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REVIEWER COMMENTS</B> 

Reviewer #1 (Remarks to the Author): 

Title: Prevalence and mechanisms of somatic deletions in single human neurons during normal aging 

and in DNA repair disorders 

In this study, the authors developed the PhaseDel algorithm, which utilized GATK and DELLY2 to call 

somatic deletion candidates, then filtered and read-back phased, using clipped reads spanning reliable 

germline heterozygous SNP sites called from bulk WGS data. They then tried to identify true somatic 

deletions from 108 single neurons, which increased with age and in highly expressed genes in the 

human brain. Also, they showed that somatic deletions increased with distinctive patterns in neurons of 

individuals with DNA repair defects. Although it is an important and interesting topic to detect reliable 

somatic SVs in a single cell, this study did not fully validate the PhaseDel algorithm. Thus, this reviewer 

thinks that the current validation data of the PhaseDel algorithm is not enough to convince researchers 

in the field of somatic mosaicism to use this new algorithm reliably due to the following concerns; 

1. The authors implemented deep target-amplicon sequencing (TAseq) to validate the inferred 

deletions. However, only two cases were truly validated in multiple-tissue comparison (① ~50% VAF in 

affected scWGS, ② 0% in unaffected scWGS, ③ low-level (0.1-0.5%) VAF in bulk brain, ④ 0% in bulk 

peripheral tissue), as in Fig 2. In remaining 56 (out of 58) cases, it seems like they were validated only in 

MDA-amplified-single cell genomes. Overall, it is less convincing to claim that PhaseDel is accurate to 

discover true somatic deletions within phase-able reads of scWGS. The algorithm’s effectiveness can be 

properly confirmed only when it is validated with external datasets or additional experiments. This 

reviewer suggests that they perform cross-validation by doing scWGS on MDA-amplified single 

fibroblasts and find somatic deletions in scWGS with PhaseDel, then verify the somatic deletions with 

bulk WGS of clones derived from the same single fibroblasts (① scWGS of MDA-amplified single 

fibroblast as PhaseDel query set, ② the same single-fibroblast-derived clones without MDA 

amplification as gold standards of true SVs). Or they may use public single-cell data from SRA database 

as suggested in SCCaller paper by Dong et al (Nat Methods, 2017). 

2. The authors described that the somatic burdens of deletion increased with aging, but this observation 

was inconsistent with the previous Chronister WD’s study (Cell Rep, 2019). The authors postulated that 

the discrepancy resulted from different size of deletion, which caused selective pressure for cell survival. 

In order to address this point adequately, the authors should show the analysis data about the aging 

trend of deletions of only larger size (megabase-scale). This reviewer also thinks that the locations (or 

sites) of deletion are important as the sizes of deletion. Can the authors provide the genomic locations 



(exonic, intronic, genic, or intergenic) of nano-deletions and larger megabase-scale deletions, 

respectively? Is there any difference between them? 

Minor comments 

1. The authors classified the deletions into six categories according to DSB repair mechanisms (NHEJ, 

MMEJ, VNTR, NAHR, FoSTeS/MMBIR, TEI). Is there any deletion that can be classified as two or more 

classes simultaneously? Providing a Venn diagram of somatic deletion categories would be better to 

present the mutual exclusiveness of this classification. 

2. Moreover, after constructing a class frequency vector for each cell and forming a matrix by combining 

them column-wisely, this reviewer suggests the authors to extract somatic deletion signatures using 

nonnegative matrix factorization (NMF)-based methods that are widely implemented in profiling 

somatic SNVs and short Indels. 

3. The authors claimed that only about 25% of the genomic regions are phaseable, so an extrapolation 

process is required to proceed with statistical analysis on the somatic deletion burden. They constructed 

a model T(c)=S(c)+E(c)=k_1+k_2 exp (-k_3 (c-2)), where 

T(⋅):the rate of all phased candidate,S(⋅):True somatic deletion rate,E(⋅):Erroneous FP rate 

with respect to supporting read counts (c), assuming E(⋅) is exponentially decaying when c increases, 

then all parameters (k_1,k_2,k_3) were estimated with NLS curve fit. However, I doubt that the above 

equation is really the ideal model that best describes the true and false positives rates in this context. 

Have you ever compared multiple models with different equations and assumptions? Since many 

genomic variation callers utilize model-based probabilistic variant calling, likelihood modeling and 

maximum likelihood estimation of each parameter can be a good option (or its Bayesian extension). 

4. It will be easier to comprehend the whole pipeline if the detailed process of phasing with gHet SNPs 

and filtering raw sets of GATK-called and DELLY2-called somatic deletions is summarized and presented 

as supplementary schematic flow. 

5. This reviewer thinks the PhaseDel can be useful to find germline deletions too. It would be better to 

discuss this point at Discussion. 



Reviewer #2 (Remarks to the Author): 

In this study Kim et al. report a computational method that applies phasing with nearby germline 

variants to identify somatic deletions in individual neurons, which are otherwise difficult to detect. They 

identify an age-dependent increase in deletions that appears enriched in expressed genes, which 

parallels findings regarding single nucleotide mutations. They also profile neurons from individuals with 

mutations in DNA repair pathway genes and can detect both increases in numbers of small deletions 

and signatures of new mechanisms of interest. In particular, the discovery of deletion enrichment in 

expressed genes (and with transcription) and detection of increases in lesions that appear to be repaired 

by NHEJ are of interest. . 

The paper is clear and authors provide convincing evidence for their core claims. The study design 

properly accounts for false positives/negatives, applying deep sequence validation along with 

reasonably stringent bioinformatic criteria. Unfortunately, because the LiRA method, as applied to 

deletions, can only account for roughly 25% of the genome, conclusions about certain mechanisms (such 

as the proposed role of double strand breaks in the promoters of neural early response genes) formally 

leave open the possibility that the 25% of the genome they survey does not proportionally represent the 

entire genome, though this seems unlikely to have major significance for the results as presented and is 

addressed by the authors. Overall this is a conceptually simple but technically strong study with novel 

and interesting conclusions that should be of interest to a broad audience of genome biologists and 

neuroscientists. 

There are several minor considerations that should be addressed prior to publication. 

1. Figure 1A: Red lines that are supposed to represent deletion artifacts are not visible in small version of 

the figure. Are the diagonal line-filled regions supposed to represent mapping of clipped re ads like in 

2A? 

2. Line 110: Reference for microdeletions is needed. 

3. Lines 114-116 – allowing one unphased read to decrease the false negative rate seems OK but it 

would be of interest to know the results without this addition for comparison. 

4. Is the value of 205.3 (line 124) and 20.5 (line 125) the average calculated from several estimates from 

individual neurons? If so, it would be useful to also report the standard deviation. Additionally, a scatter 

plot of the parameter k1 estimated in neurons from different individuals or all neurons in one individual 

could be shown to support the claim in the discussion that the estimated rate of deletions per cell varied 

much more than sSNV rates across individuals (lines 276-278). 



5. Lines 140-141 – the authors found 2 deletions in bulk DNA samples – how many were tested? Would 

this provide an estimate of the number that are post-mitotic in neurons vs. arising in development? 

6. Could the authors state what the data and fitting in Figure S1B represents? Is it for an individual cell? 

7. In Figure 3A the authors observed somatic transposable element insertions (TEI category). it is not 

clear why TEIs are classified as deletions, or whether they were included in the PCR validation assay, 

which would not necessarily be sufficient to validate very large TEIs. This part was a bit confusing and 

could be clarified. 

8. Figure 3 legend: in C state what the individual points represent (average from all neurons from one 

individual or each point is one neuron?). Some text related to panel D and the (D) label is missing. 

9. The conclusions between line 244 – 248, that correspond to figures 4D and S3B are confusing and 

seem to contradict the in data 3E where there is a positive correlation between gene expression and 

NHEJ burden in normal neurons. Why is the NHEJ burden so high in Q1 of normal controls? Other than 

this data point at Q1, the curves for NHEJ in normal and CS NSCs seem similar. The colors of the dashed 

lines in the small version of 4D are difficult to distinguish. 

Reviewer #3 (Remarks to the Author): 

Review of Kim, et al. 

“Prevalence and mechanisms of somatic deletions in single human neurons during normal aging and in 

DNA repair disorders” 

The authors report a new bioinformatic tool, PhaseDel, which aims to identify genomic structural 

variants in single human neurons. The premise follows from this groups previous work, LiRA, wherein 

proximal heterozygous SNPs are employed to extend the veracity of mosaic variant calling in single 

neuronal genome datasets. The advance reported here is the identification 2,208 somatic 

“nanodeletions.” (3 bp – 113 Kbp, mean 193 bp, median 5 bp) among 108 neurons from 17 individuals. 

Of these, only 66 were selected for confirmation by direct sequencing. The authors go on to characterize 

DNA repair mechanisms associated with each nanodeletion, and conclude that neuronal microdeletions, 

relative to germline nanodeletions, are more frequently brought about by NHEJ DNA repair. While this is 

an important result, it is somewhat unsurprising. 

I question whether this primary result, NHEJ predominance in neurons, reflects a form of observational 

bias. Are NHEJ-related nanodeletions simply more resilient to chimeric MDA artifacts and then more 

readily detected by PhaseDel? 



I recommend that the manuscript is returned for substantial revision and additional experiments. The 

central question that remains to be addressed is if nanodeletion mechanisms, as predicted by PhaseDel, 

can be confirmed at similar frequencies for each DNA repair mechanism. Other critical elements are also 

enumerated below. 

Primary critiques 

1) The authors report 2208 nanodeletions, but examined only 66 for confirmation. A low bar for 

confidence is that at least 10% of candidates should be randomly selected for confirmation to assess the 

real value of PhaseDel. Moreover, this larger pool of candidates should be drawn from all 17 individuals 

in the dataset, examine candidates predicted to occur via different DNA repair mechanisms, and report 

confirmation rates for each mechanism and individual. 

2) Confirmation of additional candidates should separately examine disease individuals. These results 

should also be reported separately for each individual and DNA repair mechanism, with all individuals 

tested. 

3) Of the 66 candidates examined, 8 failed confirmation. The nature of these false positives should be 

reported. Again, to assess the value of PhaseDel it is critical to know whether failures were due to 

erroneous linked SNP calls or to questionable results from nucleotide sequencing of the predicted 

breakpoint? 

4) The premise underlying PhaseDel’s value is that single cell genome amplification via MDA can lead to 

chimeric amplicons and false positive genomic structural variants. However, the reported artifacts 

produced by MDA are primarily inversions, not small deletions. Following from point 3 above, reporting 

the nucleotide sequence at candidates that are not confirmed is critical to define the artifacts produced 

by Single Neuron MDA and to significantly advance the field. 

Secondary critiques 

1) Figures 1B and 1D, plot counts on Y axis rather than density. To evaluate PhaseDel, it is important to 

assess separately how many candidates are indicated by either GATK or DELLY. 

2) Extrapolation of extant data to frequencies per neuron in Fig S1 and Results lines 119 – 125 is 

misleading. This is a speculative approach more appropriate for discussion. 



Response to referee comments on “Prevalence and mechanisms of somatic deletions in single human 

neurons during normal aging and in DNA repair disorders”

We thank the reviewers for their comments, which we found highly constructive toward maximizing 

the clarity and accuracy of the manuscript. All the reviewers generally agreed on the importance of 

our findings and usefulness of our method, but raised two major concerns: (a) a lack of performance 

evaluation using independent data and (b) small validation size of predicted deletion candidates. In 

this revision, we further assessed the performance of PhaseDel using published kindred-clone data 

sets. We also significantly increased the number of deletion candidates for experimental validation 

using ultra-deep amplicon sequencing from 66 to 244 candidates, covering all individuals and disease 

status following the reviewer’s suggestion. Including these two major concerns, we have fully 

addressed all the comments below, and believe that their insights have significantly improved the 

quality and rigor our work and proposed method. In the main text, we have highlighted sections with 

major changes, including those describing the additional analyses and experimental validation.

Reviewer #1 (Remarks to the Author):

In this study, the authors developed the PhaseDel algorithm, which utilized GATK and DELLY2 to call 

somatic deletion candidates, then filtered and read-back phased, using clipped reads spanning reliable 

germline heterozygous SNP sites called from bulk WGS data. They then tried to identify true somatic 

deletions from 108 single neurons, which increased with age and in highly expressed genes in the 

human brain. Also, they showed that somatic deletions increased with distinctive patterns in neurons 

of individuals with DNA repair defects. Although it is an important and interesting topic to detect 

reliable somatic SVs in a single cell, this study did not fully validate the PhaseDel algorithm. Thus, this 

reviewer thinks that the current validation data of the PhaseDel algorithm is not enough to convince 

researchers in the field of somatic mosaicism to use this new algorithm reliably due to the following 

concerns;

1. The authors implemented deep target-amplicon sequencing (TAseq) to validate the inferred 

deletions. However, only two cases were truly validated in multiple-tissue comparison (① ~50% VAF 

in affected scWGS, ② 0% in unaffected scWGS, ③ low-level (0.1-0.5%) VAF in bulk brain, ④ 0% in 

bulk peripheral tissue), as in Fig 2. In remaining 56 (out of 58) cases, it seems like they were validated 

only in MDA-amplified-single cell genomes. Overall, it is less convincing to claim that PhaseDel is 

accurate to discover true somatic deletions within phase-able reads of scWGS. The algorithm’s 

effectiveness can be properly confirmed only when it is validated with external datasets or additional 

experiments. This reviewer suggests that they perform cross-validation by doing scWGS on MDA-

amplified single fibroblasts and find somatic deletions in scWGS with PhaseDel, then verify the somatic 

deletions with bulk WGS of clones derived from the same single fibroblasts (① scWGS of MDA-

amplified single fibroblast as PhaseDel query set, ② the same single-fibroblast-derived clones without 

MDA amplification as gold standards of true SVs). Or they may use public single-cell data from SRA 

database as suggested in SCCaller paper by Dong et al (Nat Methods, 2017).

 We agree with the reviewer that validation using an external dataset is required to assess the 

accuracy of PhaseDel to detect true somatic deletions. As the reviewer suggested, we performed 

additional analysis using genome sequencing data of two MDA-amplified single fibroblasts (IL-11, IL-

12) and their kindred clone (IL-1c) from Dong et al.1 (Fig. S3A). Since phasing analysis can only cover 



~25% of the genome and MDA-amplified single cell DNA has substantial allelic/locus dropouts, we 

cannot directly compare the deletion call sets generated from single cells and the unamplified clone 

to assess PhaseDel’s performance. We rather focused on checking two important results, whether 1) 

the final PhaseDel deletion calls made from single cells are true somatic deletions that can also be 

observed in the kindred clone, and 2) the deletion rate estimated from single cells is consistent with 

the actual number of somatic deletions observed in the clone data.

For the first part, we checked deletion-supporting reads in the WGS of the unamplified clone for the 

PhaseDel deletion candidates that were obtained from the single fibroblast data (Fig. S3A). We 

considered a read to be deletion-supporting only if the read has both the same clipping/indel position 

and the clipped/indel sequences with the ones from the original single cell data, which ensures that 

they are representing the exact same event. The deletions with ≥5 read-depth at the breakpoint and 

≥3 deletion-supporting reads from the unamplified clone data are considered as validated, resulting in 

93.48% (43/46) and 94.74% (18/19) validation rates for IL-11 and IL-12 PhaseDel deletion sets, 

respectively (Fig. S3B).

For the second part, from the clone data we counted the number of somatic deletions that are not 

observed in any other data except for the kindred groups, to obtain kindred-cell-specific deletions (Fig. 

S3A, red stars). To reduce artifactual errors from the call set, we excluded all the candidates that 1) 

matched with known polymorphic deletions reported in the 1000 Genomes Project or the Database 

of Genomic Variants (DGV), 2) have more than one deletion-supporting read from the matched bulk 

WGS, or 3) have more than one deletion-supporting read in bulk WGS of the unrelated individuals 

from our study or any single-cell WGS data from the non-kindred group of Dong et al. and our study 

(Fig. S3C). This filtration may also remove some true clonal deletions shared with non-kindred cells; 

however, based on our validation experiments, most phased deletions we found were likely non-clonal 

(207/209, including new validation results in this revision) and therefore we considered the loss of 

clonal deletion would be negligible for the overall rate estimation. We found 452 somatic deletion 

candidates from the clone data after all filtering steps, which is consistent with the rates estimated 

from the kindred single cells (Fig. S3D; 468.66 and 407.25 for IL-11 and IL-12, respectively). We revised 

the main text and added supplementary figure 3 to describe the details of the validation analysis using 

the kindred system.

2. The authors described that the somatic burdens of deletion increased with aging, but this 

observation was inconsistent with the previous Chronister WD’s study (Cell Rep, 2019). The authors 

postulated that the discrepancy resulted from different size of deletion, which caused selective 

pressure for cell survival. In order to address this point adequately, the authors should show the 

analysis data about the aging trend of deletions of only larger size (megabase-scale). This reviewer also 

thinks that the locations (or sites) of deletion are important as the sizes of deletion. Can the authors 

provide the genomic locations (exonic, intronic, genic, or intergenic) of nano-deletions and larger 

megabase-scale deletions, respectively? Is there any difference between them?

 The reviewer requested to see the comparison between nano-deletions and megabase-scale 

deletions for their trends with age and their distribution of genomic locations. Unfortunately, our 

algorithm targets smaller deletions with clear single-base-level breakpoints (maximum size 100 Kbp, 

mean size 155 bp in this study), thus it cannot cover megabase-scale deletions. Such large deletions 

are typically detected by read-depth-based analysis of large genomic bins (>10Kbp), and multiple 

displacement amplification (MDA) used for single-cell whole-genome amplification in this study is 



generally considered not suitable for large CNV detection due to its low uniformity of amplification 

across the genome2. The extremely low occurrence of megabase-scale CNVs in a single neuron (0.32 

CNVs per neuron from Chronister et al.3) and limited genomic regions applicable to phasing analysis 

(~25% of the genome with nearby germline heterozygous SNPs) also raise practical difficulties in 

obtaining the megabase-scale deletion set; even if our method was able to detect megabase-scale 

deletions, the expected number would be around ~8.64 deletions (0.32×0.25×108 normal neurons), 

which is too small to perform any statistical tests to analyze trends with age or with their genomic 

distribution.

The major reason the reviewer suggested such comparisons is to explain the inconsistency between 

our observation and the previous reports in Chronister et al. However, we note that both studies 

actually demonstrate common major findings: 1) higher burden of CNVs (deletions) in the aged group 

and 2) enrichment of CNVs in neuronal genes. Chronister et al. reported anti-correlation between age 

and the fraction of neurons harboring CNVs, not the number of CNVs per neuron. For neurons 

harboring CNVs, they also observed a higher number of CNVs per cell in the aged group as we observed, 

although their observation was not statistically significant due to the low and highly variable numbers 

of CNVs. For example, the 24-year-old and the 86-year-old groups in their data had 38.9% and 4% of 

neurons with CNVs, but the average number of CNVs per CNV-harboring-neuron were 2.8 and 5.0 

respectively.

Chronister et al. also reported significant enrichment of CNVs in long genes with >100Kbp length that 

are neuronally expressed with roles in neuronal connectivity and synaptic plasticity4, 5, 6. They also 

emphasized the identification of CNV hotspots in well-known neuronal genes commonly reported in 

all three previous studies4, 5, 6 and suggested that gene transcription is the main cause of neuronal CNVs, 

as we found in our analysis. Both Chronister et al. and our study showed the accumulation of deletions 

(CNVs) with age in a neuron and their enrichment in neuronally expressed genes, and the only 

difference is the decreasing fraction of CNV-harboring neurons with age for megabase-scale CNVs 

observed in Chronister et al. We expect that accumulating megabase-scale CNVs will exert significantly 

larger selective pressure for cell survival than small deletions, resulting in selective loss of CNV-

harboring neurons with age but not for small deletions. We added a more detailed description of the 

comparison between Chronister et al. and our findings in the Discussion section.

Minor comments

1. The authors classified the deletions into six categories according to DSB repair mechanisms (NHEJ, 

MMEJ, VNTR, NAHR, FoSTeS/MMBIR, TEI). Is there any deletion that can be classified as two or more 

classes simultaneously? Providing a Venn diagram of somatic deletion categories would be better to 

present the mutual exclusiveness of this classification. 

 All deletion types are exclusive based on their selection criteria, so there is no deletion classified as 

more than one class. The only exceptions are deletions with 1-3 bp homology between their 

breakpoints, which might originate from either NHEJ or MMEJ. These deletions are classified as the 

unknown group (MH=1,2,3) and excluded from further analyses. We newly added a flowchart to 

describe the classification process and the relationship between different groups in detail (Fig. S2B).

2. Moreover, after constructing a class frequency vector for each cell and forming a matrix by 



combining them column-wisely, this reviewer suggests the authors to extract somatic deletion 

signatures using nonnegative matrix factorization (NMF)-based methods that are widely implemented 

in profiling somatic SNVs and short Indels.

 As the reviewer suggested, we performed NMF-based analysis for somatic deletion signatures (see 

figure below). We first constructed a contingency table (6 DSB repair mechanisms×157 total neurons) 

and tested different numbers of signatures. Cophenetic correlation coefficient indicated two 

signatures as the optimal number for extraction (the smallest rank for which cophenetic correlation 

coefficient starts decreasing in Fig. A below). The first signature was almost exclusive for NHEJ, and the 

second signature was composed mainly of MMEJ and NHEJ (Fig. B). Relative contribution of two 

signatures for each cell is presented in Fig. C.

However, signature analysis showed no further results from the current analyses already presented in 

the paper. We think there are two potential reasons for this: 1) few somatic deletions other than NHEJ 

or MMEJ and 2) low numbers of deletions per cell (16.4 high-confidence deletions per cell on average). 

Such uniform and sparse distribution of somatic deletions resulted in the extraction of very simple 

signatures just composed of two mechanisms, NHEJ and MMEJ, and the comparison of signature 

contributions showed no difference from the burden analysis for each mechanism that we had 

presented in Fig. 3 and 4. Therefore we have decided not to include this analysis in the current 

manuscript. Future improvements in somatic deletion detection and its application to multiple cell 

types and disease contexts will reveal a larger number of deletions across various underlying 

mechanisms and provide more insights into mutational processes.



3. The authors claimed that only about 25% of the genomic regions are phaseable, so an extrapolation 

process is required to proceed with statistical analysis on the somatic deletion burden. They 

constructed a model T(c)=S(c)+E(c)=k_1+k_2 exp(-k_3 (c-2)), where T(c):the rate of all phased 

candidate, S(c):True somatic deletion rate, E(c):Erroneous FP rate with respect to supporting read 

counts (c), assuming E(c) is exponentially decaying when c increases, then all parameters (k_1,k_2,k_3) 

were estimated with NLS curve fit. However, I doubt that the above equation is really the ideal model 

that best describes the true and false positives rates in this context. Have you ever compared multiple 

models with different equations and assumptions? Since many genomic variation callers utilize model-

based probabilistic variant calling, likelihood modeling and maximum likelihood estimation of each 

parameter can be a good option (or its Bayesian extension).

 We appreciate the reviewer’s suggestion and agree with the reviewer that more sophisticated 

modeling would improve the deletion rate estimation process. We adopted Bayesian inference using 

Markov chain Monte Carlo (MCMC) sampling to estimate the parameters of the suggested model. We 

implemented the mixture model and conducted MCMC simulation using the R rstan package, 

composed of four MCMC chains with 5,000 burn-in steps and 10,000 iterations. This process estimates 

not only the optimal parameter values (posterior means) but also their confidence intervals, providing 

additional information of estimation reliability. Newly estimated rates were fairly consistent with the 

previous estimates (Pearson r=0.91, p<2.2×10-16; see figure below) and hold the same conclusions for 

all the tests in our study. The power-law distribution was also tested for the decay function of the error 

model, but it was discarded due to the large number of samples that failed to converge. We described 

the revised rate estimation process in detail in the Methods section.

4. It will be easier to comprehend the whole pipeline if the detailed process of phasing with gHet SNPs 

and filtering raw sets of GATK-called and DELLY2-called somatic deletions is summarized and presented 

as supplementary schematic flow.

 We added a schematic flow diagram for the overall PhaseDel workflow in Supplementary Figure 

S2A.



5. This reviewer thinks the PhaseDel can be useful to find germline deletions too. It would be better to 

discuss this point at Discussion.

 We thank the reviewer for the suggestion. We additionally discussed the application of PhaseDel 

for germline variant detection in the Discussion section as follows: “PhaseDel will also be useful for 

the detection of germline deletions, for example, those in complex regions such as human leukocyte 

antigen (HLA) loci as the linkage between deletion-supporting reads and other adjacent germline 

variants will help reduce false positive predictions.”

Reviewer #2 (Remarks to the Author):

In this study Kim et al. report a computational method that applies phasing with nearby germline 

variants to identify somatic deletions in individual neurons, which are otherwise difficult to detect. 

They identify an age-dependent increase in deletions that appears enriched in expressed genes, which 

parallels findings regarding single nucleotide mutations. They also profile neurons from individuals 

with mutations in DNA repair pathway genes and can detect both increases in numbers of small 

deletions and signatures of new mechanisms of interest. In particular, the discovery of deletion 

enrichment in expressed genes (and with transcription) and detection of increases in lesions that 

appear to be repaired by NHEJ are of interest.

The paper is clear and authors provide convincing evidence for their core claims. The study design 

properly accounts for false positives/negatives, applying deep sequence validation along with 

reasonably stringent bioinformatic criteria. Unfortunately, because the LiRA method, as applied to 

deletions, can only account for roughly 25% of the genome, conclusions about certain mechanisms 

(such as the proposed role of double strand breaks in the promoters of neural early response genes) 

formally leave open the possibility that the 25% of the genome they survey does not proportionally 

represent the entire genome, though this seems unlikely to have major significance for the results as 

presented and is addressed by the authors. Overall this is a conceptually simple but technically strong 

study with novel and interesting conclusions that should be of interest to a broad audience of genome 

biologists and neuroscientists. 

There are several minor considerations that should be addressed prior to publication. 

1. Figure 1A: Red lines that are supposed to represent deletion artifacts are not visible in small version 

of the figure. Are the diagonal line-filled regions supposed to represent mapping of clipped reads like 

in 2A?

We apologize for the insufficient visibility of the figures. We increased the thickness of the red lines 

indicating deletion artifacts in Figure 1A. The reviewer was correct that the diagonal line-filled regions 

represent the clipped part of the read. We added a label and a description for this to the figure and to 

the figure legend, respectively, for clarity.

2. Line 110: Reference for microdeletions is needed.

We thank the reviewer for pointing this out. A reference for microdeletions, Carvill et al., Curr Opin 



Genet Dev 2013, has been added. 

3. Lines 114-116 – allowing one unphased read to decrease the false negative rate seems OK but it 

would be of interest to know the results without this addition for comparison.

We added Supplementary Figure S1E to show the detected fractions of germline deletions with and 

without allowing one unphased read. The comparison shows that we missed an additional 15% of true 

germline deletions when not allowing any unphased read, resulting in an average sensitivity of less 

than 70%.

4. Is the value of 205.3 (line 124) and 20.5 (line 125) the average calculated from several estimates 

from individual neurons? If so, it would be useful to also report the standard deviation. Additionally, a 

scatter plot of the parameter k1 estimated in neurons from different individuals or all neurons in one 

individual could be shown to support the claim in the discussion that the estimated rate of deletions 

per cell varied much more than sSNV rates across individuals (lines 276-278). 

 The reviewer is correct that these values are the averages from individual neurons. We added 

standard deviations in the text. We also added a boxplot with jitter points (Fig. S6D) to show the 

distribution of sSNV and deletion rate per cell per individual, as the reviewer suggested. Since the 

estimated sSNV and deletion rates are in different scales, each value was normalized by the average 

rate of each individual to make a proper comparison. As we previously described, the estimated 

deletion rates generally exhibited greater dispersion than sSNV rates.

5. Lines 140-141 – the authors found 2 deletions in bulk DNA samples – how many were tested? Would 

this provide an estimate of the number that are post-mitotic in neurons vs. arising in development? 

 Including additional validation experiments added to this revision (see the response to Primary 

Critique 1 of Reviewer 3), only the same two deletions out of 209 validated deletions as previously 

reported were validated with unamplified bulk DNA. The estimation of the ratio between post-mitotic, 

i.e., single-cell-specific vs. developmental deletions is an intriguing question to answer; however, we 

think it is too challenging to estimate based on the presence or absence of the events in bulk DNA 

amplicon sequencing. The reason is that there might be many factors that affect detection power, for 

example, sequencing depths at validation sites and background noise level of amplicon sequencing 

data. Furthermore, the number of clonal deletions is too small to make a reliable estimation.

6. Could the authors state what the data and fitting in Figure S1B represents? Is it for an individual cell? 

 The reviewer is correct that the model in Figure S1B (now it is Fig. S1G) is for an individual cell. We 

apologize for the insufficient description. We provided more details in the ‘estimation of somatic 

deletion rate’ section in the main text as well as the legend of Fig. S1G. Briefly, from one given single 

cell sequencing data, we usually obtain more than hundreds of initial deletion candidates and need to 

determine which of them are true somatic deletions even from the phased ones and estimate how 

many deletions are actually present in a given cell. Figure S1B (now Fig. S1G) represents this estimation 

and filtration process from a single cell. All deletion candidates are first grouped into many subgroups 



based on their linked-read counts between a deletion and a nearby germline heterozygous SNP. 

Deletion rates are calculated separately for each subgroup and displayed together (black dots) to check 

their distribution along with the supporting linked-read counts; each black dot represents a genome-

wide rate for a subset of deletions that had the same linked-read counts. Their distribution is made of 

a mixture of true somatic deletions and false positive errors, and the errors are expected to decrease 

with the linked-read counts as more perfectly linked reads are less likely to be caused by errors. We fit 

a two-component model consisting of a constant for true deletions and a decaying function for errors, 

and use the parameters of components to estimate the final deletion rate (the constant, blue line) and 

FDR (the ratio between area under two fitted curves). 

7. In Figure 3A the authors observed somatic transposable element insertions (TEI category). it is not 

clear why TEIs are classified as deletions, or whether they were included in the PCR validation assay, 

which would not necessarily be sufficient to validate very large TEIs. This part was a bit confusing and 

could be clarified.

 The TEI category of deletion calls is indeed confusing because of the term ‘insertion’ in the name as 

adopted from Yang et al.7 This type of events is technically a deletion in a WGS-profiled sample relative 

to the reference genome; however, as the name indicates, TE mobilization/insertion is the mechanism 

underlying the presence of the TE sequence in reference samples whose DNA was analyzed to create 

the initial reference genome assembly. The criteria for TEI deletion classification we adopted from Yang 

et al.7 requires >80% of a deletion region and >80% of a known TE sequence to be overlapped to ensure 

TE mobilization in the reference sample as the most-likely mechanism underlying the event. 

This category is a dominant mechanism of germline deletions (~50% of deletions), which represents 

many polymorphic TE loci that are present in the reference genome but absent in a given sample as 

shown in the top left panel of Fig. 3A and Fig. 2 in Yang et al. However, this type of events is unlikely to 

happen in a somatic state unless rare genomic rearrangements, such as Alu-Alu or LTR-LTR 

recombination (Alu- or LTR-mediated deletion)8, 9 delete a reference TE copy (Fig. 3A, bottom panel). 

We had a total of two somatic deletions annotated as TEI, but our validation amplicon sequencing 

failed to get any reads from those regions even for the wildtype allele without the deletion, so the 

nature of the two events is inconclusive.

8. Figure 3 legend: in C state what the individual points represent (average from all neurons from one 

individual or each point is one neuron?). Some text related to panel D and the (D) label is missing.

 We added a description that each point represents a single neuron in the legend of Figure 3 and 

fixed the missing label of panel D.

9. The conclusions between line 244 – 248, that correspond to figures 4D and S3B are confusing and 

seem to contradict the in data 3E where there is a positive correlation between gene expression and 

NHEJ burden in normal neurons. Why is the NHEJ burden so high in Q1 of normal controls? Other than 

this data point at Q1, the curves for NHEJ in normal and CS NSCs seem similar. The colors of the dashed 

lines in the small version of 4D are difficult to distinguish.

We revised the main text to improve the clarity of the multiple comparisons we have performed in 



Figure 4D. The pattern of the dashed lines was also updated for a better distinction. All deletion burden 

analyses with gene expression in our study showed consistent patterns of the increased NHEJ burden 

along with gene expression levels. But this positive correlation was observed only if we used proper 

pairs of single-cell WGS and gene expression data, i.e., those generated in a similar context. For 

example, the NHEJ deletion burden from PFC neurons of CS patients increased with gene expression 

levels from iPSC-derived NSCs of CS patients (Fig. 4D, solid lines). However, the positive relationship 

was not observed as expected when comparing the same deletion burden of CS PFC neurons with gene 

expression levels from iPSC-derived NSCs of normal individuals (Fig. 4D, dashed lines). These results 

further support that the NHEJ deletions largely occur by gene transcription. 

The reviewer seemed to have misread that the dashed line in Fig. 4D represents a comparison of the 

deletion burden and gene expression in normal neurons and thought that it contradicted the results 

in Fig. 3E. But the two figures show different comparisons: deletions from normal PFC neurons with 

gene expression level from normal PFC (Fig. 3E) and deletions from CS PFC neurons with gene 

expression levels in normal iPSC-NSC (Fig. 4D, dashed lines). The high NHEJ burden from CS PFC 

neurons in Q1 genes from normal iPSC-NSC suggests that the gene expression patterns between iPSC-

NSC from CS patients and control individuals are quite different. We hope that the revised text clearly 

describes the comparisons.

Reviewer #3 (Remarks to the Author):

The authors report a new bioinformatic tool, PhaseDel, which aims to identify genomic structural 

variants in single human neurons. The premise follows from this groups previous work, LiRA, wherein 

proximal heterozygous SNPs are employed to extend the veracity of mosaic variant calling in single 

neuronal genome datasets. The advance reported here is the identification 2,208 somatic 

“nanodeletions.” (3 bp – 113 Kbp, mean 193 bp, median 5 bp) among 108 neurons from 17 individuals. 

Of these, only 66 were selected for confirmation by direct sequencing. The authors go on to 

characterize DNA repair mechanisms associated with each nanodeletion, and conclude that neuronal 

microdeletions, relative to germline nanodeletions, are more frequently brought about by NHEJ DNA 

repair. While this is an important result, it is somewhat unsurprising.

I question whether this primary result, NHEJ predominance in neurons, reflects a form of observational 

bias. Are NHEJ-related nanodeletions simply more resilient to chimeric MDA artifacts and then more 

readily detected by PhaseDel?

I recommend that the manuscript is returned for substantial revision and additional experiments. The 

central question that remains to be addressed is if nanodeletion mechanisms, as predicted by 

PhaseDel, can be confirmed at similar frequencies for each DNA repair mechanism. Other critical 

elements are also enumerated below.

 We thank the reviewer for raising an important point about potential observational bias of 

nanodeletions across different mechanisms. In addition to validating a significantly more deletion 

candidates (see the response to Primary critique 1), we examined if the filtering rates of PhaseDel 

phasing analysis vary across different mechanisms. Briefly, PhaseDel deletion calling includes three 

major steps: i) collecting initial candidates using GATK and DELLY2, including germline, somatic, and 

false positive events, ii) linkage analysis to remove false positives, including chimeric MDA artifacts, 



and iii) selecting somatic candidates and annotating deletion mechanisms according to previously 

reported criteria7. Among the steps, the linkage analysis is where PhaseDel might cause the 

observational bias. We found overall the proportions of deletion candidates across mechanisms were 

comparable before and after the phasing-based linkage analysis having NHEJ deletions consistently as 

the dominant mechanism (Fig. S4C). Importantly, a similar fraction of candidates remained for each 

mechanism except for MMEJ and NAHR (Fig. S4D), supporting against the observational bias that 

favors NHEJ. Both MMEJ and NAHR have sequence homology between the two deletion breakpoints, 

which is also an important feature for the formation of chimeric artifacts. Therefore, linkage analysis 

is likely to filter out a higher fraction of candidates as false positives for these two mechanisms. 

Our observation of no somatic deletions by FoSTeS and NAHR is expected as both mechanisms are 

known to occur during DNA replication10, a process absent in post-mitotic neurons. It is also natural to 

have few somatic deletion candidates of the TEI category as genomic rearrangements involving 

reference TE copies occur very rarely in somatic cells. Furthermore, for germline deletions, we 

obtained similar mechanistic contributions to the previous work7 (Fig. 3A) supporting that our 

mechanism prediction works as expected. We described these additional analyses that support against 

the observation bias of PhaseDel in the section “Somatic nanodeletions increase with age and reflect 

distinctive underlying repair mechanisms”.

Primary critiques

1) The authors report 2208 nanodeletions, but examined only 66 for confirmation. A low bar for 

confidence is that at least 10% of candidates should be randomly selected for confirmation to assess 

the real value of PhaseDel. Moreover, this larger pool of candidates should be drawn from all 17 

individuals in the dataset, examine candidates predicted to occur via different DNA repair mechanisms, 

and report confirmation rates for each mechanism and individual.

 Following the reviewer’s suggestion, we attempted to perform amplicon sequencing to validate 

additional 197 candidates across all 17 individuals and mechanisms, and achieved an overall validation 

rate of 85.7%. After improving our rate estimation module (please refer to the minor point (Q3) of 

reviewer 1), we obtained a total of 1,751 high-confidence deletion candidates. Among them, we 

selected additional 197 candidates across 17 normal individuals and different deletion mechanisms 

for validation. After generating the amplicon sequencing data, we found that 19 of them failed to 

generate any reads even for the wild-type allele without a deletion, and excluded them from the 

validation set. Unfortunately, this resulted in no candidates for two normal individuals (5559 and 5943). 

The two individuals did not show any notable deletion counts different from the other individuals 

(Table S2). Out of 244 candidates including the previously validated ones, 209/244 (85.7%) were 

validated with MDA-amplified single-cell DNA, resulting into a similar rate to the previous result 

(87.9%). The validation rates across individuals and mechanisms were overall very high with an average 

validation rate of 96%. Only three individuals (5532, 5840, 5657) showed 62.5%, 60%, and 60%, 

respectively (Fig. S4A). We think that our validation rate estimated from the experimental validation 

of >10% candidates demonstrates the accuracy of PhaseDel.

In terms of the mechanism coverage, note that only NHEJ and MMEJ deletions were available for 

validation with the following reasons. We initially had two FoSTeS candidates, which require the 

presence of >10bp insertion at the deletion breakpoint. However, visual inspection of these candidates 

found that both had insertions in the other alleles from the deletions suggest inaccurate annotation 

of FoSTeS. We further updated our annotation module to check the linkage between the insertion and 



deletion to determine FoSTeS candidates, and no longer annotate them as FoSTeS. We also had two 

TEI deletion candidates, but both of them failed to generate any reads with amplicon sequencing. 

Lastly, we do not have any somatic candidates for NAHR and VNTR. 

2) Confirmation of additional candidates should separately examine disease individuals. These results 

should also be reported separately for each individual and DNA repair mechanism, with all individuals 

tested.

We tested a total of 92 additional candidates for all 11 diseased individuals (Fig. S4B). Most diseased 

individuals had high validation rates for both NHEJ and MMEJ mechanisms, with the exception of two 

XP individuals (5379 and 5316). Since this was also the case for some normal individuals such as 5657 

and 5840, we think that validation rates vary among individuals rather than disease status.

3) Of the 66 candidates examined, 8 failed confirmation. The nature of these false positives should be 

reported. Again, to assess the value of PhaseDel it is critical to know whether failures were due to 

erroneous linked SNP calls or to questionable results from nucleotide sequencing of the predicted 

breakpoint?

We thank the reviewer for the suggestion. Out of 244 validation candidates, 35 candidates including 

the previous 8 candidates, failed to be validated in MDA-amplified DNA. 5 out of them had deletion-

supporting reads in the negative control, so considered not validated. For the remaining 30 failed 

candidates, we examined multiple features including deletion types, supporting read count, genomic 

context, and homology sequence length to identify representative features that differed from the 

validated candidates, but none of the examined features showed differences. We expect that they are 

likely due to the discrepant sampling of deletion supporting reads between the scWGS and amplicon 

sequencing data, especially for the MDA artifacts that occurred late during MDA amplification and thus 

the amplified library has only a limited number of DNA templates carrying the artifacts. We described 

our attempt to characterize the validation failure in the manuscript.

4) The premise underlying PhaseDel’s value is that single cell genome amplification via MDA can lead 

to chimeric amplicons and false positive genomic structural variants. However, the reported artifacts 

produced by MDA are primarily inversions, not small deletions. Following from point 3 above, 

reporting the nucleotide sequence at candidates that are not confirmed is critical to define the artifacts 

produced by Single Neuron MDA and to significantly advance the field.

 The reviewer is correct that inversion is the most common form of MDA artifacts as previous studies 

including our own work have reported11, 12. However, previous studies did not consider small deletions 

as artifactual consequences of the MDA process. For example, Lasken et al.12 identified chimeric 

artifacts by only selecting partially mapped reads that were divided into two segments, and this 

selection did not include the reads with small deletions. They reported that more than 85% of 

identified chimeras were inverted, but also found that they were with intervening deletions, showing 

the prevalence of deletions as MDA artifacts. In our pervious work11, we considered deletions only 

based on discordant reads, which had the minimum size of ~300 bp between 3’ ends and did not 

include the reads with small deletions. Therefore, the prevalence of small deletions generated during 

the MDA process has not yet been analyzed. Polymerase slippage is the most common mechanism for 



short indel generation (that includes small deletions)13, 14 during DNA synthesis regardless of in vivo

DNA replication or in vitro genome amplification, and it might result in the large number of small 

deletion candidates we have observed. Since these polymerase-slippage-derived artifacts can be 

filtered out by the linkage analysis of PhaseDel, we think that the value of our method in accurate 

variant detection in scWGS data is significant.

Secondary critiques

1) Figures 1B and 1D, plot counts on Y axis rather than density. To evaluate PhaseDel, it is important to 

assess separately how many candidates are indicated by either GATK or DELLY.

 We are grateful for the reviewer for pointing this out. We first have plotted the Figure 1B and 1D 

with actual counts in Supplementary Figure S1A and S1D. As shown in the figures, there are far more 

events in one group than the other, i.e., more GATK calls than DELLY calls and more germline events 

than somatic ones, and thus, plotting the counts from both groups on the same scale makes it difficult 

to see the patterns of the under-represented groups (Suppl. S1A and S1D). Since we intend to 

demonstrate that GATK and DELLY overall target deletions of different size ranges and thus utilizing 

both of them is beneficial to capture a broader spectrum of deletions in Fig. 1B, and that the size 

distribution is different between germline and somatic deletions in Fig. 1D, we present the density 

plots as main figures and count plots as supplementary figures. In addition to Fig. S1A and S1D, we 

thought that the reviewer wanted to check actual numbers of candidates generated from GATK and 

DELLY for both initial call sets and the phased sets, we added Supplementary Figure S1B and S1C. GATK 

had far more deletion candidates than DELLY in the initial call sets, but the linkage analysis filtered out 

a larger portion of GATK calls thus resulted in the increased proportion of DELLY calls in the phased 

sets.

2) Extrapolation of extant data to frequencies per neuron in Fig S1 and Results lines 119 – 125 is 

misleading. This is a speculative approach more appropriate for discussion.

 To the best of our knowledge, none of single-cell or single-molecule whole-genome sequencing can 

cover the entire genome due to substantial allelic/locus dropouts or limited tagging sites, such as Tn5 

transposase and restriction enzyme target sites. Therefore, all previous studies perform model-based 

estimation based on reliable partial genomic regions of sequencing data to obtain genome-wide rates1, 

15, 16, 17. To support the reliability of our estimation process, we performed additional analysis using an 

external dataset of two single fibroblasts and their kindred clones in this revision (please refer to the 

response to the first comment of reviewer 1 for details). We obtained comparable somatic deletion 

rates estimated from two different single cells (468.66 and 407.25) to the actual number of somatic 

deletions without any rate extrapolation in an unamplified bulk clone (452), supporting the reliability 

of our estimation process. We described this additional validation of our approached in the ‘Evaluation 

of PhaseDel accuracy and validation using ultra-deep amplicon sequencing’ section with the 

Supplementary Figure S3.
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REVIEWERS' COMMENTS 

Reviewer #1 (Remarks to the Author): 

The authors addressed this reviewer’s concerns well by performing additional analyses. This reviewer 

agrees to that this study provides a new insight of somatic deletion in neurons during aging. 

Reviewer #2 (Remarks to the Author): 

The authors have now satisfactorily addressed my key concerns and I support publication of the 

manuscript. 

Reviewer #3 (Remarks to the Author): 

My concerns were addressed. This is very interesting work, I recommend accepting the manuscript with 

no further revisions. 



All the reviewers agreed to publish our manuscript with no further revisions. Again, we thank all the 

reviewers for their careful reading and previous valuable suggestions.
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