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Supplement Figure 3
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Supplement Figure 7
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Figure S1, related to Figure 1. Hepatocyte-specific Casp2 ablation prevents
fructose induced steatosis.

WT mice were fed cornstarch (CSD, n=21) or fructose diet (HFrD, n=20) for 12 weeks.
A. Body weight (BW) and food intake during the 12-week special diet feeding period.

B. Representative H&E-stained formalin fixed paraffin embedded (FFPE) liver sections
and ORO-stained frozen liver sections. Four HMFs were taken from each liver and
quantified by Image J software. Quantification is on the right.

C. Serum and liver TG and Chol from above livers.

D. Relative BIP/Grp78 and Grp94 mRNA amounts (top) and p-elF2a IB (bottom) in above
livers.

E. Relative TNF mRNA amounts in above livers.

F. ATP concentration in above livers.

G. A schematic illustration describing the generation of Casp2 floxed mice.

H. BW and food intake during HFrD feeding in Casp2F and Casp24H¢P mice.

|. Relative fibrogenic gene mRNA amounts in HFrD-fed Casp2 or Casp24er livers.
Results are mean + SEM. Scale bar, 100 um. Statistical significance was determined by

two-tailed Student’s t test. *p < 0.05, **p < 0.005, ***p < 0.001.

Figure S2, related to Figure 2. PIDDosome components are required for fructose
induced hepatosteatosis.

A. BW and food intake during HFrD feeding in the indicated mice.

B. Relative Scap, Insig1, and Insig2 mRNA amounts in livers of WT mice fed normal chow

diet (NCD, n=11) or CSD (n=16).



C. Relative lipogenic enzyme mRNA amounts in above livers.

WT (n=9) and Casp2” (n=7) mice were fed Western diet along with 15% fructose and
glucose water for 10 weeks.

D. BW and food intake during Western diet feeding in the indicated mice.

E. Representative H&E and Sirius red stained FFPE above livers. Quantification is on the
right.

F. Liver TG and Chol amounts in above livers.

G-H. Relative mRNAs of lipogenic enzymes (G) and inflammatory, fibrogenic genes (H)
in above livers.

Statistical significance was evaluated by two-tailed Student’s t test.

*p < 0.05, **p < 0.005, ***p < 0.001.

Figure S3, related to Figure 3. PIDDosome components control fructose induced
lipid metabolizing genes.

A. Venn diagram showing the overlapping genes from 4 comparison analysis and
Heatmap showing differentially expressed genes between the groups. Four comparative
analyses were conducted. Gene expressions were visualized with z-score.

B. Relative expression of cholesterol biosynthesis and unfolded protein response (UPR)

pathways in indicated livers.

Figure S4, related to Figure 4. PIDD1 and RAIDD are needed for Casp2 activation.
A-B. IP analysis of PIDDosome components using HA (A) or His (B) antibodies in lysates

of cells transfected with the indicated plasmids.



C-D. Parental, PIDD1 (PIDD14)-ablated (C) or RAIDD (RAIDD*)-ablated (D) HEK293
cells were transfected with the indicated plasmids, membrane and cytoplasmic fractions
were separated and the indicated proteins were detected by IB analysis.

E. Schematic illustration of the PIDD14PP construct.

F. PIDD14 HEK293 cells were transfected with the indicated plasmids, and membrane
fractions were prepared and IB analyzed for the indicated proteins.

Cleaved S1P is shown in the red box.

F-Full length, C-Cleaved, P-precursor, N.S-non-specific.

Each experiment was triplicated, and one representative result is shown.

Figure S5, related to Figure 5. IRE1 inhibition prevents PIDDosome and SREBP
activation.

WT mice were fed HFrD for 8 weeks, followed by DMSO (n=16) or MKC3946 (3 mg/kg,
n=20) treatment for 4 weeks.

A) BW increase during the HFrD feeding period. DMSO or MKC injected period is
indicated by purple block. Food intake during the injection period.

B) Serum insulin in above mice.

C-D. Relative amounts of c/EBPB, INSIG1, INSIG2, SCAP (C) and inflammatory marker

(D) mRNAs in above livers.
E. IB of nuclear p53 in livers of CSD or HFrD fed WT mice and HFrD fed p53AHep mice
(top) and representative H&E images (bottom).

Results are mean + SEM. Scale bar, 100 um. Statistical significance was determined by

two-tailed Student’s t test. *p < 0.05, **p < 0.005, ***p < 0.001.



Figure S6, related to Figure 6. Scap ablation potentiates fructose induced ER stress
and PIDDosome activation.

Scap-floxed (Scap™/MUP, n=7) and liver specific Scap ablated (Scap"?/MUP, n=4)
MUP-uPA mice were fed with HFD for 12 weeks.

A. H&E, F4/80, Sirius red staining of FFPE liver sections and ORO staining of frozen liver
sections from above mice.

B. IB analysis of p-IRE1 in livers of above mice.

C. Casp2 and PIDD1 IHC in livers of above mice.

WT (n=12) and Scap ablated (Scap4"*, n=7) mice were high fat diet (HFD)- or HFD plus
30% fructose water diet (HFHFD)-fed for 12 weeks. [HFD: (WT: n=12, Scap4'®’: n=7)],
[HFHFD: (WT: n=14, Scap#'®f: n=10)]

D. H&E, F4/80, Sirius red staining of FFPE liver sections and ORO staining of frozen liver
section from HFD-fed indicated mice.

E. H&E, Sirius red staining of FFPE liver sections and ORO staining of frozen liver section
from HFHFD-fed indicated mice.

WT (Scap™, n=13) and liver specific Scap ablated (Scap?", n=11) mice were fed HFrD
for 12 weeks.

F. H&E of FFPE liver sections and ORO staining of frozen liver sections from above mice.
G. Serum and liver TG and Chol from above mice.

H. IB of lipogenic enzymes in livers of above mice.

l. IB of p-IRE1 in livers of HFHFD-fed indicated mice.



J-K. Relative mRNAs of lipogenic enzymes (J) and ER stress, inflammatory, fibrogenic
genes (K) in livers of HFHFD-fed above mice.

Four HMFs from each liver were taken, quantified by Image J software and the results
are shown on the right. Results are mean + SEM. Scale bar, 100 um. Statistical
significance was determined by two-tailed Student’s t test. *p < 0.05, **p < 0.005, ***p <

0.001.

Figure S7, related to Figure 7. IRE1 inhibition rescues ER stress and damage in the
HFrD-fed Scap?"°® liver.

A. IB analysis of SREBP2 and relative Srebf2, Hmgcr, and Hmgcs mRNA amounts in
livers of DMSO or MKC3946-treated HFrD-fed Scap#"e? mice.

Statistical significance was determined by two-tailed Student’s t test. *p < 0.05, **p <

0.005, ***p < 0.001.

Table S1. RNAseq analysis in HFrD-fed PIDDosome or Scap-ablated liver. Related
to Figure 3.

Table S2. Histologic score of HFrD- or WD-fed Scap-ablated liver. Related to Figure
6.

Data S1. Unprocessed data underlying the display items in the manuscript. Related

to Figures 1-7 and S1-S7.



	Sup Figure 1 rs
	Sup Figure 2 rs
	Sup Figure 3 rs
	Sup Figure 4 rs
	Sup Figure 5 rs
	Sup Figure 6 0717 rs
	Sup Figure 7 rs
	Supplement Figure Legends 0805

