eqs. (S15), (S17), (S18),

(S20), (S22), and (S23), inside the FindRoot-command, used to adjust the values of p̄ψ;0 and p̄r;0 in

Eqs. (S22) and (S23) so as to satisfy Eqs. (S16) and (S19). To initialize the numerical optimization

carried out by the FindRoot-command, it is thereby necessary to specify starting values for p̄ψ;0

and p̄r;0. For instance, for the parameter values RP ≈ 42 nm and γ = 0.01 kBT/nm2 used in

the left panel of Fig. 4A of the main text, suitable starting values of p̄ψ;0 and p̄r;0 are (p̄ψ;0, p̄r;0) ≈

(−0.063,−0.014). When carrying out a series of related shooting calculations with only minor changes
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to the constraints imposed on Piezo’s membrane footprint—for instance, to evaluate GM as a function

of γ—it is generally convenient to initialize p̄ψ;0 and p̄r;0 using the optimized values of p̄ψ;0 and p̄r;0

obtained for a ‘nearby’ (the preceding) solution. As also noted in our companion paper, a general

caveat is that the shooting method does not necessarily yield a unique solution to boundary value

problems such as studied here. After solving Eqs. (S9)–(S14) subject to Eqs. (S15)–(S20), we substitute

these solutions into Eq. (S1) and evaluate the integral, to calculate the (stationary) elastic energy of

Piezo’s membrane footprint.
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