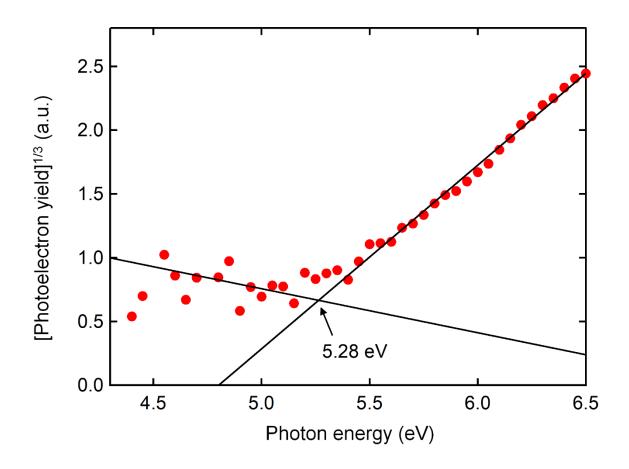
Supplementary information

Electrostatically-sprayed carbon electrodes for high performance organic complementary circuits

Kazuyoshi Watanabe¹*, Naoki Miura², Hiroaki Taguchi², Takeshi Komatsu², Hideyuki Nosaka², Toshihiro Okamoto^{1,3,4}, Shun Watanabe^{1,3}* & Jun Takeya^{1,3,5}*

¹ Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan.


² NTT Device Technology Laboratories, Nippon Telegraph and Telephone (NTT) Corporation, 3-1 Morinosato-Wakamiya, Atsugi, Kanagawa, 243-0198, Japan.

³ Material Innovation Research Center (MIRC), Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8561, Japan

⁴ Precursory Research For Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan

⁵ International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Tsukuba 305-0044, Japan

* Corresponding authors: Kazuyoshi Watanabe (kaz-watanabe@edu.k.u-tokyo.ac.jp); Shun Watanabe (swatanabe@edu.k.u-tokyo.ac.jp); Jun Takeya (takeya@k.u-tokyo.ac.jp).

Supplementary Figure 1. Ionization potential of graphite-based carbon resulting from photoelectron yield spectroscopy (PYS). The carbon suspension XC-9089 was electrostatically sprayed on a glass substrate and then dried at 80°C for 30 min to obtain film-like carbon sample. The PYS measurement was carried out under vacuum.