Supporting Information

for

Neuroprotective Effects of σ₂R/TMEM97 Receptor Modulators in Neuronal Model of Huntington's Disease

Jing Jin^{1*}, Nicolas Arbez^{1,5*}, James J. Sahn^{2*}, Yan Lu^{2*}, Kathryn T. Linkens², Timothy R. Hodges², Anthony Tang¹, Robyn Wiseman^{1,4}, Stephen F. Martin^{2**} and Christopher A. Ross^{1,3**}

¹Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore Maryland, 21287, United States.

² Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712, United States

³Departments of Neurology, Neuroscience and Pharmacology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21287, United States.

⁴Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21287, United States.

⁵Cellular Sciences Department, IdRS, Croissy-sur-Seine, France

Table of Contents

1. Table of $\sigma_2 R/TMEM97$ and $\sigma_1 R$ binding affinities	S3
2. Tables of binding profiles at non-sigma receptor sites	S4
3. Supplementary Figures	S10
4. Copies of NMR Spectra	S11

Table S1. $\sigma_2 R/TMEM97$ and $\sigma_1 R$ binding affinities. ^a								
Compound	K_i (nM)	$pK_i \pm SD$	K_i (nM)	$pK_i \pm SD$	K_i (nM)	$pK_i \pm SD$	K_i (nM)	$pK_i \pm SD$
number	$\sigma_2 R/TMEM97(r)^b$	$\sigma_2 R/TMEM97(r)^b$	$\sigma_1 R(gp)^b$	$\sigma_1 R(gp)^b$	$\sigma_2 R/TMEM97(h)^c$	$\sigma_2 R/TMEM97(h)^c$	$\sigma_1 R(h)^c$	$\sigma_1 R(h)^c$
DKR-1051	61	7.23 ± 0.09	556	6.25 ± 0.07				
UKH-1114	46	7.3±0.2	1279	5.9±0.15	110.6	6.96±0.59		
AMA-1127	11	8.0±0.1	207	6.68 ± 0.08				
DKR-1677	5.1	8.3±0.1	230	6.64±0.06	11	7.99±0.09	31	7.52 ± 0.08
JJS-1678					3.3	8.58±0.09	106	7.08±0.12
BJM-1679					5.5	8.26±0.22	624	6.21±0.07
EES-1686					6.0	8.34±0.18	97	7.03 ± 0.08
BEA-1687					26	7.6±0.1	185	6.7±0.1
MPC-1154	166	6.8±0.1	5.9	8.23±0.06				
HLJ-1560	116	6.94±0.12	12	7.9 ± 0.07				

^a K_i values determined from average pK_i obtained from non-linear regression of radioligand competition binding isotherms run at least in triplicate by PDSP. ^b $\sigma_2 R/TMEM97$ was sourced from rat PC12 cells and $\sigma_1 R$ was sourced from guinea pig brain. ^c $\sigma_2 R/TMEM97$ and $\sigma_1 R$ were sourced from HEK293T transfected with human $\sigma_1 R$ and $\sigma_2 R/TMEM97$.

Target	$K_i(\mathbf{nM})$	Target	K_i (nM)
5HT _{1A}	*	Beta2	*
5HT1B	*	Beta3	*
5HT _{1D}	*	BZP Rat Brain	*
5HT _{1e}	*	Calcium Channel	*
5HT _{2A}	*	D1	*
5HT _{2B}	2902*	D_2	*
5HT _{2C}	*	D3	*
5HT3	*	D4	*
5HT _{5a}	*	D_5	*
5HT ₆	*	DAT	1264
5HT7	*	DOR	*
A2B2	*	GabaA	*
A2B4	*	H_1	1676
A3B2	*	H ₃	*
A3B4	5202	KOR	331
A4B2	*	M1	*
A4B2**	*	M_2	*
A4B4	>10,000	M3	*
A7	>10,000	M4	*
A7**	*	M5	*
Alpha _{1a}	*	MOR	881
Alpha _{1b}	*	NET	301
Alpha _{1d}	*	NMDA	*
Alpha _{2a}	*	PBR	*
Alpha _{2b}	2307	SERT	*
Alpha _{2c}	*	V1A	*
AMPA	*	V1B	*
Beta1	*	V2	*

Table S2. DKR-1051 binding profile at non-sigma receptor sites.^a

* < 50% inhibition of radioligand binding at 10 $\mu M.$ ** sourced from rodent brain

Target	$K_i(\mathbf{nM})$	Target	K_i (nM)
5HT _{1A}	*	Beta3	*
5HT _{1B}	*	BZP Rat Brain	*
5HT _{1D}	*	Calcium Channel	>10,000
5HT _{1e}	*	D1	*
5HT _{2A}	*	D2	*
5HT _{2B}	*	D3	*
5HT _{2C}	*	D4	*
5HT3	*	D5	*
5HT _{5a}	*	DAT	*
5HT6	*	DOR	*
5HT7	*	GabaA	*
A2B2	*	H ₁	*
A2B4	*	H ₃	*
A3B2	*	hERG	549
A3B4	*	KOR	1383
A4B2	*	M1	*
A4B2**	*	M ₂	*
A4B4	*	M3	*
A7	*	M4	*
A7**	*	M5	*
Alpha _{1a}	*	MOR	*
Alpha _{1b}	*	NET	1,046
Alpha _{1d}	*	NMDA	6,724
Alpha _{2a}	*	PBR	*
Alpha _{2b}	*	SERT	*
Alpha _{2c}	*	V1A	>10,000
AMPA	>10,000	V1B	>10,000
Beta1	*	V2	>10,000
Beta2	*		

Table S3. UKH-1114 binding profile at non-sigma receptor sites.^a

* < 50% inhibition of radioligand binding at 10 μ M. ** sourced from rodent brain

Target	$K_i(\mathbf{nM})$	Target	K_i (nM)
5HT _{1A}	38	BZP Rat Brain	*
5HT _{1B}	*	D2	*
5HT _{1D}	1492	D3	670
5HT _{1e}	1204	D4	568
5HT _{2A}	719	DAT	906
5HT _{2B}	819	DOR	*
5HT _{2C}	460	GabaA	*
5HT3	741	H ₂	456
5HT _{5a}	*	H4	*
5HT6	*	KOR	*
5HT7	441	M4	*
Alpha _{1a}	*	M5	*
Alpha _{1b}	*	MOR	*
Alpha _{1d}	3241	NET	165
Alpha _{2a}	194		
Alpha _{2b}	1818	PBR	*
Alpha _{2c}	5756	SERT	*
Beta1	*		
Beta2	*		
Beta3	*		

Table S4. AMA-1127 binding profile at non-sigma receptor sites.^a

* <50% inhibition of radioligand binding at 10 $\mu M.$ ** sourced from rodent brain

Target	$K_i(\mathbf{nM})$	Target	K_i (nM)
5HT _{1A}	*	D 1	*
5HT1B	*	D2	*
5HT _{1D}	*	D ₃	740
5HT _{1e}	*	D_4	*
5HT _{2A}	2042	D5	*
5HT _{2B}	1703	DAT	488
5HT _{2C}	232	DOR	*
5HT3	*	GabaA	*
5HT _{5a}	*	H_1	*
5HT6	2286	H ₂	*
5HT7A	*	H ₃	2217
Alpha _{1a}	*	H4	
Alpha _{1b}	*	KOR	*
Alpha _{1d}	*	M1	1438
Alpha _{2a}	2123	M ₂	*
Alpha _{2b}	*	M3	*
Alpha _{2c}	*	M4	*
Beta1	*	M5	787
Beta2	*	MOR	*
Beta3	*	NET	263
BZP Rat Brain	*	PBR	*
		SERT	1823

Table S5. BJM-1679 binding profile at non-sigma receptor sites.^a

* < 50% inhibition of radioligand binding at 10 μM.
** sourced from rodent brain

Target	$K_i(\mathbf{nM})$	Target	K_i (nM)
5HT _{1A}	*	D1	*
5HT1B	*	D2	*
5HT _{1D}	*	D3	991
5HT _{1E}	*	D4	*
5HT _{2A}	2166	D5	944
5HT _{2B}	*	DAT	*
5HT _{2C}	201	DOR	*
5HT3	*	GabaA	*
5HT5a	*	H_1	*
5HT6	3918	H ₂	2248
5HT7A	*	H ₃	2484
Alpha _{1a}	*	H4	
Alpha _{1b}	3837	KOR	*
Alpha _{1d}	*	M1	*
Alpha _{2a}	8220	M_2	*
Alpha _{2b}	*	M3	*
Alpha _{2c}	*	M4	*
Beta1	*	M5	2254
Beta2	*	MOR	*
Beta3	*	NET	421
BZP Rat Brain	*	PBR	*
		SERT	*
< 50% inhibition of radioligand binding at 10 μM. ** sourced from rodent brain			

Table S6. EES-1686 binding profile at non-sigma receptor sites.^a

Target	$K_i(\mathbf{nM})$	Target	K_i (nM)
5HT _{1A}	*	D1	*
5HT _{1B}	*	D2	*
5HT _{1D}	1522	D3	*
5HT _{1E}	*	D4	525
5HT _{2A}	*	D5	*
5HT _{2B}	*	DAT	*
5HT _{2C}	2165	DOR	*
5HT3	*	GabaA	*
5HT5A	*	H_1	*
5HT6	*	H ₂	*
5HT7A	*	H ₃	*
Alpha _{1a}	*	H4	*
Alpha _{1b}	*		
Alpha _{1d}	3044	KOR	*
Alpha _{2a}	*	M_1	*
Alpha _{2b}	*	M2	*
Alpha _{2c}	*	M3	*
AMPA	*	M4	*
Beta1	*	M5	*
Beta2	*	MOR	*
Beta3	*	NET	*
BZP Rat Brain	*	NMDA	*
		PBR	*
		SERT	*

Table S7. BEA-1687 binding profile at non-sigma receptor sites.^a

* < 50% inhibition of radioligand binding at 10 $\mu M.$ ** sourced from rodent brain

Figure S1. $\sigma_2 R/TMEM97$ -selective modulators did not show protective effect on mHTT induced toxicity. $\sigma_2 R/TMEM97$ -selective modulators, DKR-1677 (A) and JJS-1678 (B) had no effect on mHTT induced cell toxicity. ^{###} p<0.001 vs Htt N586-22Q.

Figure S2. Specificity of MCP-1154. NE-100 was used in the primary cortical neurons treated $\sigma_1 R$ modulator, MCP-1154. Primary cortical neurons were co-transfected with Htt N586-82Q and GFP. Four hours after transfection, neurons were treated with modulators with or without a pretreatment with 1 μ M of NE-100. Forty-eight hours later, neurons were fixed and nuclei were stained. The protective effect of MCP-1154 was blocked by NE-100. * p<0,05 vs Htt N586 82Q. n= 3.

 $\begin{array}{c} & -2.25\\ & -2.$

200 190 180 170 160 150 140 130 120 S16 f1(ppm)

 $\begin{array}{c} & -2.5 \\ & -2.$

 $\begin{array}{c} & -2.5 \\ & -2.$

 $\begin{bmatrix} 7.511 \\ -7.495 \\ -7.495 \\ -7.495 \\ -7.495 \\ -7.495 \\ -7.495 \\ -7.495 \\ -7.495 \\ -7.451 \\$

