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eAppendix 1. Causal Inference Approach  

e1.1 Principles of causal inference 

Causal inference studies intend to estimate the causal effect of an intervention on an outcome. Such 
studies are highly diffused in all fields of social sciences, such as Economics, Political Sciences and 
Health. In health sciences, a causal inference study may be designed to assess the effect of a new drug 
(intervention) on mortality (outcome). In the present study, causal inference methodologies are 
employed to give an answer to the following research question: does the exposition to Noradrenaline 
(NOR) reduce the risk of death in shocked trauma patients in hemorrhage? 
More technically, the goal of any causal inference assessment is to estimate the so-called Average 
Treatment Effect (ATE), which measures the average impact of the intervention on the outcome over 
the population of interest. To pursue this goal, the most popular methodological framework for causal 
inference studies - the Rubin Causal Model - follows a theoretical approach based on potential 
outcomes, which represent the potential values of the outcome under each level of the intervention. 
The individual treatment effect results by the comparison of the individual potential outcomes. The 
main issue is that the individual potential outcomes cannot be simultaneously observed, as each agent 
can be either assigned to the active intervention (i.e the new drug) or to the control intervention (i.e 
the placebo). Therefore, any causal inference evaluation faces a missing data issue, where the 
researcher has to find the best strategy to impute the missing potential outcome.  
Formally, a causal inference evaluation takes into account the following quantities: 

- N = population of interest, made up by N individuals (each individual is indexed as i) 
-  W_i= treatment assignment. By convention W_i=1 corresponds to the active treatment, while W_i=0 
to control or no treatment. 
- Y_i(1) , Y_i(0)  real-valued couple: potential outcomes, Y_i(0)  corresponds to the response of 
i when no treatment is given, Y_i(1) to the response of I when treatment is given. 
- Y_i real-valued: observed outcome of unit i. The observed outcome is the potential outcome 
corresponding to the actual treatment assignment. 
   - X_i vector: covariates or feature vector that contain additional information about an agent. 
Specifically, for each individual i, this vector includes the information on K characteristics, which are 
not affected by the intervention. These characteristics are likely to affect i) the treatment assignment, 
ii) both the treatment assignment and the outcome. 
 

e1.2 Observational Studies  

In the empirical scenario considered in this work, the intervention of interest (the NOREPI 

administration) is not randomly assigned to patients. The treatment assignment mechanism is not 

known, since the doctors deliberately choose whether to administer NOREPI to their patients 

(formally, the study on the effect on NOREPI on mortality is an observational study). This issue 

slightly complicate the statistical analysis. As it is well grounded in the literature on policy 

evaluation studies. the absence of a proper randomization design may introduce dependencies 

between treatment and potential outcomes and unbalancies between the treated group and  the 

untreated group in terms of pre-treatment covariates. This issues, if not properly accounted for, 

may compromise the analysis and lead to an inaccurate estimate of the  global ATE. For instance, If 

an observational study compares two groups of patients, the group receiving the treatment 

associates most often with a higher level of severity and thus carries a higher probability to receive 

the treatment. The control of confounding factors that at the same time attribute administration 

of the treatment and/or influence the outcome becomes crucial in order to balance these factors 

between the two groups in the absence of randomization.  
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The identification of principal confounding factors culminates in the construction of a causal 

relationship model. These confounding factors are defined by an association to the outcome 

criterion but are not supposed to contribute to the causal pathway between the exposition variable 

and the outcome 1. The causal model summarizes the various hypotheses about the eventual causal 

relationships to define the analysis plan based on the available scientific knowledge.  In this study, 

confounders were identified by a Delphi process consulting with an international group of 15 

experts in trauma (see section Appendix IV for list of experts, Delphi questions and results). Pre-

intervention (prior to the administration of NOR) variables identified by the Delphi process 

concerned factors that would influence the clinician to administer NOR (e.g. haemorrhage, see 

figure 3.1). In the final model (see section doubly robust method) all variables associated to the 

severity of the shock and 24-hour mortality (e.g. Glasgow Coma Scale) as well as criteria associated 

with the treatment administration were mapped with the program dagitty (http://dagitty.net) into 

a Directed Acyclic Graph (DAG, section 4, figure 4.1). 

From the methodological point of view, accounting for the baseline information included in the 

confounding factors is useful to frame the observational setting ressemble as much as possible to 

a randomized trial: if the baseline information is relevant, conditioning on that the observational 

study has similar properties of a randomized setting. Therefore, the information contained in the 

data set allows this compensation in order to emulate an experiment by reversing or retracing the 

treatment assignment process. 

In order to estimate the ATE from an observational data set, a correction is required to compensate 

for the lack of randomization of the treatment assignment (in the present example NOREPI or no 

NOREPI). First of all, conditioning on prior information, the researcher should be able to credibly 

assume the absence of any dependency between the intervention and the potential outcomes: this 

assumption - known as unconfoundedness - is the key assumption of any causal evaluation in an 

observational setting, as it allows the researcher to estimate the Average Treatment Effect. This 

assumption can be translated as “there is sufficient information about the treatment assignment 

decision process captured in the covariates, so that conditionally on every value for, we have 

random treatment assignment, implying independence between potential outcomes and 

treatment assignment”. The unconfoundedness assumption cannot be neither tested or validated: 

it should be discussed, given the empirical setting and the available pre-treatment covariates.  The 

process of identifying those factors that are likely to affect the treatment or the outcome (or both) 

is called identifiability and, in the case of observational data, deciding whether these factors are 

sufficient for relying on the unconfoundedness requires domain-specific knowledge. The 

information required should allow to emulate an experiment by reversing or retracing the 

treatment assignment process. 

Following the unconfoundedness assumption, all confounding factors, i.e., all factors that drive both 

the treatment assignment (e.g. shock) and the outcome (e.g. mortality) require to be observed 

before the treatment assignment. Some other factors are likely to affect either the treatment or 

the outcome: only those factors affecting the outcome only can be observed even after the 

treatment assignment. If the unconfoundedness assumption is likely to hold, conditioning on 

covariates, the Average Treatment Effect can be outlined and fairly estimated, by implementing an 

estimation strategy that accounts for these covariates.  
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As previously outlined, pre-treatment characteristics are also useful to balance treated and 

untreated units. In the randomized scenario, the balance in terms of baseline information is 

guaranteed by the treatment assignment itself, while in the observational setting this is not true, 

as the randomization plan does not even exist. Therefore, it is essential to condition on pre-

treatment characteristics in observational studies, so to make the treatment assignment becoming 

as good as random. This process of correcting for the nonrandomized treatment assignment is also 

called deconfounding and can be achieved by different means, namely by matching or weighting 

methods. The quality of this balancing can be assessed in different ways using for instance different 

statistical tests reference, but the most popular approach is to compare standardized mean 

differences before and after the balancing. If these differences fall beyond some small threshold, 

usually 10%, for all confounding factors, the balancing step is considered successful. If the balancing 

step is however failing or insufficient, then the balancing method or the propensity model need to 

be revisited. 

Sometimes conditioning on the full set of covariates may be complicated, since, if the number of 

included characteristics is high, this could imply an high-dimensionality issue. To avoid this issue, 

researchers often prefer to employ an alternative measure - called Propensity Score-, which is an 

univariate synthesis of the individual covariates and represents the individual probability of being 

assigned to the active intervention, given covariates. This quantity can be fairly estimated by 

implementing a proper statistical model, chosen according to the characteristic of the intervention 

(for instance, the logit model can be employed if the intervention is binary).  It has been proved by 

previous contributions in the literature on causal inference methods for observational studies that 

, if the study is unconfounded given the baseline covariates, then it remains unconfounded given 

the propensity score, which summarizes that covariates. Moreover, the propensity score is a 

balancing score which effectively reduces the imbalance between the two treatment groups.  

e1.3  Empirical violation of the positivity assumption 

In the present study, an additional methodological issue requires to be taken into account: the so 

called empirical violation of the positivity assumption. This issue emerges as in the US cohort none 

of the patients actually received NOREPI. Therefore, conditioning on the cohort information, in the 

specific sample we observe in the data, a US patient has a null probability of being assigned to the 

active intervention. This phenomenon implies that US doctors are more skeptical towards 

administering NOREPI. However we assume that in the entire population of US patients affected 

by an hemorrhagic shock there are some patients (units) who receive NOREPI (if this is true, the 

positivity assumption is empirically violated but not theoretically violated). The empirical violation 

of the positivity assumption may introduce a bias in the estimates. We have tested various methods 

to account for the violation in the positivity assumption in some simulated scenarios. The 

approaches compensating effectively for the estimation bias caused by the violation of the 

positivity assumption are based on Regression Adjustment and Matching.  

Regression adjustment: We define two distinct regression models for treated and untreated 

individuals: in both models, we regress the outcome variable on confounders. Then, we predict for all 

individuals the potential outcome under treatment and control (using the estimated coefficients of the 

two models defined at the previous step). Finally, we compute the mean difference of the two imputed 

outcomes. We employ two different strategies for implementing the regression adjustment: i) a 

standard regression adjustment, where all units have the same weight; ii) a weighted regression 
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adjustment, where we estimate the ATE on the observed sample after having assigned to the units in 

the US cohort an additional weight depending on their baseline similarity with the units in the French 

cohort. The last procedure implies some steps, that can be summarized as follows. 

 

1) Obtain the mean baseline profile of an untreated unit in the French cohort: the idea is to look at the 

baseline characteristics of the untreated units in the French cohort and to derive the mean profile 

(practically, it means computing the mean of each covariate among the untreated in the French 

cohort).  

2) Compute the similarity between each of the individuals in the US cohort with the mean baseline 

profile of an untreated unit in the French Cohort obtained at the previous step. 

3) Estimate the ATE using weighted regression adjustment, where the weights are represented by the 

similarity measures obtained at step 2): note that all the units in the French cohort are weighted 1, 

while units in the US cohort have been assigned to weight which is between 0 and 1 (possibly included). 

 

    

Matching-based strategy: We estimate the effect in the whole population using a matching-based 

approach: the procedure consists in two steps  

   

1) we estimate the effect in the US cohort by considering a matched sample where each individual 

belonging to the US cohort is matched with the most similar treated patient referring to the Frech 

cohort. Similarity is computed according to either i) the baseline covariates or ii) the predicted 

probability of referring to the US cohort, given covariates. In the latter situation, we first define a 

regression model of the cohort variable on pre-treatment characteristics, and then we compute the 

predicted probability of referring to the US cohort given covariates (this measure is used as an 

univariate synthesis of covariates).  

 

2) once obtained the estimated ATE for the US cohort we sum this measure with an estimate of the 

ATE for the first cohort (where no positivity issue has to be faced), so to obtain a global estimate of 

ATE for the whole population 

 

As previously indicated, these methodologies have been tested in simulated scenarios: that are all 

designed to be as adherent as possible to the analysis of the present study. In particular, we simulate 

a study with the objective to estimate the effect of an intervention on a cohort of interest and the 

whole population is composed of by two sub-cohort: the first one (cohort 1) satisfies the positivity 

assumption both theoretically and empirically, in the second one (cohort 2) only theoretical positivity 

applies (empirical positivity is violated in the empirical data ). Formally, our theoretical population dat 

includes two cohorts, named dat1 and dat2, which both satisfy the positivity assumption. However, in 

the population we actually observe, the observed population obsdat only one of the two cohorts 

obsdat1 satisfies the positivity assumption, while in the observed sample of the second cohort obsdat2 

the treatment status is set to 0 for all units. Both the theoretical and the observed sample provide 

information about some pre-treatment characteristics X. 

 

Thus, in the simulation setting, the observed population has been obtained by taking into account the 

individuals belonging to the theoretical population, with their own characteristics, and by forcing all 

the units referring to the second cohort to be untreated. The idea is to simulate the treatment effect 

in the whole population, then observing how different approaches perform in estimating the average 
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treatment effect in the observed sample, while reducing the estimation bias due to the violation of the 

positivity assumption. The effect is expected to be heterogeneous in both sub population with respect 

to observed covariates, and there is a distributional shift. The Data Generating Process (DGP), identifies 

reliably i) the target effect in the entire cohort (target), ii) the target effect in the first sample (target1), 

iii) the target effect in the second sample (target2) These values will be used as reference points in 

each of the techniques. We ran the simulated analysis 5000 times. 

 

The resulting plot (eFigure 1.1) compares the distributions of the estimated ATE according to the 

different methodologies [in bracket we denote the measure that each distribution should target]. 

Specifically, it compares a) the estimated real                                                                                                                                                                                                                                                                                    

in the theoretical population (DGP) [ref: target].  The estimated target ATE in the theoretical 

subsamples dat1 and dat2 separately [ref: target1 and target2]; c) the estimated ATE in the whole 

observed population, without any correction (no corr)  [ref: target]; d),e) the estimated ATE in the 

whole observed population, obtained through regular regression adjustment (r reg) and weighted 

regression adjustment (w reg) [ref: target]; estimated ATE in the second cohort (s coh) and in the whole 

sample (w sam) obtained through matching with respect of covariates [ref: target2 and target, 

respectively]; estimated ATE in the second cohort and in the whole sample obtained through matching 

with respect of the probability to belong to the second cohort [ref: target2 and target, respectively]. 

The figure illustrates the proposed methodologies based on regression adjustment and matching all 

reduce the estimation bias due to the violation of the positivity assumption. The obtained results result 

is robust against the extent of the distributional shift between the covariates’ distribution in the two 

sub-samples and the extent of the correlation among confounders (the results represented in Figure 

A Iare obtained under a strong distributional shift, with no correlation among confounders). 

 

 
eFigure 1.1 , distributions of the estimated ATE according to the different methodologies;  

labels: DGP= theoretical population; dat 1/dat 2= theoretical samples; no corr= no correction;  

r regr= regular regression; w regr= weighted regression; s coh= second cohort; w sam= whole 

sample; s coh match=second cohort matched; w sample= whole sample matched 
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Based on the results of the simulation analysis,  we implemented the following strategies to 

compensate for the empirical violation of the positivity assumption: 

 

- ATE estimation in the combined US and French cohort through regression adjustment, with two 

distinct models one for treated and one for untreated patients (Strategy 2) 

- ATE estimation in the combined US and French cohort through weighted regression adjustment, with 

two distinct models one for treated and one for untreated and weighting all US patients according to 

their similarity with untreated French patients (Strategy 3) 

- ATE estimation in the US cohort matching each US patient to a treated French patient with similar 

characteristics in terms of baseline confounders (Strategy 4) 

- ATE estimation in the US cohort matching each US patient to a treated French patient according to a 

univariate measure of similarity, represented by the predicted probability to belong to the US cohort 

given baseline covariates (Strategy 5) 

 

e1.4 ATE Estimation: Methodological approach  

In the present study the treatment assignment mechanism is not known, since doctors decide 

whether to assign NOREPI to their patients. Therefore, the DAG identified by the Delphi process 

(see Supplementary Section 5),  outlines which factors are likely to affect either the intervention or 

the outcome (or both) has to be used to estimate the  Average Treatment Effect.  The ATE 

estimation is performed by implementing several and heterogeneous methodologies, as to verify 

the robustness of results against different estimation strategies. 

When no correction to compensate for the violated positivity was  applied, the estimation approach 

differentiated with respect of a) the different strategy for dealing with missing data and b) the 

different strategies of estimation. 

The missing values of the confounders can be either imputed or accounted for, without any 

imputation. The imputation of missing data can be performed by using two different approaches. 

The first approach consists in performing a single imputation with a (regularized) iterative Factorial 

Analysis for Mixed Data model. This model allows to account both for the similarities among 

individuals and for the statistical relationships among variables. The number of FAMD dimensions 

to be included is obtained by implementing a cross validation algorithm, over the incomplete data 

set (in this case, the number of included dimensions equals 3). In the second approach, we impute 

missing entries by using the Multivariate Imputation by Chained Equations (MICE). By applying this 

procedure, we generate several complete data sets, with no missing entries. The alternative 

solution for dealing with missing data, without explicitly imputing  them is to estimate the 

propensity score using generalized random forests with Missing Incorporated Attributes.  

The two estimators that employed to obtain an overall measure of ATE are the Inverse Probability 

Weighting (IPW) estimator and the Doubly-Robust (DR) Estimator. In the first scenario, ATE is 

computed by weighting units according to the value of the estimated propensity score. In the 

second scenario, the ATE is estimated by employing two different models, one for the treatment 

variable and one for the outcome variable: this last solution is more robust since it returns an 

unbiased estimate of ATE if at least one of the two models is well specified. 
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When we explicitly account for the violation of the positivity assumption, we use all the 

methodologies proposed in the previous subsection - so the Regression Adjustment based 

methodologies and the Matching based methodologies-. This allows us to verify the 

robustness of results against different approaches to deal with the empirical violation of 

the positivity assumption. 
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eAppendix 2. Robustness Checks  

e2.1 Robustness for missing values  

The raw data presented many missing entries, including variables to defining inclusion/ exclusion 

criteria. In consequence, we performed the following alternative analyses to the one presented in 

the main manuscript to double check the reliability of the obtained results when dealing with 

missing attributes.  

1) Restrictive approach: We considered that all those units with missing values in a given 

variable concerning exclusion/inclusion criteria have not satisfied that criterion, according 

to the given variable. 

2) Imputation approach: We first imputed missing attributes. In particular, before applying 

the inclusion-exclusion criteria, we imputed missing values in the variables determining 

these criteria by using the MICE R package (imputing missing attributes via chained 

equations). This imputed the completed dataset (no more missings on the variables of 

interest for the filtering/inclusion process), we estimated the inclusion-exclusion criteria 

on this dataset, retaining for each cohort only observations eligible to be included in the 

final sample.  

3) Loss approach:  We considered that all those units with a missing value in a given variable 

concerning exclusion/inclusion criteria have satisfied that criterion, according to the given 

variable. In the global analysis presented in the main of the manuscript a unit with a missing 

feature that determined the given criterion, it was not considered to meet the criterion of 

the given variable. 

In the main manuscript, we presented results according to the restrictive approach. Here, we follow 

the second approach, based on the imputation of missing entries. We first imputed missing 

attributes which affect the variables determining the inclusion/exclusion criteria, using the very 

raw data, and then we applied the filtering process. Note that we perform the present analysis on 

the French cohorts only, as the raw data concerning the Baltimore cohort do not provide all the 

required information.  The imputation is performed using MICE. By following this approach, the 

final sample included 5838 observations, 4679 from Traumabase and 1159 from TRENAU.            

eFigure 2.1 illustrates the absence of any impact of Norepinephrine on 24-hours mortality, 

independently on the employed methodology.  
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eFigure 2.1 Effect of NOREPI on 24-hour mortality according to the approaches employed  

 

e2.2 Robustness for hypotensive patients 

As a final robustness check, we performed an analysis including exclusively all hypotensive patients 

with a prehospital systolic arterial pressure < 100mmHg. The final sample consisted of 7837 
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patients, 4679 from Traumabase, 1159 from TRENAU and 1199 from Baltimore.  eFigure 2.2 

demonstrates the lack of Norepinephrine on 24-hour mortality for all approaches employed.   

eFigure 2.2 Effect of Norepinephrine on 24-hour mortality for patients with prehospital systolic 

blood  pressure < 100 mmHg  

 

e2.3 Robustness for French cohort 

Finally, we estimated the average treatment effect on the French cohort only, obtained 

under the first approach towards the missing entries in the variables determining the 

inclusion/exclusion criteria (the same adopted in the core of the paper).  

The following eFigure 2.3 shows that norepinephrine has no significant impact on 24h 

mortality in the French cohort, independently on the employed statistical methodology. 
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eFigure 2.3 Effect of Norepinephrine on 24-hour mortality in French cohort according to various 

methodological approaches 

In summary: none of the robustness check performed for a) missingness, b) in hypotensive patients 

or c) exclusively in the French cohort showed a significant effect on 24-hour mortality.  
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eAppendix 3. Explorative Analysis 

e3.1 Covariates distributions among cohorts 

In this section we show and discuss the distribution of the pre-treatment characteristics 

and their variation over the three included cohorts.  

The following eFigure 3.1 is a matrixplot which provides information on the statistical 

distribution of the continuous confounders, in the whole sample: in particular, (i) the plots 

that lie on the diagonal of the matrix represent the univariate distribution of the 

continuous confounders, (ii) the graphs placed at the bottom-left triangle of the matrix 

show the scatterplots of each pair of confounders, (iii) while on the top-right triangle cells 

it is possible to observe the correlation and its significance. 

 

eFigure 3.1 Matrixplot. Univariate and joint distribution of continuous confounders, in the 
whole sample 

The eFigure 3.2 provides the same information but considers the variation over the three 

different cohorts. Graphical elements are colored according to the cohort they refer to: 

blue curves refer to the TraumaBase cohort, red elements describe the TRENAU cohort, 

and green elements refer to the US cohort. Here even binary confounders are included 

(sex, transport type, and pre-hospital intubation), their distribution is represented through 

a bar plot.   
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eFigure 3.2 Matrixplot. Univariate and joint distribution of continuous confounders, in the 
three cohorts 

To explore the variation of the distribution of the confounders over the three cohorts, 

eFigure 3.3 explores whether the value of a given variable in a given cohort is significantly 

above the mean (red rectangles), below the mean (blue rectangles) or around the mean 

(white rectangles). Surprisingly, the TRENAU cohort appears to be more similar to the US 

cohort with respect of pre-treatment characteristics, than to the TraumaBase cohort. 
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eFigure 3.3 Comparison of the distribution of the confounders, in the three cohorts. Red 
triangles signal value that significantly differ from the mean, white rectangles signal values 
that are close to the mean, blue rectangles signal value below the mean 

 

Information on baseline characteristics and their variation over cohorts can be inspected 

in eTable 3.1, providing the mean and the standard deviation of each variable, in each 

cohort and the results of a statistical Two Sample t-test, which tests the hypothesis of no 

difference in means between the covariate distributions. The T-test comparison is 

implemented for the three pairwise comparisons of the cohorts. If the corresponding p-

value of a given comparison is below 0.05, then the null hypothesis of no difference in 

means must be rejected and we can state that there is a significant difference between the 

covariate distribution in that examined comparison. The significant comparisons are 

signaled through stars (*) (one star refers to weekly significant comparisons*). 

eTable 3.1 Distribution of pre-treatment characteristics, in the three examined cohorts. 
The table reports the mean and standard deviation of each variable in each cohort and the 
p-value of the two-sided T-test. 
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e3.2 Covariates distribution in treated and untreated patients 

In this section, we discuss the covariates distributions and their variation between treated 

and untreated patients.  

The eFigure 3.4 shows the distributions of the eight included confounders, in the two 

treatment groups.  

 

eFigure 3.4 Distribution of pre-treatment characteristics: treated vs untreated patients 

 

Information on baseline characteristics and their variation over treated and untreated 

patients can be also examined by observing the following eTable 3.2, providing the mean 

and the standard deviation of each variable, in each treatment group and the results of a 

statistical Two Sample t-test, which tests the hypothesis of no difference in means between 

the covariate distributions. If the corresponding p-value is below 0.05, then the null 

hypothesis of no difference in means must be rejected and we can state that there is a 

significant difference between the covariate distribution between treated and untreated 

patients. The significant comparisons are signaled through stars (*) (one star refers to 

weekly significant comparisons*). 
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eTable 3.2 Distribution of pre-treatment characteristics: treated vs untreated patients. The 
table reports the mean and standard deviation of each variable in each treatment group 
and the p-value of the two-sided T-test.  

 

According to the Delphi agreement of the participating experts, age was exclusively 

analyzed as a factor to impact the outcome mortality but not treatment assignment.  The 

results in the main manuscript reflect to this approach.  

To demonstrate that inclusion of age as confounder for the outcome mortality and 

treatment assignment would have no impact on the results, we provide this secondary 

analysis including age as confounder for both outcome and treatment assignment (eFigure 

3.5).  

 

eFigure 3.5 Average Treatment effect for all patients on mortality with age included as 

confounder for outcome and treatment assignment 

 

e3.3 Missing data analysis 

Data present a relevant number of missing entries. This subsection provides a descriptive 

analysis of missing data, in the whole sample and in the single cohorts. This examination is 

focused on the confounding variables, related to the outcome and treatment allocation 

and on the post-treatment variables, which are likely to impact the outcome variable only. 
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The eFigure 3.6a and b provide information on the distribution of missing cases: the left 

side graph show a representation of the distribution of the number of missing entries, while 

the right-side graph represents the cumulative sum of missing cases. As it is immediate to 

observe, the presence of missing entries represents a big issue for this study.  

 

eFigure 3.6a and b Missing cases. Distribution of the number of missing entries (left), 
cumulative sum of missing cases (right) 

The eFigures 3.7a and b show the percentage of missing values for each variable (left side 

figure) and the percentage of missing entries for each variable in the three cohorts (right 

side figure). The right-side graph suggests that some variables are not observed in some 

cohorts (yellow rectangles). 
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eFigure 3.7 a and b.  Percentage of missing entries in the whole sample (left side figure) and 
in the three cohorts separately (right side figure) 

The eFigure 3.8 a and b investigate common patterns of missingness. Moreover, they allow 

us to observe whether there is a significant association between the value of a variable and 

the missingness of another one. The left side graph is a matrix plot, where each rectangle 

represents a cell in the data matrix. Red rectangles signal missing entries, while observable 

entries are coloured according to a grey scale (the darker is the grey, the higher is the value 

of the given entry). Left-side Figure represents instead the number of missings in each 

variable and for certain combinations of variables (which tend to be missing 

simultaneously).  
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eFigure 3.8 a and b. Common patterns of missingness. 
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eAppendix 4. Delphi to Identify Confounding Factors 

Experts consulted: 

Europe 

De Backer, MD, PhD, Belgium  

Martin Dünser, MD, PhD, Austria 

Tim Harris, MD, PhD, United Kingdom 

Anatole Harrois, MD, PhD, France 

Marc Leone, MD, PhD, France 

Eric Meaudre, MD, PhD, France  

Julien Pottecher, MD, PhD, France 

Jacob Steinmetz, MD, PhD, Denmark 

Kjetil Sunde, MD, PhD, Norway 

Karim Tazarourte, MD, PhD, France 

 

USA 

Richard P Dutton, MD, MBA  

David V Feliciano, MD 

Jason Gillihan, MD 

Oscar D Guillamondegui, MD, MPH 

Shannon R Kilkelly, DO 

Evan Pivalizza, MBBS 

 

e4.1) Conduct of Delphi consensus process 

The Delphi was conducted as online survey. A variable was retained as confounder if more than 

75% of experts expressed an agreement superior to six on a nine-point Likert Scale. All experts 

participated in both rounds. 

DELPHI ROUND 1 -NOREPI US-F STUDY 

QUESTION 1 
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What are the key clinical elements leading a clinician to introduce Norepinephrine or Vasopressin 

within the first 6 hours of to a severe trauma patient before hemorrhage control is achieved? 

Reponses provided 

a) In the case of traumatic brain injury 

b) In the case of spinal cord injury 

c) Persistent hypotension after 1000ml of fluid expansion  

d) Induction of sedation and anaesthesia 

e) High Lactate > 3 mmol/l 

f) Persistent hypotension after administration of 2 RBC (pre-hospital or in resuscitation 

room) 

g) Prolonged extrication or transport time 

h) Blunt cardiac injury  

i) Pre-existing coronary disease 

j) Pre-existing renal insufficiency 
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QUESTION 2 

What are predictive factors of early mortality in a severe trauma patient?  

Responses provided 

a) Shock as per SAP <90 mmHg 

b) Shock Index > 1 

c) GCS < 3 

d) MGAP score < 23 

e) Clinically unstable pelvic ring fracture 

f) Hypoxia, SpO2 > 91% 

g) Dilated pupil 

h) Cardiac Arrest 

i) Amputation 

j) Blast mechanism 

k) Traumatic coagulopathy defined by standard laboratory (INR > 1,5) or viscoelastic criteria 

(ROTEM: FIBTEM < 7mm/ EXTEM CA5 41mm; TEG: functional fibrinogen (FF) TEG MA 19 mm/ 

rTEG MA 64 mm) 

l) Lactate > 4 mmol/l 

m) Age > 65 years 

n) pH < 7 

o) Use of REBOA or thoracotomy in resuscitation room 

p) Severe/uncontrollable truncal haemorrhage 

q) AIS head > 3 

r) ISS > 25 

DELPHI ROUND 2- NOREPI-US-F STUDY 

In the second round, variables identified by the experts in round 1 and available in all three datasets 

were submitted to expert consensus.  

After Experts agreed on the following criteria for  

 

1) Treatment allocation: 

- PAS < 85 after fluid challenge expansion 

- Prehospital GCS < 8 and PAS <100 mmHg 

 

2) Confounding and adjustment variables for outcome: 

Age 

Sex 
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Pre-admission volume expansion (will not have for US) 

Pre-admission SBP  

Pre-admission shock index  

Pre-admission HR 

Pre-admission cardiac arrest 

Initial pre-hospital GCS 

GCS motor score 

Pre-hospital intubation 

On-admission lactate 

On-admission BE 

On-admission Hb 

On-admission SBP  

On-admission shock index 

On-admission HR (beats min–1) 

ISS 

AIS-head >3 

 

Variables not available in the final data set were not retained for the analysis. The final results were 

used to generate the following Directed Acyclic Graph: 

 

eFigure 4.1, A simplified Directed Acyclic Graph (DAG): a) pre-intervention variables associated with 

the decision to administer Norepinephrine (NOREPI) in purple; the same variables point towards 

mortality if considered a confounder. b) Explicative variables independent from treatment 

administration associated 24-hour mortality in red. c) Variables or confounders that the experts would 

have preferred to add, but were not available in yellow.  

AIS= Abbreviated injury severity Score head; ISS= Injury Severity Score; GCS motor ph= prehospital 

Glasgow Coma Scale motor score; Systolic bp ph= prehospital systolic blood pressure; systolic bp h= 

systolic blood pressure in resuscitation; SpO2.min hospital=minimal peripheral oxygen saturation in 

resuscitation phase; pH= pH in resuscitation; Lactate= Lactate concentration in resuscitation; GCS= 

Glasgow Coma Scale in resuscitation 

 


