# Supporting information Engineering Transport Orbitals in Single Molecule Junctions

Abdalghani Daaoub<sup>1,+</sup>, Luca Ornago<sup>2,+</sup>, David Vogel<sup>3,+</sup>, Pablo Bastante<sup>4,+</sup>, Sara Sangtarash<sup>1</sup>,Matteo Parmeggiani<sup>5</sup>, Jerry Kamer<sup>2</sup>, Nicolás Agraït<sup>4,\*</sup>, Marcel Mayor<sup>3,6,7,\*</sup>, Herre van der Zant<sup>2,\*</sup>, Hatef Sadeghi<sup>1,\*</sup>

<sup>1</sup>School of Engineering, University of Warwick, CV4 7AL Coventry, United Kingdom

<sup>2</sup>Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 GJ Delft, The Netherlands

<sup>3</sup>Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland

<sup>4</sup> Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain

<sup>5</sup> Department of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy

<sup>6</sup>Institute for Nanotechnology, Karlsruhe Institute of Technology (KIT), P. O. Box 3640, 76021 Karlsruhe, Germany

<sup>7</sup>Lehn Institute of Functional Materials (LIFM), School of Chemistry, Sun Yat-Sen University (SYSU), 510275 Guangzhou, China

+ Authors with equal contributions.

\*Hatef.Sadeghi@warwick.ac.uk; h.s.j.vanderzant@tudelft.nl; marcel.mayor@unibas.ch; nicolas.agrait@uam.es

#### **Table of content**

| 1 Synthesis                           | 1   |
|---------------------------------------|-----|
| 2 MCBJ measurements and data analysis | 85  |
| 3 STMBJ measurements and data         | 101 |
| 4 Theory and modelling                | 107 |
| Supporting References                 | 112 |

#### **1** Synthesis

All chemicals and anhydrous solvents were used as purchased without further purification, unless stated otherwise. Deuterated solvents were obtained from Cambridge Isotope Laboratories, Inc. (Andover, MA, USA). All other commercial available starting materials were purchased from Sigma-Aldrich, Acros or Fluorochem. NMR experiments were acquired on a 400 or 500 MHz Bruker Avance III spectrometer equipped with a QNP or BBFO probe head respectively. The chemical shifts ( $\delta$ ) are reported in parts per million (ppm) relative to tetramethylsilane or referenced to residual solvent peaks and the J values are given in Hz ( $\pm 0.1$  Hz). For highresolution mass spectrometry (HRMS) a HR-ESI-ToF-MS measurement on a maXisTM 4G instrument from Bruker was performed. Gas chromatography-mass spectrometry (GC-MS) were recorded using a Shimadzu GC-MS-2020- SE instrument equipped with a Zebron 5 MS Inferno column, with a temperature range of up to 350 °C. Column chromatography was performed on SiliaFlash®P60 from SILICYCLE with a particle size of 40-63 µm (230-400 mesh). Thin layer chromatography (TLC) was performed on Silica gel 60 F254 glass plates with a thickness of 0.25 mm from Merck using fluorescent quenching under UV light at 254 nm for the localization of sample spots. Automated recycling GPC was performed on a Shimadzu Prominence System equipped with two SDV preparative columns in series from Polymer Standards Service (PSS) (20 × 600 mm each, exclusion limit: 30,000 g/mol). UV-vis absorption spectra were recorded at 20 °C on a Jasco V-770 spectrophotometer. UV-Vis emission spectra were recorded at 20 °C on a JASCO Spectrofluorometer FP-8600. Cyclic voltammetry was performed in an MBraun Glovebox under argon. As working electrode, a glassy carbon disk electrode was used while as counter and (pseudo) reference electrode a silver wire was used. The voltage was applied and controlled with a Versastat 3-200 potentiostat from Princeton Applied Research. IR spectra were recorded with a Shimadzu IRTracer-100.



**1-iodo-2-nitro-4-thiocyanatobenzene 4**: An oven dried argon flushed two necked round bottom flask was charged with 2-nitro-4-thiocyanatoaniline (500 mg, 2.56 mmol, 1 eq.) and *p*-TsOH (1.460 g, 7.68 mmol, 3 eq.) suspended in MeCN (10 mL). The mixture was cooled to 0 °C in an ice bath. Then a solution of NaNO<sub>2</sub> (353 mg, 5.12 mmol, 2 eq.) and KI (1.06 g, 6.40 mmol, 2.5 eq.) in Milli-Q water (1.8 mL) was gradually added. The mixture was stirred at 0 °C for 10 min and left to warm up to r.t. over 2 h. The reaction was then poured into aq. sat. NaHCO<sub>3</sub>, extracted with EtOAc. The combined organic phase was washed with aq. sat. Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub>, water, brine, dried over anhydrous MgSO<sub>4</sub>, filtered, concentrated under reduced pressure and purified by column chromatography on silica gel (cyclohexane : EtOAc gradient from 100 : 0 to 50 : 50) yielding a yellow solid (510 mg, 1.67 mmol, 65%).

<sup>1</sup>**H-NMR** (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.13 (d, J = 8.4 Hz, 1H), 7.98 (d, J = 2.3 Hz, 1H), 7.43 (dd, J = 8.4, 2.3 Hz, 1H).

<sup>13</sup>C-NMR (126 MHz, CDCl<sub>3</sub>) δ 153.57(extracted from HMBC), 143.77, 133.42, 127.28, 125.78, 108.10, 87.56.

**IR** *v*(**cm**<sup>-1</sup>): 3085.37, 2158.65, 1579.57, 1545.82, 1517.85, 1455.65, 1344.27, 1274.84, 1255.56, 1344.27, 1274.84, 1255.56, 1161.53, 1102.71, 1020.71, 964.33, 877.54, 823.54, 755.07, 742.53, 700.10, 655.26, 593.54, 481.68, 449.86

**GC-MS** (**EI**): *m*/*z* (%) = 305.6 (100), 259.7(22.6), 148.9 (17.8), 132.9 (89.8), 120.9 (21.18), 74.9 (35.4), 63.0 (36.5)



Figure S1.1: <sup>1</sup>H-NMR (500 MHz, CDCl<sub>3</sub>) spectrum of 4.



Figure S1.2: <sup>13</sup>C-NMR (126 MHz, CDCl<sub>3</sub>) spectrum of 4.



Figure S1.3: HMBC\_GPSW (  $CDCl_3$ ) spectrum of 4.



|    | Item           | Value          |
|----|----------------|----------------|
| 2  | Sample name    | VOE_372        |
| 3  | Sample ID      | VOE_372        |
| 4  | Option         |                |
| 5  | Intensity Mode | %Transmittance |
| 6  | Apodization    | Happ-Genzel    |
| 9  | No. of Scans   | 20             |
| 10 | Resolution     | 1 cm-1         |

|    | Peak    | Intensity | Corr. Intensity | Base (H) | Base (L) | Area     | Corr. Area | Comment |
|----|---------|-----------|-----------------|----------|----------|----------|------------|---------|
| 1  | 449.86  | 84.50     | 7.64            | 452.27   | 446.00   | 78.386   | 27.212     |         |
| 2  | 481.68  | 72.00     | 2.72            | 491.33   | 480.72   | 165.694  | 0.238      |         |
| 3  | 593.54  | 84.16     | 13.25           | 604.63   | 581.49   | 187.085  | 125.259    |         |
| 4  | 655.26  | 82.16     | 11.78           | 657.19   | 649.48   | 80.681   | 35.971     |         |
| 5  | 700.10  | 88.25     | 0.19            | 700.58   | 698.17   | 27.846   | 0.252      |         |
| 6  | 742.53  | 66.42     | 24.34           | 747.35   | 716.98   | 554.958  | 275.631    |         |
| 7  | 755.07  | 68.60     | 28.26           | 760.86   | 747.35   | 196.112  | 143.429    |         |
| 8  | 823.54  | 61.22     | 34.00           | 835.59   | 806.18   | 551.911  | 373.227    |         |
| 9  | 877.54  | 65.86     | 5.37            | 879.47   | 835.59   | 434.019  | -202.975   |         |
| 10 | 964.33  | 80.92     | 10.64           | 971.56   | 947.93   | 250.523  | 58.863     |         |
| 11 | 1020.74 | 63.65     | 34.24           | 1027.01  | 989.88   | 711.138  | 479.732    |         |
| 12 | 1102.71 | 81.37     | 13.94           | 1111.39  | 1079.57  | 408.611  | 210.914    |         |
| 13 | 1161.53 | 87.42     | 12.07           | 1172.62  | 1143.69  | 154.618  | 133.947    |         |
| 14 | 1255.56 | 80.01     | 17.07           | 1262.79  | 1243.98  | 205.900  | 132.990    |         |
| 15 | 1274.84 | 91.40     | 9.01            | 1282.07  | 1262.79  | 58.463   | 65.728     |         |
| 16 | 1344.27 | 71.07     | 29.11           | 1363.08  | 1282.07  | 1015.603 | 1039.053   |         |
| 17 | 1455.65 | 75.45     | 2.40            | 1456.62  | 1449.39  | 160.349  | 8.599      |         |
| 18 | 1517.85 | 53.44     | 1.77            | 1519.78  | 1516.41  | 154.253  | 2.904      |         |
| 19 | 1545.82 | 67.16     | 33.82           | 1554.50  | 1535.69  | 263.856  | 282.507    |         |
| 20 | 1579.57 | 90.37     | 0.82            | 1581.98  | 1577.16  | 44.492   | 2.015      |         |
| 21 | 2158.65 | 65.60     | 18.45           | 2163.95  | 2155.27  | 185.942  | 74.762     |         |
| 22 | 3085.37 | 94.54     | 5.85            | 3093.57  | 3079.58  | 28.401   | 33.847     |         |

Figure S1.4: FT-IR spectra and peak table of 4.



*tert*-butyl(4-iodo-3-nitrophenyl)sulfane 6: An argon flushed oven dried two necked round bottom flask was charged with KOH (642 mg, 11.5 mmol, 5 eq.) and absolute ethanol (20 mL). The solution was sparged with argon. Thiocyanide 4 (700 mg, 2.29 mmol, 1 eq.) was added portion wise at 10 °C. The mixture was stirred for 30 min at r.t. and a degassed mixture of  $H_2SO_4$  in EtOH (10% Vol.) was added cautiously. The mixture was then poured into water and extracted twice with EtOAc. The combined organic phase was dried over anhydrous MgSO<sub>4</sub>, filtered and concentrated under reduced pressure. The crud intermediate 4a was directly used without further purification.

A round bottom flask equipped with a reflux condenser was charged with *tert*-butyl chloride (5 mL, 45.8 mmol, 20 eq.) and sparged with argon. Thiol 4a (644 mg, 2.29 mmol, 1 eq.) was added and the mixture was degassed. Then AlCl<sub>3</sub> (183 mg, 1.37 mmol, 0.6 eq.) was added portion wise (10 mg portions) and the mixture was stirred for 4 h at r.t. The reaction was quenched with water and extracted with DCM. The combined organic phase was dried over anhydrous MgSO<sub>4</sub>, filtered, concentrated under reduced pressure and purified by column chromatography on silica gel (cyclohexane : EtOAc 8:1) and column chromatography on silica gel (cyclohexane : toluene 5:1) yielding 6 as a beige solid (661 mg, 1.96 mmol, 86%)

<sup>1</sup>**H-NMR** (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.98 (d, J = 8.1 Hz, 1H), 7.96 (d, J = 2.1 Hz, 1H), 7.38 (dd, J = 8.1, 2.1 Hz, 1H), 1.32 (s, 9H).

<sup>13</sup>C-NMR (126 MHz, CDCl<sub>3</sub>) δ 152.99, 141.82, 141.66, 135.68, 133.24, 86.87, 47.53, 31.07.

**HRMS (ESI)** m/z: calcd. for  $[C_{10}H_{12}INO_2S+Na]^+$  359.9522  $[M+Na]^+$ ; found 359.9526



Figure S1.6: <sup>13</sup>C-NMR (126 MHz, CDCl<sub>3</sub>) spectrum of 6.



Sample Name VOE\_379 Comment

Instrument maXis 4G Method ms\_nocolumn\_mid\_pos.m





|  | High | Resolution | Mass | Spectrometry | / Report |
|--|------|------------|------|--------------|----------|
|--|------|------------|------|--------------|----------|

| Mea | Measured m/z vs. theoretical m/z |               |              |                      |              |              |                 |                  |                  |               |            |                |         |  |
|-----|----------------------------------|---------------|--------------|----------------------|--------------|--------------|-----------------|------------------|------------------|---------------|------------|----------------|---------|--|
|     | Meas<br>359.                     | . m/z<br>9522 | #<br>1       | Formula<br>C 10 H 12 | IN Na O 2 S  | Score 100.00 | m/z<br>359.9526 | err [mDa]<br>0.4 | err [ppm]<br>1.1 | mSigma<br>4.3 | rdb<br>4.5 | e Conf<br>even | z<br>1+ |  |
| Mas | s list                           |               |              |                      |              |              |                 |                  |                  |               |            |                |         |  |
|     | #                                |               | m/z          | 1%                   | I.           |              |                 |                  |                  |               |            |                |         |  |
|     | 1                                | 183.0         | )775         | 6.1                  | 6842         |              |                 |                  |                  |               |            |                |         |  |
|     | 2                                | 185.1         | 144          | 30.9                 | 34785        |              |                 |                  |                  |               |            |                |         |  |
|     | 3                                | 199.1         | 300          | 8.1                  | 9123         |              |                 |                  |                  |               |            |                |         |  |
|     | 4                                | 200.0         | 1090<br>1790 | 30.4                 | 41003        |              |                 |                  |                  |               |            |                |         |  |
|     | 6                                | 210.8         | )467         | 8.8                  | 9912         |              |                 |                  |                  |               |            |                |         |  |
|     | 7                                | 217.1         | 042          | 9.5                  | 10711        |              |                 |                  |                  |               |            |                |         |  |
|     | 8                                | 226.9         | 9510         | 19.0                 | 21401        |              |                 |                  |                  |               |            |                |         |  |
|     | 9                                | 227.1         | 250          | 6.2                  | 7024         |              |                 |                  |                  |               |            |                |         |  |
|     | 10                               | 229.8         | 3924         | 8.6                  | 9729         |              |                 |                  |                  |               |            |                |         |  |
|     | 12                               | 230.5         | 1090<br>1712 | 0.7                  | 7885         |              |                 |                  |                  |               |            |                |         |  |
|     | 13                               | 239.0         | 883          | 10.2                 | 11441        |              |                 |                  |                  |               |            |                |         |  |
|     | 14                               | 243.9         | 9410         | 6.4                  | 7247         |              |                 |                  |                  |               |            |                |         |  |
|     | 15                               | 245.0         | )778         | 13.2                 | 14840        |              |                 |                  |                  |               |            |                |         |  |
|     | 16                               | 261.1         | 303          | 5.8                  | 6545         |              |                 |                  |                  |               |            |                |         |  |
|     | 1/                               | 2/1.1         | 612          | 15.2                 | 9236         |              |                 |                  |                  |               |            |                |         |  |
|     | 19                               | 280.0         | 2401         | 7.0                  | 7825         |              |                 |                  |                  |               |            |                |         |  |
|     | 20                               | 288.9         | 214          | 19.4                 | 21810        |              |                 |                  |                  |               |            |                |         |  |
|     | 21                               | 294.9         | 9193         | 14.2                 | 16028        |              |                 |                  |                  |               |            |                |         |  |
|     | 22                               | 301.1         | 401          | 10.2                 | 11485        |              |                 |                  |                  |               |            |                |         |  |
|     | 23                               | 303.8         | 3968         | 24.1                 | 27073        |              |                 |                  |                  |               |            |                |         |  |
|     | 24                               | 305.1         | 000          | 2.8                  | 00Z0<br>8075 |              |                 |                  |                  |               |            |                |         |  |
|     | 26                               | 319.2         | 2598         | 7.3                  | 8222         |              |                 |                  |                  |               |            |                |         |  |
|     | 27                               | 348.9         | 893          | 10.3                 | 11616        |              |                 |                  |                  |               |            |                |         |  |
|     | 28                               | 350.9         | 865          | 9.4                  | 10596        |              |                 |                  |                  |               |            |                |         |  |
|     | 29                               | 353.1         | 446          | 13.2                 | 14858        |              |                 |                  |                  |               |            |                |         |  |
|     | 30                               | 353.2         | 653          | 15.5                 | 17409        |              |                 |                  |                  |               |            |                |         |  |
|     | 32                               | 360.3         | 3022<br>3228 | 20.6                 | 23168        |              |                 |                  |                  |               |            |                |         |  |
|     | 33                               | 360.9         | 9547         | 12.0                 | 13556        |              |                 |                  |                  |               |            |                |         |  |
|     | 34                               | 361.3         | 3259         | 6.0                  | 6724         |              |                 |                  |                  |               |            |                |         |  |
|     | 35                               | 373.9         | 675          | 6.1                  | 6877         |              |                 |                  |                  |               |            |                |         |  |
|     | 36                               | 381.2         | 2965         | 10.4                 | 11717        |              |                 |                  |                  |               |            |                |         |  |
|     | 38                               | 413.2         | 2003         | 54.9                 | 61823        |              |                 |                  |                  |               |            |                |         |  |
|     | 39                               | 415.0         | 016          | 8.8                  | 9918         |              |                 |                  |                  |               |            |                |         |  |
|     | 40                               | 419.3         | 3129         | 6.6                  | 7399         |              |                 |                  |                  |               |            |                |         |  |
|     | 41                               | 428.0         | )143         | 32.0                 | 35982        |              |                 |                  |                  |               |            |                |         |  |
|     | 42                               | 429.0         | 1170         | 6.2                  | 7010         |              |                 |                  |                  |               |            |                |         |  |
|     | 43                               | 439.1         | 1240<br>3716 | 0.0                  | 10459        |              |                 |                  |                  |               |            |                |         |  |
|     | 45                               | 441.2         | 966          | 62.4                 | 70242        |              |                 |                  |                  |               |            |                |         |  |
|     | 46                               | 442.0         | 298          | 14.1                 | 15882        |              |                 |                  |                  |               |            |                |         |  |
|     | 47                               | 442.2         | 2997         | 18.2                 | 20475        |              |                 |                  |                  |               |            |                |         |  |
|     | 48                               | 455.3         | 5118<br>MEA  | 13.9                 | 15643        |              |                 |                  |                  |               |            |                |         |  |
|     | 49<br>50                         | 450.0         | 703          | 6.4                  | 7246         |              |                 |                  |                  |               |            |                |         |  |
|     | 51                               | 467.1         | 009          | 36.5                 | 41058        |              |                 |                  |                  |               |            |                |         |  |
|     | 52                               | 468.1         | 018          | 15.0                 | 16929        |              |                 |                  |                  |               |            |                |         |  |
|     | 53                               | 469.0         | 993          | 10.6                 | 11952        |              |                 |                  |                  |               |            |                |         |  |
|     | 54                               | 469.3         | 263          | 7.5                  | 8452         |              |                 |                  |                  |               |            |                |         |  |
|     | 56                               | 470.0         | 245          | 27.8                 | 31268        |              |                 |                  |                  |               |            |                |         |  |
|     | 57                               | 476.3         | 3273         | 7.2                  | 8132         |              |                 |                  |                  |               |            |                |         |  |
|     | 58                               | 478.3         | 877          | 6.0                  | 6802         |              |                 |                  |                  |               |            |                |         |  |
|     | 59                               | 482.0         | 610          | 8.3                  | 9321         |              |                 |                  |                  |               |            |                |         |  |
|     | 60                               | 484.0         | 764          | 9.3                  | 10476        |              |                 |                  |                  |               |            |                |         |  |
|     | 62                               | 490.0         | 10/          | 6.3                  | 7049         |              |                 |                  |                  |               |            |                |         |  |
|     | 20                               | 10110         |              | 0.0                  | 1001         |              |                 |                  |                  |               |            |                |         |  |

Bruker Compass DataAnalysis 4.0

Acquisition Date 21.07.2020 10:00:28

Page 2 of 3

Figure S1.8: HRMS (ESI) peak table of 6.

| #   | m/z      | 1%   | <u> </u> |
|-----|----------|------|----------|
| 63  | 508.1875 | 6.3  | 7037     |
| 64  | 513.1426 | 7.3  | 8208     |
| 65  | 536.1646 | 83.3 | 93734    |
| 66  | 537.1650 | 42.1 | 47391    |
| 67  | 538.1629 | 29.0 | 32612    |
| 68  | 539.1629 | 10.6 | 11953    |
| 69  | 541.1198 | 71.3 | 80254    |
| 70  | 542.1203 | 34.1 | 38329    |
| 71  | 543.1179 | 24.9 | 28071    |
| 72  | 544.1182 | 8.3  | 9309     |
| 73  | 553.4576 | 24.3 | 27290    |
| 74  | 554.4613 | 9.5  | 10692    |
| 75  | 557.0935 | 14.0 | 15724    |
| 76  | 558.0944 | 6.6  | 7389     |
| 77  | 559.0921 | 6.0  | 6707     |
| 78  | 559.1297 | 6.3  | 7082     |
| 79  | 569.4315 | 8.1  | 9167     |
| 80  | 610.1832 | 53.6 | 60346    |
| 81  | 611.1837 | 31.3 | 35218    |
| 82  | 612.1817 | 22.7 | 25531    |
| 83  | 613.1814 | 9.6  | 10746    |
| 84  | 615.1381 | 7.8  | 8801     |
| 85  | 684.2017 | 24.9 | 27973    |
| 86  | 685.2021 | 15.9 | 17925    |
| 87  | 685.4334 | 9.6  | 10764    |
| 88  | 686.2000 | 12.7 | 14332    |
| 89  | 687.1997 | 6.2  | 6940     |
| 90  | 693.9059 | 5.8  | 6552     |
| 91  | 722.5252 | 13.4 | 15099    |
| 92  | 723.5284 | 7.6  | 8596     |
| 93  | 758.2199 | 14.1 | 15855    |
| 94  | 759.2205 | 10.8 | 12119    |
| 95  | 760.2188 | 9.6  | 10822    |
| 96  | 832.2383 | 9.4  | 10570    |
| 97  | 833.2393 | 7.4  | 8365     |
| 98  | 834.2374 | 6.1  | 6860     |
| 99  | 883.2479 | 5.7  | 6435     |
| 100 | 906.2569 | 5.8  | 6494     |

#### Acquisition Parameter

| General                                    | Fore Vacuum<br>Scan Begin       | 2.39e+<br>75 m/z | 000 mBar | High Vacuum<br>Scan End               | 1.21e-007 mBar<br>2000 m/z | Source Type<br>Ion Polarity | ESI<br>Positive |  |
|--------------------------------------------|---------------------------------|------------------|----------|---------------------------------------|----------------------------|-----------------------------|-----------------|--|
| Source                                     | Set Nebulizer<br>Set Dry Heater | 2.0 Ba<br>200 °C |          | Set Capillary<br>Set End Plate Offset | 4500 V<br>-500 V           | Set Dry Gas                 | 8.0 l/min       |  |
| Quadrupole Set Ion Energy (MS only) 4.0 eV |                                 |                  |          |                                       |                            | 100.017                     |                 |  |
| Coll. Cell                                 | Cell Collision Energy           |                  | 8.0 eV   | Set Collision Cell RF                 | 600.0 Vpp                  | 100.0 vpp                   |                 |  |
| Ion Cooler                                 | Set Ion Cooler Transfer         | Time             | 75.0 µs  | Set Ion Cooler Pre Puls               | e Storage Time 1           | 0.0 µs                      |                 |  |

Bruker Compass DataAnalysis 4.0

Acquisition Date 21.07.2020 10:00:28

Page 3 of 3

Figure S1.9: HRMS (ESI) peak table of 6.



**4-(methylthio)-2-nitroaniline 5a**: An argon flushed round bottom flask was charged with KOH (845 mg, 12.8 mmol, 5 eq.) and MeOH (15 mL). The mixture was sparged with argon for 15 min and added to a degassed mixture of 2-nitro-4-thiocyanatoaniline (500 mg, 2.56 mmol, 1 eq.) in MeOH (10 mL). The mixture was stirred under argon for 1 h. Then methyl iodide (0.32 mL, 5.12 mmol, 2 eq.) was added at once and the reaction mixture was stirred at r.t. for 1 h. The reaction was quenched with aq. NH<sub>3</sub> and extracted with DCM. The combined organic phase was dried over anhydrous MgSO<sub>4</sub>, filtered and concentrated under reduced pressure yielding 5a as a red solid (470 mg, 2.55 mmol, quant.)

<sup>1</sup>**H-NMR** (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.06 (d, J = 2.2 Hz, 1H), 7.35 (dd, J = 8.7, 2.2 Hz, 1H), 6.77 (d, J = 8.7 Hz, 1H), 6.05 (s, 2H), 2.47 (s, 3H).

<sup>13</sup>C-NMR (126 MHz, CDCl<sub>3</sub>) δ 143.21, 137.01, 132.56, 126.06, 125.33, 119.62, 17.90.

**IR** *ν*(**cm**<sup>-1</sup>): 3473.03, 3340.92, 3161.55, 6112.85, 2920.95, 2851.52, 1631.64, 1576.68, 1554.98, 1498.08, 1448.42, 1403.10, 1361.63, 1330.29, 1237.72, 1172.62, 1106.57, 953.24, 897.31, 858.73, 819.68, 761.34, 718.91, 643.69, 530.38

**GC-MS (EI)**: *m/z* (%) = 183.8 (100), 168.8 (16.9), 137.9 (62.3), 123.0 (21.3), 110.8 (13.8), 90.9 (26.5)



Figure S1.10: <sup>1</sup>H-NMR (500 MHz, CDCl<sub>3</sub>) spectrum of 5a.



Figure S1.11: <sup>13</sup>C-NMR (126 MHz, CDCl<sub>3</sub>) spectrum of 5a.



Figure S1.12: HMBC\_GPSW (  $CDCl_3$ ) spectrum of 5a.



|    | Item           | Value          |
|----|----------------|----------------|
| 2  | Sample name    | VOE_359        |
| 3  | Sample ID      | VOE_359        |
| 4  | Option         |                |
| 5  | Intensity Mode | %Transmittance |
| 6  | Apodization    | Happ-Genzel    |
| 9  | No. of Scans   | 20             |
| 10 | Resolution     | 1 cm-1         |

|    | Peak    | Intensity | Corr. Intensity | Base (H) | Base (L) | Area     | Corr. Area | Comment |
|----|---------|-----------|-----------------|----------|----------|----------|------------|---------|
| 1  | 530.38  | 73.34     | 25.21           | 537.13   | 519.77   | 227.282  | 196.608    |         |
| 2  | 643.69  | 66.78     | 27.23           | 651.40   | 631.64   | 391.408  | 238.425    |         |
| 3  | 718.91  | 62.36     | 29.42           | 724.21   | 703.96   | 493.891  | 266.158    |         |
| 4  | 761.34  | 56.39     | 40.50           | 766.64   | 752.66   | 245.580  | 191.070    |         |
| 5  | 819.68  | 56.66     | 40.97           | 831.73   | 796.54   | 638.263  | 517.294    |         |
| 6  | 858.73  | 79.66     | 21.59           | 865.00   | 849.09   | 79.003   | 93.340     |         |
| 7  | 897.31  | 85.38     | 13.91           | 905.50   | 878.50   | 131.600  | 113.807    |         |
| 8  | 953.24  | 77.94     | 22.48           | 960.47   | 939.74   | 150.791  | 153.122    |         |
| 9  | 1106.57 | 72.49     | 0.67            | 1107.53  | 1084.39  | 517.545  | 7.957      |         |
| 10 | 1172.62 | 84.58     | 6.09            | 1176.96  | 1154.78  | 243.056  | 73.253     |         |
| 11 | 1237.72 | 67.67     | 1.27            | 1270.98  | 1236.75  | 489.033  | 25.752     |         |
| 12 | 1330.29 | 48.62     | 52.02           | 1344.27  | 1301.84  | 974.007  | 925.720    |         |
| 13 | 1361.63 | 76.70     | 24.97           | 1372.24  | 1344.27  | 252.914  | 312.771    |         |
| 14 | 1403.10 | 58.25     | 41.09           | 1411.78  | 1372.24  | 691.717  | 677.906    |         |
| 15 | 1448.42 | 66.28     | 14.41           | 1456.62  | 1437.81  | 483.038  | 132.984    |         |
| 16 | 1498.08 | 52.35     | 0.09            | 1498.57  | 1497.60  | 45.901   | 0.045      |         |
| 17 | 1554.98 | 57.04     | 4.58            | 1564.62  | 1554.02  | 286.331  | 3.598      |         |
| 18 | 1576.68 | 75.11     | 4.52            | 1594.52  | 1575.71  | 242.023  | 40.170     |         |
| 19 | 1631.64 | 57.95     | 4.30            | 1646.11  | 1629.23  | 511.520  | 32.365     |         |
| 20 | 2851.52 | 97.49     | 0.20            | 2852.00  | 2845.73  | 11.583   | 0.715      |         |
| 21 | 2920.95 | 90.77     | 7.00            | 2932.04  | 2911.31  | 103.995  | 60.166     |         |
| 22 | 3112.85 | 98.64     | 0.32            | 3114.30  | 3110.44  | 4.779    | 0.749      |         |
| 23 | 3161.55 | 97.19     | 0.15            | 3163.96  | 3160.59  | 9.043    | 0.280      |         |
| 24 | 3340.92 | 55.26     | 34.53           | 3369.36  | 3308.61  | 1691.820 | 1025.784   |         |
| 25 | 3473.03 | 68.86     | 25.64           | 3487.98  | 3446.99  | 770.948  | 485.269    |         |

Figure S1.13: FT-IR spectra and peak table of 5a.



(4-iodo-3-nitrophenyl)(methyl)sulfane 5: An argon flushed round bottom flask was charged with KOH (53.8 mg, 815  $\mu$ mol, 5 eq.) and MeOH (4 mL). The mixture was sparged with argon for 15 min and added to a degassed mixture of 2-nitro-4-thiocyanatoaniline (50 mg, 163  $\mu$ mol, 1 eq.) in MeOH (2 mL) and the mixture was stirred under argon for 2 h. Methyl iodide (0.02 mL, 326  $\mu$ mol, 2eq.) was added at once and the reaction mixture was stirred at r.t. for 2 h. The reaction was quenched with aq.NH<sub>3</sub> and extracted with DCM. The combined organic phase was washed with water, Brine, dried over anhydrous MgSO<sub>4</sub>, filtered and concentrated under reduced pressure yielding 5 as a yellow solid (48.0 mg, 163  $\mu$ mol, quant.)

#### Alternative way of synthesizing 5:



(4-iodo-3-nitrophenyl)(methyl)sulfane 5: An oven dried argon flushed two necked round bottom flask was charged with aniline 5a (400 mg, 2.17 mmol, 1eq.) and *p*-TsOH (1.24 g, 6.51 mmol, 3 eq.) suspended in MeCN (9 mL). The mixture was cooled to 0 °C in an ice bath. A solution of NaNO<sub>2</sub> (299 mg, 4.34 mmol, 2 eq.) and KI (901 mg, 5.43 mmol, 2.5 eq.) in water (1.5 mL) was added gradually into the flask. The mixture was stirred at 0 °C for 10 min and left to warm up to r.t. over 2 h. The reaction was quenched with aq. sat. NaHCO<sub>3</sub> diluted with aq. sat. Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> and extracted with EtOAc. The combined organic phase was dried over anhydrous MgSO<sub>4</sub>, filtered and concentrated under reduced pressure yielding 5 as a yellow solid (416 mg, 1.41 mmol, 65%).

<sup>1</sup>**H-NMR** (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.86 (d, J = 8.4 Hz, 1H), 7.65 (d, J = 2.2 Hz, 1H), 7.10 (dd, J = 8.4, 2.3 Hz, 1H), 2.52 (s, 3H).

<sup>13</sup>C-NMR (126 MHz, CDCl<sub>3</sub>) δ 153.26, 141.96, 141.56, 130.66, 122.05, 80.25, 15.28.

**HRMS (ESI)** m/z: calcd. for  $[C_7H_6NIO_2S+Na]^+$  317.9051  $[M+Na]^+$ ; found 317.9056





Figure S1.15: <sup>13</sup>C-NMR (126 MHz, CDCl<sub>3</sub>) spectrum of 5.





Figure S1.16: HRMS (ESI) spectrum of 5.

| Meas | sured        | m/z v         | vs.t         | heoretic             | al m/z   |        |                    |                  |                 |              |           |                |            |                            |         |
|------|--------------|---------------|--------------|----------------------|----------|--------|--------------------|------------------|-----------------|--------------|-----------|----------------|------------|----------------------------|---------|
|      | Meas<br>317. | . m/z<br>9051 | #<br>1       | Formula<br>C 7 H 6 I | N Na O 2 | 2 S    | Score<br>100.00 31 | m/z e<br>17.9056 | rr [mDa]<br>0.5 | err (pp<br>1 | m]<br>1.6 | mSigma<br>58.2 | rdb<br>4.5 | e <sup></sup> Conf<br>even | z<br>1+ |
|      | Meas         | . m/z         | #            | Formula              | Score    | m/z    | err [mDa]          | err [ppm]        | mSigma          | rdb          | е         | Conf z         |            |                            |         |
| Mas  | s list       |               |              |                      |          |        |                    |                  |                 |              |           |                |            |                            |         |
|      | #            | 170           | m/z          | 1%                   |          |        |                    |                  |                 |              |           |                |            |                            |         |
|      | 1            | 173.          | 0782         | 4.5                  | 9496     | ò      |                    |                  |                 |              |           |                |            |                            |         |
|      | 3            | 185           | 1145         | 22.4                 | 47358    | 1      |                    |                  |                 |              |           |                |            |                            |         |
|      | 4            | 199.          | 1299         | 5.0                  | 10555    | 5      |                    |                  |                 |              |           |                |            |                            |         |
|      | 5            | 205.          | 0596         | 31.9                 | 67469    | )      |                    |                  |                 |              |           |                |            |                            |         |
|      | 6            | 213.          | 1459         | 4.1                  | 8600     | )      |                    |                  |                 |              |           |                |            |                            |         |
|      | 8            | 210.          | 1240<br>9790 | 5.2                  | 8367     | ,      |                    |                  |                 |              |           |                |            |                            |         |
|      | 9            | 217.          | 0467         | 6.4                  | 13602    | 2      |                    |                  |                 |              |           |                |            |                            |         |
|      | 10           | 217.          | 1043         | 10.1                 | 21276    | 5      |                    |                  |                 |              |           |                |            |                            |         |
|      | 11           | 226.          | 9510         | 10.9                 | 23077    |        |                    |                  |                 |              |           |                |            |                            |         |
|      | 12           | 227.          | 1246         | 5.3                  | 11286    | 2      |                    |                  |                 |              |           |                |            |                            |         |
|      | 14           | 229.          | 8925         | 3.3                  | 6887     | ,      |                    |                  |                 |              |           |                |            |                            |         |
|      | 15           | 236.          | 0710         | 4.1                  | 8648     | 3      |                    |                  |                 |              |           |                |            |                            |         |
|      | 16           | 239.          | 0885         | 8.3                  | 17508    | 3      |                    |                  |                 |              |           |                |            |                            |         |
|      | 1/           | 243.          | 9411         | 3.6                  | 7632     | -      |                    |                  |                 |              |           |                |            |                            |         |
|      | 19           | 255.          | 1558         | 3.6                  | 7626     | ,<br>; |                    |                  |                 |              |           |                |            |                            |         |
|      | 20           | 261.          | 1304         | 4.6                  | 9734     |        |                    |                  |                 |              |           |                |            |                            |         |
|      | 21           | 271.          | 1872         | 7.5                  | 15814    | -      |                    |                  |                 |              |           |                |            |                            |         |
|      | 22           | 273.          | 1666         | 3.5                  | 7463     | 5      |                    |                  |                 |              |           |                |            |                            |         |
|      | 23           | 280.          | 9400         | 4.3                  | 9073     | ,      |                    |                  |                 |              |           |                |            |                            |         |
|      | 25           | 288.          | 9214         | 8.7                  | 18276    | 5      |                    |                  |                 |              |           |                |            |                            |         |
|      | 26           | 294.          | 9191         | 9.7                  | 20401    |        |                    |                  |                 |              |           |                |            |                            |         |
|      | 27           | 301.          | 1402         | 6.7                  | 14196    | j      |                    |                  |                 |              |           |                |            |                            |         |
|      | 20<br>29     | 305.          | 0900<br>1566 | 4.0                  | 23003    | )<br>  |                    |                  |                 |              |           |                |            |                            |         |
|      | 30           | 305.          | 1707         | 3.4                  | 7115     |        |                    |                  |                 |              |           |                |            |                            |         |
|      | 31           | 313.          | 2342         | 4.9                  | 10441    |        |                    |                  |                 |              |           |                |            |                            |         |
|      | 32           | 317.          | 9051         | 4.2                  | 8899     | )      |                    |                  |                 |              |           |                |            |                            |         |
|      | 34           | 341           | 0744<br>2654 | 3.1                  | 6631     | •      |                    |                  |                 |              |           |                |            |                            |         |
|      | 35           | 348.          | 9894         | 8.2                  | 17259    | )      |                    |                  |                 |              |           |                |            |                            |         |
|      | 36           | 350.          | 9863         | 8.4                  | 17786    | 5      |                    |                  |                 |              |           |                |            |                            |         |
|      | 37           | 353.          | 1445         | 8.4                  | 17729    | )      |                    |                  |                 |              |           |                |            |                            |         |
|      | 39           | 360           | 2004         | 9.0                  | 18039    | 1      |                    |                  |                 |              |           |                |            |                            |         |
|      | 40           | 381.          | 2968         | 7.2                  | 15158    | j.     |                    |                  |                 |              |           |                |            |                            |         |
|      | 41           | 393.          | 2962         | 3.6                  | 7565     | 5      |                    |                  |                 |              |           |                |            |                            |         |
|      | 42           | 411.0         | 0927<br>2655 | 5.1                  | 10854    |        |                    |                  |                 |              |           |                |            |                            |         |
|      | 44           | 419.3         | 3147         | 3.6                  | 7594     |        |                    |                  |                 |              |           |                |            |                            |         |
|      | 45           | 425.          | 1086         | 3.1                  | 6578     | 3      |                    |                  |                 |              |           |                |            |                            |         |
|      | 46           | 439.          | 1242         | 4.7                  | 9877     |        |                    |                  |                 |              |           |                |            |                            |         |
|      | 47           | 439.          | 8715<br>2072 | 4.6                  | 211207   |        |                    |                  |                 |              |           |                |            |                            |         |
|      | 49           | 442.3         | 3002         | 27.0                 | 56946    | 5      |                    |                  |                 |              |           |                |            |                            |         |
|      | 50           | 443.          | 3026         | 4.5                  | 9470     | )      |                    |                  |                 |              |           |                |            |                            |         |
|      | 51           | 449.          | 2863         | 6.2                  | 13051    |        |                    |                  |                 |              |           |                |            |                            |         |
|      | 52           | 455.          | 3121         | 7.1                  | 15054    |        |                    |                  |                 |              |           |                |            |                            |         |
|      | 54           | 458.          | 2741         | 3.6                  | 7682     | 2      |                    |                  |                 |              |           |                |            |                            |         |
|      | 55           | 467.          | 1014         | 25.6                 | 53980    | )      |                    |                  |                 |              |           |                |            |                            |         |
|      | 56           | 468.          | 1016         | 10.9                 | 23127    |        |                    |                  |                 |              |           |                |            |                            |         |
|      | 57           | 469.          | 0996<br>3266 | 7.1                  | 14984    | 1      |                    |                  |                 |              |           |                |            |                            |         |
|      | 59           | 475           | 3243         | 16.5                 | 34758    | 1      |                    |                  |                 |              |           |                |            |                            |         |
|      | 60           | 476.          | 3275         | 4.4                  | 9296     | ;      |                    |                  |                 |              |           |                |            |                            |         |

Bruker Compass DataAnalysis 4.0

Acquisition Date 21.07.2020 09:54:20

Page 3 of 4

Figure S1.17: HRMS (ESI) peak table of 5.

| #   | m/z      | 1%    | 1      |
|-----|----------|-------|--------|
| 61  | 478.3881 | 3.5   | 7482   |
| 62  | 485.1116 | 5.7   | 11995  |
| 63  | 493.3128 | 6.4   | 13596  |
| 64  | 499.1268 | 3.8   | 8015   |
| 65  | 508.1872 | 3.1   | 6603   |
| 66  | 513.1427 | 5.7   | 12125  |
| 67  | 517.2943 | 6.0   | 12673  |
| 68  | 519.2945 | 6.0   | 12720  |
| 69  | 536.1646 | 50.6  | 106948 |
| 70  | 537.1652 | 24.0  | 50720  |
| 71  | 537.3387 | 4.7   | 9864   |
| 72  | 538.1630 | 16.7  | 35280  |
| 73  | 539.1630 | 6.8   | 14258  |
| 74  | 541.1203 | 46.5  | 98268  |
| 75  | 542.1207 | 22.5  | 47456  |
| 76  | 543.1185 | 15.1  | 31/91  |
| 70  | 544.1183 | 5.9   | 12419  |
| 78  | 550.1800 | 3.3   | 6945   |
| 79  | 553.4579 | 8.9   | 18805  |
| 80  | 557,0020 | 3.3   | 0923   |
| 81  | 557.0939 | 18.4  | 38874  |
| 82  | 558.0944 | 9.6   | 20203  |
| 0.0 | 559.0920 | 7.9   | 12225  |
| 95  | 560.0025 | 2.0   | 6047   |
| 88  | 560 1301 | 3.3   | 6000   |
| 97  | 560 4217 | 2.0   | 9059   |
| 80  | 610 1832 | 13.0  | 28215  |
| 89  | 611 1835 | 7.8   | 16397  |
| 90  | 612 1818 | 6.0   | 12625  |
| 91  | 631,1122 | 4.5   | 9535   |
| 92  | 633 1484 | 4.9   | 10353  |
| 93  | 684 2010 | 3.1   | 6621   |
| 94  | 685,4331 | 7.6   | 15956  |
| 95  | 686.4371 | 3.6   | 7576   |
| 96  | 707.1674 | 3.7   | 7716   |
| 97  | 722.5256 | 3.8   | 7953   |
| 98  | 859.6035 | 8.5   | 17874  |
| 99  | 860.6064 | 4.9   | 10332  |
| 100 | 952.7973 | 3.6   | 7664   |
| #   | m/z      | 1%    | 1      |
| 1   | 317.9056 | 100.0 | 2000   |
| 2   | 318.9026 | 0.4   | 7      |
| 3   | 318.9089 | 8.4   | 167    |
| 4   | 319.9014 | 4.6   | 92     |
| 5   | 319.9099 | 0.7   | 13     |
| 6   | 320.9048 | 0.4   | 8      |

#### Acquisition Parameter

| General    | Fore Vacuum<br>Scan Begin       | 2.39e+<br>75 m/z  | 000 mBar | High Vacuum<br>Scan End                 | 1.21e-007 mBar<br>2000 m/z | Source Type<br>Ion Polarity | ESI<br>Positive |  |
|------------|---------------------------------|-------------------|----------|-----------------------------------------|----------------------------|-----------------------------|-----------------|--|
| Source     | Set Nebulizer<br>Set Dry Heater | 2.0 Bar<br>200 °C |          | Set Capillary<br>Set End Plate Offset   | 4500 V<br>-500 V           | Set Dry Gas                 | 8.0 l/min       |  |
| Quadrupole | Set Ion Energy ( MS on          | ly)               | 4.0 eV   |                                         |                            | 100.017                     |                 |  |
| Coll. Cell | Cell Collision Energy           |                   | 8.0 eV   | Set Collision Cell RF 600.0 Vpp         |                            | 100.0 Vpp                   |                 |  |
| Ion Cooler | Set Ion Cooler Transfer         | Time              | 75.0 µs  | 5.0 μs Set Ion Cooler Pre Pulse Storage |                            | 0.0 µs                      |                 |  |

Bruker Compass DataAnalysis 4.0

Acquisition Date 21.07.2020 09:54:20

Page 4 of 4

Figure S1.18: HRMS (ESI) peak table of 5.



**5**-(*tert*-butylthio)-2-iodo-*N*,*N*-dimethylaniline 9: A Schlenk tube was charged with fluorine 7 (200 mg, 844  $\mu$ mol, 1 eq.), Cs<sub>2</sub>CO<sub>3</sub> (825 mg, 2.53 mmol, 3 eq.) and KSC(CH<sub>3</sub>)<sub>3</sub> (169 mg, 1.51 mmol, 2 eq.). The solids were purged with argon and dissolved in degassed dry DMAc (1.2 mL). The reaction mixture was heated to 110°C and stirred for 32 h. The mixture was then cooled to r.t., diluted with water and extracted with DCM. The combined organic phase was dried over anhydrous MgSO<sub>4</sub>, filtered, concentrated under reduced pressure and purified by column chromatography on silica gel (DCM) yielding 9 as a yellowish oil (110 mg, 328  $\mu$ mol, 44%).

<sup>1</sup>**H-NMR** (500 MHz, CDCl<sub>3</sub>) δ 7.78 (d, J = 8.1 Hz, 1H), 7.19 (d, J = 2.1 Hz, 1H), 6.92 (dd, J = 8.1, 2.1 Hz, 1H), 2.77 (s, 6H), 1.29 (s, 9H).

<sup>13</sup>C-NMR (126 MHz, CDCl<sub>3</sub>) δ 155.10, 140.09, 133.94, 133.72, 129.61, 98.27, 46.25, 45.09, 31.11.

**HRMS (ESI)** m/z: calcd. for  $[C_{12}H_{19}INS+H]^+$  336.0277  $[M+H]^+$ ; found 336.0277



Figure S1.20: <sup>13</sup>C-NMR (126 MHz, CDCl<sub>3</sub>) spectrum of 9.

f1 (ppm) - 0



Figure S1.21: HRMS (ESI) spectrum of 9.

| ingh i toboladon mado opoda onida y itopol | High | Resolution | Mass | Spectrometry | / Report |
|--------------------------------------------|------|------------|------|--------------|----------|
|--------------------------------------------|------|------------|------|--------------|----------|

| Meas | sured    | m/z v | s.t         | heoretica      | al m/z    |          |          |           |           |        |     |                     |    |      |  |
|------|----------|-------|-------------|----------------|-----------|----------|----------|-----------|-----------|--------|-----|---------------------|----|------|--|
|      | Meas.    | m/z   | #           | Formula        |           | Score    | m/z      | err [mDa] | err [ppm] | mSigma | rdb | e <sup>-</sup> Conf | Z  |      |  |
|      | 336.0    | 211   | 1           | C 12 H 19      | INS       | 100.00   | 330.0277 | 0.1       | 0.2       | 4.0    | 3.5 | even                | 1+ | <br> |  |
| Mass | s list   |       |             |                |           |          |          |           |           |        |     |                     |    |      |  |
|      | #        | 470   | /           | z 1%           | 30        | 1        |          |           |           |        |     |                     |    |      |  |
|      | 2        | 1/3   | 078         | 3 4.9          | 73        | 18       |          |           |           |        |     |                     |    |      |  |
|      | 3        | 203   | .052        | 5 3.6          | 53        | 81       |          |           |           |        |     |                     |    |      |  |
|      | 4        | 205   | 059         | 9 17.0         | 255       | 73       |          |           |           |        |     |                     |    |      |  |
|      | 5        | 215   | 124         | 9 3.5          | 53        | 03       |          |           |           |        |     |                     |    |      |  |
|      | 6        | 217.  | .104        | 7 12.8         | 192       | 21       |          |           |           |        |     |                     |    |      |  |
|      | 8        | 225   | 1094        | 1 35           | 40.       | 29<br>25 |          |           |           |        |     |                     |    |      |  |
|      | 9        | 227   | 125         | 1 4.2          | 63        | 67       |          |           |           |        |     |                     |    |      |  |
|      | 10       | 229   | 140         | 7 3.1          | 46        | 91       |          |           |           |        |     |                     |    |      |  |
|      | 11       | 236   | 071         | 0 3.1          | 46        | 18       |          |           |           |        |     |                     |    |      |  |
|      | 12       | 239   | 120         | 4 8.1<br>7 2.4 | 122       | 17<br>54 |          |           |           |        |     |                     |    |      |  |
|      | 14       | 269   | 135         | 7 3.4<br>5 3.7 | 55        | 34<br>81 |          |           |           |        |     |                     |    |      |  |
|      | 15       | 273   | 166         | 8 8.0          | 119       | 52       |          |           |           |        |     |                     |    |      |  |
|      | 16       | 279   | .228        | 8 4.4          | 66        | 26       |          |           |           |        |     |                     |    |      |  |
|      | 17       | 285   | 130         | 4 4.1          | 61        | 05       |          |           |           |        |     |                     |    |      |  |
|      | 19       | 293   | 208         | 0 39           | 42        | 91       |          |           |           |        |     |                     |    |      |  |
|      | 20       | 298   | 165         | 8 4.8          | 72        | 51       |          |           |           |        |     |                     |    |      |  |
|      | 21       | 299   | 161         | 7 8.2          | 123       | 37       |          |           |           |        |     |                     |    |      |  |
|      | 22       | 301   | .140        | 4 8.1          | 121       | 53       |          |           |           |        |     |                     |    |      |  |
|      | 23       | 304   | 299         | 2 3.4          | 155       | 00<br>40 |          |           |           |        |     |                     |    |      |  |
|      | 25       | 305   | .302        | 8 2.6          | 39        | 62       |          |           |           |        |     |                     |    |      |  |
|      | 26       | 307   | 260         | 2 3.0          | 45        | 68       |          |           |           |        |     |                     |    |      |  |
|      | 27       | 309   | .204        | 0 3.2          | 47        | 88       |          |           |           |        |     |                     |    |      |  |
|      | 20       | 321   | 239         | 3 3.4<br>4 2.9 | 42        | 23<br>99 |          |           |           |        |     |                     |    |      |  |
|      | 30       | 327   | .007        | 9 3.0          | 45        | 47       |          |           |           |        |     |                     |    |      |  |
|      | 31       | 329   | .005        | 0 2.7          | 40        | 25       |          |           |           |        |     |                     |    |      |  |
|      | 32       | 331   | .187        | 2 3.6          | 53        | 99       |          |           |           |        |     |                     |    |      |  |
|      | 33       | 332   | .208        | 5 5.3<br>6 6.5 | 97        | 38       |          |           |           |        |     |                     |    |      |  |
|      | 35       | 336   | .027        | 7 100.0        | 1502      | 19       |          |           |           |        |     |                     |    |      |  |
|      | 36       | 337   | .030        | 5 14.1         | 211       | 98       |          |           |           |        |     |                     |    |      |  |
|      | 37       | 338   | .023        | 3 4.8          | 71        | 70       |          |           |           |        |     |                     |    |      |  |
|      | 39       | 348   | 200.<br>989 | 9 3.0<br>4 6.9 | 103       | 40<br>83 |          |           |           |        |     |                     |    |      |  |
|      | 40       | 350   | .986        | 6 7.0          | 104       | 67       |          |           |           |        |     |                     |    |      |  |
|      | 41       | 353   | 229         | 6 2.8          | 41        | 86       |          |           |           |        |     |                     |    |      |  |
|      | 42       | 353   | .265        | 8 29.2         | 438       | 97       |          |           |           |        |     |                     |    |      |  |
|      | 43<br>44 | 365   | 105         | 0 97           | 97<br>145 | 53       |          |           |           |        |     |                     |    |      |  |
|      | 45       | 381   | 296         | 9 21.6         | 324       | 46       |          |           |           |        |     |                     |    |      |  |
|      | 46       | 382   | 300         | 5 5.2          | 77        | 72       |          |           |           |        |     |                     |    |      |  |
|      | 47       | 389   | .250        | 3 3.5          | 52        | 28       |          |           |           |        |     |                     |    |      |  |
|      | 40<br>49 | 393   | .203<br>296 | 8 6.4          | 95        | 30<br>75 |          |           |           |        |     |                     |    |      |  |
|      | 50       | 407   | 312         | 3 2.8          | 41        | 85       |          |           |           |        |     |                     |    |      |  |
|      | 51       | 413   | 265         | 6 15.5         | 232       | 77       |          |           |           |        |     |                     |    |      |  |
|      | 52       | 414   | 268         | 9 4.3          | 65        | 29       |          |           |           |        |     |                     |    |      |  |
|      | 54       | 421   | 328         | 4 3.7          | 56        | 11       |          |           |           |        |     |                     |    |      |  |
|      | 55       | 425   | 361         | 7 5.1          | 76        | 06       |          |           |           |        |     |                     |    |      |  |
|      | 56       | 427   | 266         | 3 2.7          | 41        | 18       |          |           |           |        |     |                     |    |      |  |
|      | 57       | 435   | 343         | 9 2.7          | 41        | 30       |          |           |           |        |     |                     |    |      |  |
|      | 59       | 442   | .290        | 9 9.7<br>0 3.2 | 48        | 33       |          |           |           |        |     |                     |    |      |  |
|      | 60       | 447   | 344         | 4 19.3         | 290       | 45       |          |           |           |        |     |                     |    |      |  |
|      | 61       | 448   | 347         | 6 5.7          | 85        | 75       |          |           |           |        |     |                     |    |      |  |
|      | 62       | 449   | .360        | 0 4.0          | 59        | 43       |          |           |           |        |     |                     |    |      |  |

Bruker Compass DataAnalysis 4.0

Acquisition Date 27.05.2020 14:19:05

Page 2 of 3

Figure S1.22: HRMS (ESI) peak table of 9.

| #   | m/z       | ۱%   | 1     |
|-----|-----------|------|-------|
| 63  | 452.8700  | 2.7  | 3989  |
| 64  | 455.3122  | 3.2  | 4737  |
| 65  | 463.3742  | 2.6  | 3978  |
| 66  | 469.3278  | 9.8  | 14701 |
| 67  | 470.3309  | 3.4  | 5057  |
| 68  | 473.3443  | 2.7  | 4129  |
| 69  | 473.4688  | 5.5  | 8283  |
| 70  | 481.3133  | 2.8  | 4248  |
| 71  | 501.4997  | 6.9  | 10330 |
| 72  | 537.3935  | 3.1  | 4595  |
| 73  | 553.3884  | 2.8  | 4169  |
| 74  | 555.5106  | 3.1  | 4658  |
| 75  | 610.1835  | 3.6  | 5474  |
| 76  | 622.0284  | 2.7  | 4053  |
| 77  | 644.0102  | 2.9  | 4389  |
| 78  | 663.4529  | 7.0  | 10551 |
| 79  | 664.4559  | 3.4  | 5106  |
| 80  | 680.4788  | 7.6  | 11389 |
| 81  | 681.4827  | 3.9  | 5871  |
| 82  | 685.4350  | 14.3 | 21468 |
| 83  | 686.4380  | 7.2  | 10792 |
| 84  | 699.5942  | 2.8  | 4141  |
| 85  | 700.6253  | 4.3  | 6503  |
| 86  | 705.5816  | 12.3 | 18422 |
| 87  | 706.5846  | 5.7  | 8632  |
| 88  | 721.5754  | 8.0  | 12081 |
| 89  | 722.5789  | 4.2  | 6372  |
| 90  | 829.7225  | 3.2  | 4846  |
| 91  | 861.3820  | 5.4  | 8051  |
| 92  | 861.8835  | 5.2  | 7854  |
| 93  | 862.3826  | 12.2 | 18393 |
| 94  | 862.8833  | 11.6 | 17469 |
| 95  | 863.3832  | 11.9 | 17812 |
| 96  | 863.8844  | 7.8  | 11717 |
| 97  | 864.3836  | 4.3  | 6509  |
| 98  | 943.9909  | 2.7  | 4074  |
| 99  | 1221.9876 | 3.2  | 4808  |
| 100 | 1243.9726 | 3.1  | 4706  |

#### Acquisition Parameter

| General    | Fore Vacuum<br>Scan Begin       | 2.61e+<br>75 m/z | 000 mBar | High Vacuum<br>Scan End               | 1.14e-007 mBar<br>1700 m/z | Source Type<br>Ion Polarity | ESI<br>Positive |
|------------|---------------------------------|------------------|----------|---------------------------------------|----------------------------|-----------------------------|-----------------|
| Source     | Set Nebulizer<br>Set Dry Heater | 0.4 Ba<br>180 °C | r        | Set Capillary<br>Set End Plate Offset | 3600 V<br>-500 V           | Set Dry Gas                 | 4.0 l/min       |
| Quadrupole | Set Ion Energy ( MS on          | ly)              | 4.0 eV   |                                       |                            |                             |                 |
| Coll. Cell | Collision Energy                |                  | 8.0 eV   | Set Collision Cell RF                 | 350.0 Vpp                  |                             |                 |
| Ion Cooler | Set Ion Cooler Transfer         | Time             | 75.0 µs  | Set Ion Cooler Pre Puls               | e Storage Time             | 10.0 µs                     |                 |

Bruker Compass DataAnalysis 4.0

Acquisition Date 27.05.2020 14:19:05

Page 3 of 3

Figure S1.23: HRMS (ESI) peak table of 9.



**2-iodo-***N*,*N***-dimethyl-5-(methylthio)aniline 8**: A Schlenk tube was charged with fluoride 7 (99.9 mg, 377  $\mu$ mol, 1 eq.), Cs<sub>2</sub>CO<sub>3</sub> (369 mg, 1.13 mmol, 3 eq.) and NaSCH<sub>3</sub> (52.8 mg, 754  $\mu$ mol, 2 eq.). The solids were purged with argon and dry degassed DMAc (1.2 mL) was added. The mixture was stirred at 110 °C for 16 h. The mixture was then cooled to r.t., diluted with water and extracted with DCM. The combined organic phase was dried over anhydrous MgSO<sub>4</sub>, filtered, concentrated under reduced pressure and purified by column chromatography on silica gel (DCM) yielding 8 as a yellowish oil ( 81 mg, 276  $\mu$ mol, 73%).

<sup>1</sup>**H-NMR** (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.71 (d, J = 8.3 Hz, 1H), 6.96 (d, J = 2.3 Hz, 1H), 6.66 (dd, J = 8.3, 2.3 Hz, 1H), 2.76 (s, 6H), 2.47 (s, 3H).

<sup>13</sup>C-NMR (126 MHz, CDCl<sub>3</sub>) δ 155.29, 140.40, 139.94, 122.86, 119.02, 92.22, 44.99, 16.00.

**HRMS (ESI)** m/z: calcd. for  $[C_9H_{12}INS+H]^+$  293.9812  $[M+H]^+$ ; found 293.9808



Figure S1.24: <sup>1</sup>H-NMR (500 MHz, CDCl<sub>3</sub>) spectrum of 8.



Figure S1.25: <sup>13</sup>C-NMR (126 MHz, CDCl<sub>3</sub>) spectrum of 8.



Figure S1.26: HRMS (ESI) spectrum of 8.

| Meas | ured     | m/z v         | /s.t         | heoretic  | al m/z | z      |                 |                   |           |        |     |        |         |  |  |
|------|----------|---------------|--------------|-----------|--------|--------|-----------------|-------------------|-----------|--------|-----|--------|---------|--|--|
|      | Meas     | . m/z<br>9812 | #<br>1       | Formula   | INS    | Score  | m/z<br>293 9808 | err [mDa]<br>-0 4 | err [ppm] | mSigma | rdb | e Conf | Z<br>1+ |  |  |
| Mass | i list   | 3012          | <u> </u>     | 0 3 11 13 | 1110   | 100.00 | 230.3000        | -0.4              | -1.0      | 11.5   | 0.0 | 64611  |         |  |  |
|      | #        |               | m/z          | 1%        |        |        |                 |                   |           |        |     |        |         |  |  |
|      | 1        | 163.0         | 0390         | 1.3       | 19     | 804    |                 |                   |           |        |     |        |         |  |  |
|      | 2        | 164.9         | 9206         | 2.0       | 29     | 802    |                 |                   |           |        |     |        |         |  |  |
|      | 3        | 168.0         | J841<br>1020 | 0.7       | 10     | 367    |                 |                   |           |        |     |        |         |  |  |
|      | 5        | 183.0         | )778         | 0.3       | 29     | 271    |                 |                   |           |        |     |        |         |  |  |
|      | 6        | 186.0         | )744         | 0.5       | 6      | 975    |                 |                   |           |        |     |        |         |  |  |
|      | 7        | 214.0         | )715         | 0.4       | 6      | 421    |                 |                   |           |        |     |        |         |  |  |
|      | 8        | 216.9         | 9790         | 0.4       | 12     | 543    |                 |                   |           |        |     |        |         |  |  |
|      | 10       | 218.9         | 1407<br>1283 | 0.9       | 7      | 370    |                 |                   |           |        |     |        |         |  |  |
|      | 11       | 226.0         | 0716         | 0.5       | 7      | 064    |                 |                   |           |        |     |        |         |  |  |
|      | 12       | 227.0         | )398         | 0.7       | 10     | 626    |                 |                   |           |        |     |        |         |  |  |
|      | 13       | 249.8         | 3978         | 0.7       | 11     | 236    |                 |                   |           |        |     |        |         |  |  |
|      | 14       | 202.0         | 0073<br>1635 | 0.5       | 7      | 336    |                 |                   |           |        |     |        |         |  |  |
|      | 16       | 278.0         | )033         | 1.1       | 16     | 415    |                 |                   |           |        |     |        |         |  |  |
|      | 17       | 278.9         | 9566         | 0.4       | 5      | 358    |                 |                   |           |        |     |        |         |  |  |
|      | 18       | 284.8         | 3695         | 1.9       | 28     | 460    |                 |                   |           |        |     |        |         |  |  |
|      | 20       | 293.5         | 1097<br>1812 | 100.0     | 1510   | 902    |                 |                   |           |        |     |        |         |  |  |
|      | 21       | 294.9         | 9836         | 8.9       | 134    | 009    |                 |                   |           |        |     |        |         |  |  |
|      | 22       | 295.9         | 9766         | 3.8       | 57     | 635    |                 |                   |           |        |     |        |         |  |  |
|      | 23       | 296.9         | 9797         | 0.4       | 6      | 092    |                 |                   |           |        |     |        |         |  |  |
|      | 24       | 297.          | 1900         | 2.2       | 33     | 275    |                 |                   |           |        |     |        |         |  |  |
|      | 26       | 309.2         | 2051         | 0.4       | 5      | 883    |                 |                   |           |        |     |        |         |  |  |
|      | 27       | 334.8         | 3749         | 0.3       | 5      | 264    |                 |                   |           |        |     |        |         |  |  |
|      | 28       | 337.          | 1199         | 0.4       | 6      | 050    |                 |                   |           |        |     |        |         |  |  |
|      | 30       | 391.8         | 3289         | 1.0       | 14     | 618    |                 |                   |           |        |     |        |         |  |  |
|      | 31       | 393.1         | 1482         | 0.5       | 7      | 478    |                 |                   |           |        |     |        |         |  |  |
|      | 32       | 404.8         | 3187         | 1.2       | 18     | 783    |                 |                   |           |        |     |        |         |  |  |
|      | 33       | 417.0         | 285          | 0.4       | 6      | 792    |                 |                   |           |        |     |        |         |  |  |
|      | 35       | 419.3         | 3182         | 1.0       | 40     | 483    |                 |                   |           |        |     |        |         |  |  |
|      | 36       | 426.8         | 3006         | 1.0       | 15     | 178    |                 |                   |           |        |     |        |         |  |  |
|      | 37       | 433.3         | 3303         | 0.8       | 12     | 092    |                 |                   |           |        |     |        |         |  |  |
|      | 38       | 441.2         | 2969         | 3.4       | 50     | 605    |                 |                   |           |        |     |        |         |  |  |
|      | 40       | 443.0         | )641         | 0.4       | 5      | 833    |                 |                   |           |        |     |        |         |  |  |
|      | 41       | 445.0         | )255         | 0.9       | 12     | 909    |                 |                   |           |        |     |        |         |  |  |
|      | 42       | 447.3         | 3456         | 0.4       | 5      | 605    |                 |                   |           |        |     |        |         |  |  |
|      | 43<br>44 | 448.1         | 3125         | 0.6       | 11     | 952    |                 |                   |           |        |     |        |         |  |  |
|      | 45       | 459.0         | )417         | 4.5       | 67     | 722    |                 |                   |           |        |     |        |         |  |  |
|      | 46       | 460.0         | )442         | 1.0       | 14     | 491    |                 |                   |           |        |     |        |         |  |  |
|      | 47       | 461.0         | 382          | 0.4       | 6      | 694    |                 |                   |           |        |     |        |         |  |  |
|      | 48<br>49 | 409.3         | 3067         | 0.3       | 5      | 159    |                 |                   |           |        |     |        |         |  |  |
|      | 50       | 478.3         | 3879         | 0.7       | 10     | 560    |                 |                   |           |        |     |        |         |  |  |
|      | 51       | 480.5         | 5132         | 0.6       | 9      | 213    |                 |                   |           |        |     |        |         |  |  |
|      | 52       | 482.4         | 1045         | 0.3       | 15     | 169    |                 |                   |           |        |     |        |         |  |  |
|      | 54       | 5027          | 7870         | 0.4       | 5      | 788    |                 |                   |           |        |     |        |         |  |  |
|      | 55       | 505.0         | 292          | 1.0       | 15     | 461    |                 |                   |           |        |     |        |         |  |  |
|      | 56       | 506.5         | 5286         | 1.6       | 23     | 770    |                 |                   |           |        |     |        |         |  |  |
|      | 57       | 507.5         | 5317<br>5433 | 0.6       | 9      | 809    |                 |                   |           |        |     |        |         |  |  |
|      | 59       | 511.7         | 783          | 0.7       | 10     | 013    |                 |                   |           |        |     |        |         |  |  |
|      | 60       | 524.7         | 7684         | 0.7       | 11     | 024    |                 |                   |           |        |     |        |         |  |  |
|      | 61       | 526.4         | 1304         | 0.3       | 5      | 151    |                 |                   |           |        |     |        |         |  |  |
|      | 62       | 528.5         | 5106         | 0.6       | 9      | 642    |                 |                   |           |        |     |        |         |  |  |

Bruker Compass DataAnalysis 4.0

Acquisition Date 13.05.2020 13:56:17

Page 2 of 3

Figure S1.27: HRMS (ESI) peak table of 8.

| #   | m/z      | 1%  | 1      |
|-----|----------|-----|--------|
| 63  | 533.7604 | 0.7 | 10352  |
| 64  | 546.7502 | 0.7 | 10027  |
| 65  | 548.5028 | 0.8 | 12128  |
| 66  | 553.4580 | 0.6 | 8679   |
| 67  | 565.6023 | 0.7 | 10513  |
| 68  | 568.7322 | 0.4 | 6481   |
| 69  | 590.7141 | 0.5 | 6830   |
| 70  | 618.7382 | 0.4 | 6338   |
| 71  | 638.1182 | 0.4 | 5333   |
| 72  | 644.7183 | 0.3 | 4991   |
| 73  | 666.7002 | 0.4 | 5658   |
| 74  | 675.6920 | 0.4 | 6379   |
| 75  | 683.6001 | 0.7 | 10738  |
| 76  | 684.1059 | 1.4 | 20605  |
| 77  | 684.6032 | 0.3 | 5255   |
| 78  | 685.1089 | 0.5 | 7643   |
| 79  | 686.1036 | 0.3 | 5064   |
| 80  | 699.5951 | 3.3 | 49607  |
| 81  | 700.6264 | 6.0 | 90016  |
| 82  | 701.4923 | 0.4 | 5386   |
| 83  | 701.6296 | 2.9 | 43263  |
| 84  | 702.6306 | 0.8 | 12518  |
| 85  | 705.5823 | 7.2 | 108150 |
| 86  | 706.5853 | 3.4 | 51013  |
| 87  | 707.5866 | 1.1 | 16160  |
| 88  | 721.5768 | 3.5 | 53553  |
| 89  | 722.5798 | 1.6 | 24824  |
| 90  | 723.5799 | 0.5 | 7567   |
| 91  | 742.6737 | 0.8 | 12608  |
| 92  | 743.6761 | 0.5 | 6960   |
| 93  | 758.6683 | 1.3 | 19724  |
| 94  | 759.6714 | 0.6 | 9123   |
| 95  | 760.6713 | 0.5 | 6982   |
| 96  | 936.8527 | 0.4 | 5844   |
| 97  | 942.8473 | 0.4 | 6303   |
| 98  | 963.8752 | 0.6 | 9269   |
| 99  | 965.8706 | 1.3 | 19713  |
| 100 | 966.8726 | 0.5 | 7240   |

#### Acquisition Parameter

| General    | Fore Vacuum<br>Scan Begin       | 2.38e+<br>75 m/z | 000 mBar | High Vacuum<br>Scan End               | 1.14e-007 mBar<br>2000 m/z | Source Type<br>Ion Polarity | ESI<br>Positive |
|------------|---------------------------------|------------------|----------|---------------------------------------|----------------------------|-----------------------------|-----------------|
| Source     | Set Nebulizer<br>Set Dry Heater | 2.0 Ba<br>200 °C |          | Set Capillary<br>Set End Plate Offset | 4500 V<br>-500 V           | Set Dry Gas                 | 8.0 l/min       |
| Quadrupole | Set Ion Energy ( MS on          | ly)              | 4.0 eV   |                                       |                            |                             |                 |
| Coll. Cell | Collision Energy                |                  | 8.0 eV   | Set Collision Cell RF                 | 600.0 Vpp                  |                             |                 |
| Ion Cooler | Set Ion Cooler Transfer         | Time             | 75.0 µs  | Set Ion Cooler Pre Puls               | e Storage Time 1           | 0.0 µs                      |                 |

Bruker Compass DataAnalysis 4.0

Acquisition Date 13.05.2020 13:56:17

Page 3 of 3

Figure S1.28: HRMS (ESI) peak table of 8.



((4-(*tert*-butylthio)-2-nitrophenyl)ethynyl)trimethylsilane 11: An oven dried Schlenk tube was charged with iodine 6 (300 mg, 890  $\mu$ mol, 1 eq.), CuI (17.0 mg, 89.0  $\mu$ mol, 0.1 eq.) Pd(PPh<sub>3</sub>)<sub>4</sub> (51.4 mg, 44.5  $\mu$ mol, 0.05 eq.) the solids were degassed for 20 min and dissolved in a degassed mixture of dry THF(2.4 mL), TEA(1.2 mL) and TMS acetylene (0.14 mL, 0.979 mmol, 1.1 eq.). The mixture was stirred at r.t. for 15 h and poured into aq. sat. NH<sub>4</sub>Cl and extracted with DCM. The combined organic phase was dried over anhydrous MgSO<sub>4</sub>, filtered, concentrated under reduced pressure and purified by column chromatography on silica gel (cyclohexane : toluene 3:2) yielding a yellowish oil (170 mg, 553  $\mu$ mol, 59%)

<sup>1</sup>**H-NMR** (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.14 (d, J = 1.8 Hz, 1H), 7.67 (dd, J = 8.0, 1.8 Hz, 1H), 7.58 (d, J = 8.1 Hz, 1H), 1.31 (s, 9H), 0.28 (s, 9H).

<sup>13</sup>**C-NMR** (126 MHz, CDCl<sub>3</sub>) δ 150.18, 141.17, 135.72, 135.12, 132.55, 118.73, 105.85, 99.35, 48.01, 31.38, -0.00.

**HRMS (ESI)** m/z: calcd. for  $[C_{15}H_{21}NO_2SSi+Na]^+$  330.0952  $[M+Na]^+$ ; found 330.0954



Figure S1.30: <sup>13</sup>C-NMR (126 MHz, CDCl<sub>3</sub>) spectrum of 11.



Figure S1.31: HRMS (ESI) spectrum of 11.

|  | High F | Resolution | Mass | Spectrometry | / Report |
|--|--------|------------|------|--------------|----------|
|--|--------|------------|------|--------------|----------|

| Meas | sured        | m/z v         | /s.t         | heoretica            | al m/z        |              |                 |                  |                  |                |            |                |         |  |
|------|--------------|---------------|--------------|----------------------|---------------|--------------|-----------------|------------------|------------------|----------------|------------|----------------|---------|--|
|      | Meas<br>330. | . m/z<br>0952 | #<br>1       | Formula<br>C 15 H 21 | N Na O 2 S Si | Score 100.00 | m/z<br>330.0954 | err [mDa]<br>0.3 | err [ppm]<br>0.8 | mSigma<br>16.7 | rdb<br>6.5 | e Conf<br>even | z<br>1+ |  |
| Mas  | s list       |               |              |                      |               |              |                 |                  |                  |                |            |                |         |  |
|      | #            |               | m/z          | : 1%                 | I             |              |                 |                  |                  |                |            |                |         |  |
|      | 1            | 158.9         | 9647         | 2.2                  | 3250          |              |                 |                  |                  |                |            |                |         |  |
|      | 2            | 107.1         | 1042         | 63                   | 2532<br>9148  |              |                 |                  |                  |                |            |                |         |  |
|      | 4            | 173.0         | )789         | 4.7                  | 6861          |              |                 |                  |                  |                |            |                |         |  |
|      | 5            | 185.1         | 151          | 9.3                  | 13490         |              |                 |                  |                  |                |            |                |         |  |
|      | 6            | 205.0         | 0601         | 8.0                  | 11561         |              |                 |                  |                  |                |            |                |         |  |
|      | /<br>8       | 213.1         | 1257         | 1.8                  | 2557          |              |                 |                  |                  |                |            |                |         |  |
|      | 9            | 217.1         | 044          | 7.1                  | 10338         |              |                 |                  |                  |                |            |                |         |  |
|      | 10           | 226.9         | 9517         | 12.6                 | 18345         |              |                 |                  |                  |                |            |                |         |  |
|      | 11           | 227.1         | 256          | 6.7                  | 9678          |              |                 |                  |                  |                |            |                |         |  |
|      | 12           | 236.0         | )718<br>)674 | 13.2                 | 19182         |              |                 |                  |                  |                |            |                |         |  |
|      | 14           | 240.5         | 678          | 1.8                  | 2545          |              |                 |                  |                  |                |            |                |         |  |
|      | 15           | 261.1         | 309          | 2.5                  | 3581          |              |                 |                  |                  |                |            |                |         |  |
|      | 16           | 263.0         | )560         | 4.6                  | 6701          |              |                 |                  |                  |                |            |                |         |  |
|      | 1/           | 269.1         | 1357         | 1./                  | 2530          |              |                 |                  |                  |                |            |                |         |  |
|      | 19           | 288.2         | 892          | 2.0                  | 4216          |              |                 |                  |                  |                |            |                |         |  |
|      | 20           | 294.9         | 392          | 3.0                  | 4408          |              |                 |                  |                  |                |            |                |         |  |
|      | 21           | 299.1         | 608          | 2.0                  | 2976          |              |                 |                  |                  |                |            |                |         |  |
|      | 22           | 301.0         | )747<br>1410 | 8.9                  | 12936         |              |                 |                  |                  |                |            |                |         |  |
|      | 23           | 301.1         | 2110         | 3.4                  | 4990          |              |                 |                  |                  |                |            |                |         |  |
|      | 25           | 302.0         | 641          | 2.0                  | 2897          |              |                 |                  |                  |                |            |                |         |  |
|      | 26           | 302.0         | )768         | 1.8                  | 2670          |              |                 |                  |                  |                |            |                |         |  |
|      | 27           | 305.1         | 1566         | 2.4                  | 3529          |              |                 |                  |                  |                |            |                |         |  |
|      | 20           | 330.0         | 952          | 0.4<br>84.4          | 122658        |              |                 |                  |                  |                |            |                |         |  |
|      | 30           | 331.0         | 973          | 17.1                 | 24793         |              |                 |                  |                  |                |            |                |         |  |
|      | 31           | 332.0         | 929          | 6.9                  | 9960          |              |                 |                  |                  |                |            |                |         |  |
|      | 32           | 337.0         | 0742         | 2 4.1                | 5981          |              |                 |                  |                  |                |            |                |         |  |
|      | 33           | 340.1         | 1554         | 10.0                 | 2669          |              |                 |                  |                  |                |            |                |         |  |
|      | 35           | 344.1         | 1110         | 1.8                  | 2665          |              |                 |                  |                  |                |            |                |         |  |
|      | 36           | 346.0         | )685         | 3.0                  | 4420          |              |                 |                  |                  |                |            |                |         |  |
|      | 37           | 353.2         | 2656         | 12.7                 | 18406         |              |                 |                  |                  |                |            |                |         |  |
|      | 39           | 360.3         | 2007         | 2.3                  | 3540          |              |                 |                  |                  |                |            |                |         |  |
|      | 40           | 362.9         | 254          | 5.1                  | 7346          |              |                 |                  |                  |                |            |                |         |  |
|      | 41           | 381.2         | 2966         | 13.2                 | 19168         |              |                 |                  |                  |                |            |                |         |  |
|      | 42           | 382.2         | 2998         | 3.5                  | 5138          |              |                 |                  |                  |                |            |                |         |  |
|      | 43           | 385.1         | 432          | 2.9                  | 4221          |              |                 |                  |                  |                |            |                |         |  |
|      | 45           | 391.2         | 2089         | 1.8                  | 2673          |              |                 |                  |                  |                |            |                |         |  |
|      | 46           | 395.0         | 613          | 3.1                  | 4506          |              |                 |                  |                  |                |            |                |         |  |
|      | 47           | 398.1         | 1571         | 6.2                  | 8976          |              |                 |                  |                  |                |            |                |         |  |
|      | 40           | 399.1         | 3074         | 1.8                  | 2626          |              |                 |                  |                  |                |            |                |         |  |
|      | 50           | 407.1         | 407          | 3.4                  | 4917          |              |                 |                  |                  |                |            |                |         |  |
|      | 51           | 409.1         | 1127         | 3.5                  | 5076          |              |                 |                  |                  |                |            |                |         |  |
|      | 52           | 410.1         | 1143         | 1.7                  | 2514          |              |                 |                  |                  |                |            |                |         |  |
|      | 54           | 412.1         | 1732         | 3.8                  | 5462          |              |                 |                  |                  |                |            |                |         |  |
|      | 55           | 413.2         | 2650         | 6.2                  | 8949          |              |                 |                  |                  |                |            |                |         |  |
|      | 56           | 414.2         | 2692         | 1.9                  | 2730          |              |                 |                  |                  |                |            |                |         |  |
|      | 57           | 417.3         | 5438<br>5134 | 5.1                  | 4462          |              |                 |                  |                  |                |            |                |         |  |
|      | 59           | 447.3         | 3438         | 2.5                  | 3677          |              |                 |                  |                  |                |            |                |         |  |
|      | 60           | 467.1         | 1011         | 100.0                | 145306        |              |                 |                  |                  |                |            |                |         |  |
|      | 61           | 468.1         | 018          | 40.0                 | 58082         |              |                 |                  |                  |                |            |                |         |  |
|      | 62           | 469.0         | 988          | 27.8                 | 40324         |              |                 |                  |                  |                |            |                |         |  |

Bruker Compass DataAnalysis 4.0

Acquisition Date 16.08.2019 09:48:05

Page 2 of 3

Figure S1.32: HRMS (ESI) peak table of 11.

| #   | m/z      | 1%   | 1     |
|-----|----------|------|-------|
| 63  | 470.0986 | 8.4  | 12242 |
| 64  | 471.0957 | 3.8  | 5456  |
| 65  | 475.1264 | 3.2  | 4600  |
| 66  | 483.0750 | 4.0  | 5746  |
| 67  | 483.1314 | 1.7  | 2520  |
| 68  | 484.0746 | 1.9  | 2804  |
| 69  | 498.8990 | 2.9  | 4245  |
| 70  | 528.5100 | 1.9  | 2801  |
| 71  | 541.1192 | 40.2 | 58397 |
| 72  | 542.1198 | 17.5 | 25440 |
| 73  | 543.1172 | 15.8 | 22886 |
| 74  | 544.1169 | 5.8  | 8442  |
| 75  | 545.1144 | 2.7  | 3918  |
| 76  | 557.0930 | 6.7  | 9670  |
| 77  | 558.0931 | 4.0  | 5806  |
| 78  | 559.0908 | 2.4  | 3532  |
| 79  | 566.8873 | 2.5  | 3636  |
| 80  | 615.1373 | 6.0  | 8788  |
| 81  | 616.1398 | 3.3  | 4822  |
| 82  | 617.1364 | 2.9  | 4236  |
| 83  | 619.5243 | 1.8  | 2632  |
| 84  | 631.1131 | 2.1  | 2980  |
| 85  | 634.8741 | 2.1  | 3029  |
| 86  | 637.1985 | 6.6  | 9530  |
| 87  | 638.2027 | 2.9  | 4177  |
| 88  | 639.1982 | 2.1  | 3020  |
| 89  | 685.4336 | 5.4  | 7864  |
| 90  | 686.4357 | 2.7  | 3890  |
| 91  | 689.1551 | 1.9  | 2709  |
| 92  | 691.2466 | 2.4  | 3512  |
| 93  | 702.8587 | 3.0  | 4304  |
| 94  | 705.2604 | 2.5  | 3598  |
| 95  | 705.5801 | 55.2 | 80229 |
| 96  | 706.5829 | 27.5 | 39913 |
| 97  | 707.5840 | 7.4  | 10762 |
| 98  | 708.5823 | 2.2  | 3149  |
| 99  | 721.5738 | 8.2  | 11976 |
| 100 | 722.5784 | 3.6  | 5280  |

#### Acquisition Parameter

| General    | Fore Vacuum<br>Scan Begin       | 2.68e+<br>75 m/z | 000 mBar | High Vacuum<br>Scan End               | 1.21e-007 mBar<br>1700 m/z | Source Type<br>Ion Polarity | ESI<br>Positive |
|------------|---------------------------------|------------------|----------|---------------------------------------|----------------------------|-----------------------------|-----------------|
| Source     | Set Nebulizer<br>Set Dry Heater | 0.4 Ba<br>180 °C |          | Set Capillary<br>Set End Plate Offset | 3600 V<br>-500 V           | Set Dry Gas                 | 4.0 l/min       |
| Quadrupole | Set Ion Energy ( MS on          | ly)              | 4.0 eV   |                                       |                            |                             |                 |
| Coll. Cell | Collision Energy                |                  | 8.0 eV   | Set Collision Cell RF                 | 350.0 Vpp                  |                             |                 |
| Ion Cooler | Set Ion Cooler Transfer         | Time             | 75.0 µs  | Set Ion Cooler Pre Puls               | e Storage Time             | 10.0 µs                     |                 |

Bruker Compass DataAnalysis 4.0

Acquisition Date 16.08.2019 09:48:05

Page 3 of 3

Figure S1.33: HRMS (ESI) peak table of 11.



**Trimethyl**((4-(methylthio)-2-nitrophenyl)ethynyl)silane 10: An oven dried argon flushed Schlenk tube was charged with iodine 5 (200 mg, 0.678 mmol, 1 eq.), purged with argon and the solid was dissolved in a degassed mixture of THF (1.6 mL) and TEA (0.8 mL). Then CuI (13.0 mg, 67.8  $\mu$ mol, 0.1 eq.), Pd(PPh<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub> (39 mg, 33.9  $\mu$ mol, 0.05 eq.) and TMS acetylene (0.15 mL, 1.02 mmol, 1.5 eq.) was added and the solution was stirred at r.t. for 14 h, thereafter poured into aq. sat. NH<sub>4</sub>Cl and extracted with DCM. The combined organic phase was dried over anhydrous MgSO<sub>4</sub>, filtered, concentrated under reduced pressure and purified by column chromatography on silica gel (DCM) yielding a yellowish oil (101 mg, 381  $\mu$ mol, 56%).

<sup>1</sup>**H-NMR** (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.79 (d, J = 2.0 Hz, 1H), 7.52 (d, J = 8.2 Hz, 1H), 7.35 (dd, J = 8.3, 2.0 Hz, 1H), 2.54 (s, 3H), 0.27 (s, 9H).

<sup>13</sup>**C-NMR** (126 MHz, CDCl<sub>3</sub>) δ 150.57, 141.96, 135.05, 129.64, 120.75, 114.29, 103.38, 99.45, 15.29, -0.19.

| HRMS (ESI) m/z: calcd. for | $[C_{12}H_{15}NO_2SSi+Na]^+$ | 288.0480 | [M+Na] <sup>+</sup> | ; found 288.0485 |
|----------------------------|------------------------------|----------|---------------------|------------------|
|                            | $[C_{12}H_{15}NO_2SSi+K]^+$  | 304.0223 | $[M+K]^+$           | ; found 304.0224 |



Figure S1.35: <sup>13</sup>C-NMR (126 MHz, CDCl<sub>3</sub>) spectrum of 10.


Figure S1.36: HRMS (ESI) spectrum of 10.

|      | Meas<br>288.<br>304. | . m/z<br>0480<br>0223 | #<br>1<br>1  | Formula<br>C 12 H 15<br>C 12 H 15 | 5 N Na O 2 S Si<br>5 K N O 2 S Si | Score<br>100.00<br>100.00 | m/z<br>288.0485<br>304.0224 | err [mDa]<br>0.5<br>0.1 | err (ppm)<br>1.7<br>0.4 | mSigma<br>16.3<br>18.9 | rdb<br>6.5<br>6.5 | e <sup>-</sup> Conf<br>even<br>even | z<br>1+ |  |
|------|----------------------|-----------------------|--------------|-----------------------------------|-----------------------------------|---------------------------|-----------------------------|-------------------------|-------------------------|------------------------|-------------------|-------------------------------------|---------|--|
| Mass | s list               |                       |              |                                   |                                   |                           |                             |                         |                         |                        |                   |                                     |         |  |
|      | #                    |                       | m/z          | 1%                                | 1                                 |                           |                             |                         |                         |                        |                   |                                     |         |  |
|      | 1                    | 152.9                 | 9354         | 4.7                               | 15773                             |                           |                             |                         |                         |                        |                   |                                     |         |  |
|      | 2                    | 174.0                 | 8960<br>8777 | 4.7                               | 15674                             |                           |                             |                         |                         |                        |                   |                                     |         |  |
|      | 4                    | 212.0                 | 8515         | 18.2                              | 60466                             |                           |                             |                         |                         |                        |                   |                                     |         |  |
|      | 5                    | 214.0                 | 8497         | 3.9                               | 12933                             |                           |                             |                         |                         |                        |                   |                                     |         |  |
|      | 6                    | 234.0                 | 8333         | 2.5                               | 8420                              |                           |                             |                         |                         |                        |                   |                                     |         |  |
|      | 8                    | 250.0                 | 5074<br>1480 | 3.4                               | 11193<br>73905                    |                           |                             |                         |                         |                        |                   |                                     |         |  |
|      | 9                    | 289.0                 | 0500         | 3.8                               | 12706                             |                           |                             |                         |                         |                        |                   |                                     |         |  |
|      | 10                   | 290.0                 | 0446         | 1.7                               | 5784                              |                           |                             |                         |                         |                        |                   |                                     |         |  |
|      | 11                   | 304.0                 | 0223         | 100.0                             | 332979                            |                           |                             |                         |                         |                        |                   |                                     |         |  |
|      | 12                   | 305.0                 | JZ42<br>0197 | 17.3                              | 57528<br>46280                    |                           |                             |                         |                         |                        |                   |                                     |         |  |
|      | 14                   | 307.0                 | 0213         | 2.6                               | 8661                              |                           |                             |                         |                         |                        |                   |                                     |         |  |
|      | 15                   | 310.0                 | 8282         | 2.3                               | 7803                              |                           |                             |                         |                         |                        |                   |                                     |         |  |
|      | 16                   | 317.0                 | 0485         | 1.7                               | 5760                              |                           |                             |                         |                         |                        |                   |                                     |         |  |
|      | 18                   | 3320.0                | 5230<br>R104 | 4.2                               | 13914                             |                           |                             |                         |                         |                        |                   |                                     |         |  |
|      | 19                   | 335.                  | 1975         | 1.6                               | 5166                              |                           |                             |                         |                         |                        |                   |                                     |         |  |
|      | 20                   | 348.                  | 7844         | 4.3                               | 14163                             |                           |                             |                         |                         |                        |                   |                                     |         |  |
|      | 21                   | 369.2                 | 2393         | 3.7                               | 12477                             |                           |                             |                         |                         |                        |                   |                                     |         |  |
|      | 23                   | 381                   | 1086         | 15                                | 4995                              |                           |                             |                         |                         |                        |                   |                                     |         |  |
|      | 24                   | 381.2                 | 2502         | 1.9                               | 6193                              |                           |                             |                         |                         |                        |                   |                                     |         |  |
|      | 25                   | 386.                  | 7400         | 3.8                               | 12515                             |                           |                             |                         |                         |                        |                   |                                     |         |  |
|      | 26                   | 397.2                 | 2707         | 3.7                               | 12386                             |                           |                             |                         |                         |                        |                   |                                     |         |  |
|      | 28                   | 429.                  | 2394<br>2425 | 1.8                               | 23003<br>5882                     |                           |                             |                         |                         |                        |                   |                                     |         |  |
|      | 29                   | 446.                  | 7609         | 1.9                               | 6348                              |                           |                             |                         |                         |                        |                   |                                     |         |  |
|      | 30                   | 457.2                 | 2706         | 3.5                               | 11694                             |                           |                             |                         |                         |                        |                   |                                     |         |  |
|      | 31                   | 463.                  | 3176         | 3.3                               | 11098                             |                           |                             |                         |                         |                        |                   |                                     |         |  |
|      | 33                   | 466.3                 | 3511         | 2.1                               | 6889                              |                           |                             |                         |                         |                        |                   |                                     |         |  |
|      | 34                   | 468.                  | 7430         | 2.7                               | 8956                              |                           |                             |                         |                         |                        |                   |                                     |         |  |
|      | 35                   | 481.3                 | 3435         | 5.6                               | 18612                             |                           |                             |                         |                         |                        |                   |                                     |         |  |
|      | 36                   | 482.                  | 3471<br>7187 | 1.8                               | 5848<br>9238                      |                           |                             |                         |                         |                        |                   |                                     |         |  |
|      | 38                   | 484.                  | 7339         | 2.3                               | 7598                              |                           |                             |                         |                         |                        |                   |                                     |         |  |
|      | 39                   | 485.3                 | 3017         | 4.9                               | 16220                             |                           |                             |                         |                         |                        |                   |                                     |         |  |
|      | 40                   | 486.                  | 3052         | 1.6                               | 5188                              |                           |                             |                         |                         |                        |                   |                                     |         |  |
|      | 41                   | 489.4                 | 4059<br>2281 | 3.0                               | 5780                              |                           |                             |                         |                         |                        |                   |                                     |         |  |
|      | 43                   | 500.                  | 7121         | 1.9                               | 6320                              |                           |                             |                         |                         |                        |                   |                                     |         |  |
|      | 44                   | 506.0                 | 6992         | 2.6                               | 8626                              |                           |                             |                         |                         |                        |                   |                                     |         |  |
|      | 45                   | 513.3                 | 3333         | 1.8                               | 5915                              |                           |                             |                         |                         |                        |                   |                                     |         |  |
|      | 40                   | 522.0                 | +372<br>6740 | 2.5                               | 8229                              |                           |                             |                         |                         |                        |                   |                                     |         |  |
|      | 48                   | 531.4                 | 4527         | 2.8                               | 9203                              |                           |                             |                         |                         |                        |                   |                                     |         |  |
|      | 49                   | 543.4                 | 4528         | 1.8                               | 5887                              |                           |                             |                         |                         |                        |                   |                                     |         |  |
|      | 50                   | 545.4                 | 4680         | 4.1                               | 13626                             |                           |                             |                         |                         |                        |                   |                                     |         |  |
|      | 52                   | 547.4                 | 4818         | 1.7                               | 5570                              |                           |                             |                         |                         |                        |                   |                                     |         |  |
|      | 53                   | 559.4                 | 4835         | 3.1                               | 10444                             |                           |                             |                         |                         |                        |                   |                                     |         |  |
|      | 54                   | 571.4                 | 4842         | 4.7                               | 15789                             |                           |                             |                         |                         |                        |                   |                                     |         |  |
|      | 55                   | 572.4                 | 1875         | 1.9                               | 6249                              |                           |                             |                         |                         |                        |                   |                                     |         |  |
|      | 57                   | 574.9                 | 5028         | 1.7                               | 5583                              |                           |                             |                         |                         |                        |                   |                                     |         |  |
|      | 58                   | 575.                  | 5130         | 1.7                               | 5517                              |                           |                             |                         |                         |                        |                   |                                     |         |  |
|      | 59                   | 577.4                 | 4213         | 1.5                               | 5009                              |                           |                             |                         |                         |                        |                   |                                     |         |  |
|      | 60<br>61             | 5/9.4                 | 4379<br>1980 | 2.0                               | 6552<br>5205                      |                           |                             |                         |                         |                        |                   |                                     |         |  |
|      | 0.                   | 000.                  |              |                                   | 0200                              |                           |                             |                         |                         |                        |                   |                                     |         |  |

Bruker Compass DataAnalysis 4.0

Measured m/z vs. theoretical m/z

Acquisition Date 19.08.2020 14:38:21

Page 2 of 3

Figure S1.37: HRMS (ESI) peak table of 10.

| #   | m/z      | 1%  | 1     |
|-----|----------|-----|-------|
| 62  | 587.5139 | 2.7 | 8927  |
| 63  | 593.4530 | 1.9 | 6227  |
| 64  | 599.5153 | 2.9 | 9577  |
| 65  | 601.5295 | 2.9 | 9797  |
| 66  | 605.4529 | 3.0 | 9896  |
| 67  | 607.4679 | 2.5 | 8308  |
| 68  | 615.5457 | 1.8 | 6015  |
| 69  | 619.4683 | 1.6 | 5206  |
| 70  | 620.6686 | 1.5 | 5156  |
| 71  | 627.5460 | 1.7 | 5679  |
| 72  | 629.5614 | 2.2 | 7272  |
| 73  | 633.4849 | 1.8 | 5899  |
| 74  | 661.5289 | 1.6 | 5217  |
| 75  | 701.4079 | 2.4 | 8150  |
| 76  | 721.5553 | 8.3 | 27481 |
| 77  | 722.5580 | 3.9 | 12994 |
| 78  | 723.5566 | 2.0 | 6708  |
| 79  | 737.5491 | 3.4 | 11384 |
| 80  | 789.6341 | 1.5 | 5012  |
| 81  | 801.6348 | 1.7 | 5496  |
| 82  | 803.6500 | 1.8 | 5919  |
| 83  | 813.6350 | 1.6 | 5168  |
| 84  | 815.6499 | 2.9 | 9779  |
| 85  | 816.6530 | 1.5 | 5058  |
| 86  | 817.6645 | 2.6 | 8657  |
| 87  | 827.6508 | 1.7 | 5770  |
| 88  | 829.6656 | 3.0 | 10036 |
| 89  | 831.6796 | 2.3 | 7588  |
| 90  | 841.6663 | 2.7 | 9076  |
| 91  | 842.6690 | 1.5 | 5134  |
| 92  | 843.6811 | 3.7 | 12470 |
| 93  | 844.6846 | 2.2 | 7226  |
| 94  | 845.6944 | 2.6 | 8607  |
| 95  | 855.6809 | 1.9 | 6237  |
| 96  | 857.6971 | 2.4 | 8122  |
| 97  | 869.6959 | 2.5 | 8238  |
| 98  | 870.7015 | 1.7 | 5651  |
| 99  | 871.7118 | 2.7 | 8910  |
| 100 | 877.4848 | 1.7 | 5642  |

### Acquisition Parameter

| General                     | Fore Vacuum<br>Scan Begin            | 2.48e+(<br>75 m/z | 000 mBar | High Vacuum<br>Scan End               | 1.40e-007 mBar<br>1700 m/z | Source Type<br>Ion Polarity | ESI<br>Positive |
|-----------------------------|--------------------------------------|-------------------|----------|---------------------------------------|----------------------------|-----------------------------|-----------------|
| Source                      | Set Nebulizer<br>Set Dry Heater      | 0.4 Bar<br>180 °C |          | Set Capillary<br>Set End Plate Offset | 3600 V<br>-500 V           | Set Dry Gas                 | 4.0 l/min       |
| Quadrupole                  | Set Ion Energy (MS on                | ly)               | 4.0 eV   |                                       |                            | 100.017                     |                 |
| Coll. Cell Collision Energy |                                      |                   | 8.0 eV   | Set Collision Cell RF                 | 350.0 Vpp 100.0 Vpp        |                             |                 |
| Ion Cooler                  | on Cooler Set Ion Cooler Transfer Ti |                   | 75.0 µs  | Set Ion Cooler Pre Puls               | e Storage Time 1           | 0.0 µs                      |                 |

Bruker Compass DataAnalysis 4.0

Acquisition Date 19.08.2020 14:38:21

Page 3 of 3

Figure S1.38: HRMS (ESI) peak table of 10.



**5**-(*tert*-butylthio)-*N*,*N*-dimethyl-2-((trimethylsilyl)ethynyl)aniline 13: An oven dried argon flushed Schlenk tube was charged with iodine 9 (50 mg, 149  $\mu$ mol, 1 eq.) and purged with argon. Then degassed THF (1 mL) and degassed TEA (0.5 mL), CuI (2.84 mg, 14.9  $\mu$ mol, 0.1 eq.), Pd(PPh<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub> (5.23 mg, 7.45  $\mu$ mol, 0.05 eq.) and TMS acetylene (0.02 mL, 164  $\mu$ mol, 1.1 eq.) were added and the solution was stirred for 17 h at r.t. The reaction mixture was poured into aq. sat. NH<sub>4</sub>Cl and extracted with DCM. The combined organic phase was dried anhydrous Na<sub>2</sub>SO<sub>4</sub>, filtered, concentrated under reduced pressure and purified by column chromatography on silica gel (DCM) yielding 13 as a yellowish oil (23.5 mg, 77.0  $\mu$ mol, 52%).

<sup>1</sup>**H-NMR** (500 MHz, CDCl<sub>3</sub>) δ 7.35 (d, J = 7.8 Hz, 1H), 7.01 (d, J = 1.6 Hz, 1H), 6.99 – 6.97 (m, 1H), 2.95 (s, 6H), 1.29 (s, 9H), 0.25 (s, 9H).

<sup>13</sup>**C-NMR** (126 MHz, CDCl<sub>3</sub>) 154.82, 134.57, 134.24, 128.72, 125.68, 114.94, 104.21, 101.22, 46.44, 43.34, 31.14, -0.00.

**HRMS (ESI)** m/z: calcd. for  $[C_{17}H_{27}NSSi+H]^+$  306.1710  $[M+H]^+$ ; found 306.1706



Figure S1.40: <sup>13</sup>C-NMR (126 MHz, CDCl<sub>3</sub>) spectrum of 13.



Figure S1.41: HRMS (ESI) spectrum of 13.

| Meas | ured         | m/z v         | /s. t        | theoretic            | al m/z         |              |                 |                   |                   |                |            |                             |         |  |  |
|------|--------------|---------------|--------------|----------------------|----------------|--------------|-----------------|-------------------|-------------------|----------------|------------|-----------------------------|---------|--|--|
|      | Meas<br>306. | . m/z<br>1710 | #<br>1       | Formula<br>C 17 H 28 | 3 N S Si       | Score 100.00 | m/z<br>306.1706 | err [mDa]<br>-0.4 | err [ppm]<br>-1.4 | mSigma<br>31.7 | rdb<br>5.5 | e <sup>-</sup> Conf<br>even | z<br>1+ |  |  |
| Mass | list         |               |              |                      |                |              |                 |                   |                   |                |            |                             |         |  |  |
|      | #            |               | m/z          | z 1%                 |                | I            |                 |                   |                   |                |            |                             |         |  |  |
|      | 1            | 158.9         | 9644         | 4 0.8                | 8831           |              |                 |                   |                   |                |            |                             |         |  |  |
|      | 2            | 176.0         | 1527         | 7 1.0                | 10869          | 9            |                 |                   |                   |                |            |                             |         |  |  |
|      | 4            | 211.0         | )934         | 0.4                  | 4851           | <u>-</u><br> |                 |                   |                   |                |            |                             |         |  |  |
|      | 5            | 217.1         | 1044         | 4 0.8                | 8751           | l            |                 |                   |                   |                |            |                             |         |  |  |
|      | 6            | 218.9         | 9361         | 1 0.6                | 6451           | l            |                 |                   |                   |                |            |                             |         |  |  |
|      | 2            | 223.0         | )937<br>2514 | 0.4                  | 63411          | 9            |                 |                   |                   |                |            |                             |         |  |  |
|      | 9            | 227.1         | 1255         | 5 0.4                | 4609           | 9            |                 |                   |                   |                |            |                             |         |  |  |
|      | 10           | 229.1         | 1409         | 0.5                  | 5275           | 5            |                 |                   |                   |                |            |                             |         |  |  |
|      | 11           | 236.0         | 0710         | 0.4                  | 4218           | 3            |                 |                   |                   |                |            |                             |         |  |  |
|      | 12           | 239.0         | 2251         | 5 1.0<br>1 1.0       | 10495          | ,            |                 |                   |                   |                |            |                             |         |  |  |
|      | 14           | 245.0         | 0778         | 3 0.4                | 4831           | I            |                 |                   |                   |                |            |                             |         |  |  |
|      | 15           | 250.1         | 1079         | 2.9                  | 31536          | 6            |                 |                   |                   |                |            |                             |         |  |  |
|      | 16           | 251.1         | 1097         | 0.5                  | 5589           | 9            |                 |                   |                   |                |            |                             |         |  |  |
|      | 18           | 273.1         | 1671         | 1 0.4                | 9071           | 9            |                 |                   |                   |                |            |                             |         |  |  |
|      | 19           | 276.9         | 9338         | 0.5                  | 5093           | 3            |                 |                   |                   |                |            |                             |         |  |  |
|      | 20           | 279.2         | 2289         | 0.6                  | 6506           | 5            |                 |                   |                   |                |            |                             |         |  |  |
|      | 21           | 288.9         | 3217<br>2082 | 0.4                  | 4850           | 5            |                 |                   |                   |                |            |                             |         |  |  |
|      | 23           | 294.9         | 3386         | 5 0.8                | 8313           | 3            |                 |                   |                   |                |            |                             |         |  |  |
|      | 24           | 298.1         | 1655         | 5 1.4                | 15489          | 9            |                 |                   |                   |                |            |                             |         |  |  |
|      | 25           | 299.1         | 1632         | 2 0.7                | 8099           | 2            |                 |                   |                   |                |            |                             |         |  |  |
|      | 20           | 301.1         | 2108         | 3 0.8                | 8469           | r<br>a       |                 |                   |                   |                |            |                             |         |  |  |
|      | 28           | 304.2         | 2990         | 0.6                  | 7151           | Í            |                 |                   |                   |                |            |                             |         |  |  |
|      | 29           | 306.1         | 1710         | ) 100.0              | 1101223        | 3            |                 |                   |                   |                |            |                             |         |  |  |
|      | 30           | 307.1         | 2597         | 2 19.5               | 214/9/<br>4221 | í            |                 |                   |                   |                |            |                             |         |  |  |
|      | 32           | 308.1         | 1679         | 9 7.0                | 76651          | ĺ            |                 |                   |                   |                |            |                             |         |  |  |
|      | 33           | 309.1         | 1698         | 3 1.5                | 16533          | 3            |                 |                   |                   |                |            |                             |         |  |  |
|      | 34           | 328.1         | 1522         | 2 4.4                | 49003          | 3            |                 |                   |                   |                |            |                             |         |  |  |
|      | 36           | 330.1         | 1496         | 0.5                  | 5082           | 2            |                 |                   |                   |                |            |                             |         |  |  |
|      | 37           | 331.2         | 2083         | 3 0.6                | 6399           | 9            |                 |                   |                   |                |            |                             |         |  |  |
|      | 38           | 332.3         | 3309         | 0.5                  | 5378           | 3            |                 |                   |                   |                |            |                             |         |  |  |
|      | 39<br>40     | 337.0         | )270         | 5 3.6<br>1 0.6       | 40011          | >            |                 |                   |                   |                |            |                             |         |  |  |
|      | 41           | 348.9         | 9896         | 5 0.7                | 7944           | 1            |                 |                   |                   |                |            |                             |         |  |  |
|      | 42           | 350.9         | 9872         | 2 0.8                | 8354           | 1            |                 |                   |                   |                |            |                             |         |  |  |
|      | 43<br>44     | 353.2         | 262/         | 2.1                  | 23534          | 1            |                 |                   |                   |                |            |                             |         |  |  |
|      | 45           | 362.9         | 263          | 3 1.7                | 18332          | 2            |                 |                   |                   |                |            |                             |         |  |  |
|      | 46           | 365.1         | 1047         | 0.5                  | 5450           | )            |                 |                   |                   |                |            |                             |         |  |  |
|      | 47           | 365.1         | 1355         | 5 0.5                | 6001           |              |                 |                   |                   |                |            |                             |         |  |  |
|      | 40           | 369.1         | 1980         | 0.0                  | 4527           | 7            |                 |                   |                   |                |            |                             |         |  |  |
|      | 50           | 381.2         | 2971         | 1.7                  | 18938          | 3            |                 |                   |                   |                |            |                             |         |  |  |
|      | 51           | 382.3         | 3001         | 1 0.4                | 4325           | 5            |                 |                   |                   |                |            |                             |         |  |  |
|      | 52           | 407 3         | 2988         | 1.0                  | 5323           | 2            |                 |                   |                   |                |            |                             |         |  |  |
|      | 54           | 413.2         | 2657         | 2.7                  | 29984          | Ĩ            |                 |                   |                   |                |            |                             |         |  |  |
|      | 55           | 414.2         | 2688         | 3 0.9                | 9364           | 1            |                 |                   |                   |                |            |                             |         |  |  |
|      | 56<br>57     | 421.3         | 3302         | 2 0.6                | 6965           | 5            |                 |                   |                   |                |            |                             |         |  |  |
|      | 58           | 430.9         | 9136         | 5 1.7                | 18336          | 5            |                 |                   |                   |                |            |                             |         |  |  |
|      | 59           | 435.3         | 3441         | 0.5                  | 5394           | 1            |                 |                   |                   |                |            |                             |         |  |  |
|      | 60           | 437.1         | 1856         | 5 0.5                | 5101           |              |                 |                   |                   |                |            |                             |         |  |  |
|      | 62           | 442.3         | 3002         | 2 0.5                | 5319           | 9            |                 |                   |                   |                |            |                             |         |  |  |

Bruker Compass DataAnalysis 4.0

Acquisition Date 27.05.2020 14:20:27

Page 2 of 3

Figure S1.42: HRMS (ESI) peak table of 13.

| #   | m/z      | ۱%  | <u> </u> |
|-----|----------|-----|----------|
| 63  | 447.3441 | 6.0 | 66272    |
| 64  | 448.3471 | 1.7 | 18987    |
| 65  | 449.3594 | 0.8 | 8352     |
| 66  | 455.3127 | 0.5 | 5398     |
| 67  | 457.2713 | 0.5 | 4978     |
| 68  | 463.3178 | 1.3 | 13918    |
| 69  | 463.3744 | 0.5 | 5003     |
| 70  | 464.3213 | 0.5 | 5045     |
| 71  | 467.1015 | 0.8 | 8749     |
| 72  | 469.3277 | 1.1 | 12539    |
| 73  | 470.3317 | 0.4 | 4247     |
| 74  | 473.4684 | 0.6 | 7075     |
| 75  | 498.9004 | 0.9 | 9675     |
| 76  | 501.4999 | 0.7 | 7600     |
| 77  | 523.3241 | 0.5 | 5506     |
| 78  | 529.4943 | 0.4 | 4223     |
| 79  | 566.8890 | 0.9 | 9520     |
| 80  | 591.4949 | 0.4 | 4802     |
| 81  | 634.8753 | 0.6 | 6160     |
| 82  | 685.4358 | 1.8 | 20198    |
| 83  | 686.4387 | 0.9 | 9988     |
| 84  | 701.4084 | 0.4 | 4526     |
| 85  | 705.5821 | 2.0 | 21602    |
| 86  | 706.5857 | 1.0 | 10957    |
| 87  | 721.5751 | 1.4 | 15183    |
| 88  | 722.5794 | 0.6 | 7110     |
| 89  | 737.5517 | 0.4 | 4703     |
| 90  | 801.6921 | 0.4 | 4449     |
| 91  | 829.7239 | 0.5 | 5606     |
| 92  | 861.3831 | 0.5 | 5503     |
| 93  | 861.8853 | 0.5 | 5418     |
| 94  | 862.3837 | 1.2 | 13202    |
| 95  | 862.8839 | 1.0 | 11234    |
| 96  | 863.3837 | 1.1 | 11616    |
| 97  | 863.8856 | 0.8 | 8998     |
| 98  | 864.3858 | 0.4 | 4762     |
| 99  | 968.6167 | 0.9 | 9833     |
| 100 | 969.6197 | 0.7 | 7289     |

#### Acquisition Parameter

| General    | Fore Vacuum<br>Scan Begin                      | 2.61e+<br>75 m/z | 000 mBar | High Vacuum<br>Scan End               | 1.14e-007 mBar<br>1700 m/z | Source Type<br>Ion Polarity | ESI<br>Positive |
|------------|------------------------------------------------|------------------|----------|---------------------------------------|----------------------------|-----------------------------|-----------------|
| Source     | Set Nebulizer<br>Set Dry Heater                | 0.4 Ba<br>180 °C | r        | Set Capillary<br>Set End Plate Offset | 3600 V<br>-500 V           | Set Dry Gas                 | 4.0 l/min       |
| Quadrupole | Set Ion Energy ( MS on                         | ly)              | 4.0 eV   |                                       |                            |                             |                 |
| Coll. Cell | Collision Energy                               |                  | 8.0 eV   | Set Collision Cell RF                 | 350.0 Vpp                  |                             |                 |
| Ion Cooler | on Cooler Set Ion Cooler Transfer Time 75.0 µs |                  | 75.0 µs  | Set Ion Cooler Pre Puls               | e Storage Time             | 10.0 µs                     |                 |

Bruker Compass DataAnalysis 4.0

Acquisition Date 27.05.2020 14:20:27

Page 3 of 3

Figure S1.43: HRMS (ESI) peak table of 13.



*N,N*-dimethyl-5-(methylthio)-2-((trimethylsilyl)ethynyl)aniline 12: An oven dried argon flushed Schlenk tube was charged with iodine 8 (200 mg, 682  $\mu$ mol, 1 eq.). The solids were purged with argon and dissolved in a degassed mixture of THF (2 mL) and TEA (1 mL). Then CuI (13 mg, 68.3  $\mu$ mol, 0.1 eq.), Pd(PPh<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub> (24 mg, 34.2  $\mu$ mol, 0.05 eq.) and TMS acetylene (0.1 mL, 751  $\mu$ mol, 1.1 eq.) was added. The solution was stirred at r.t. for 15 h, poured into aq. sat. NH<sub>4</sub>Cl and extracted with DCM. The combined organic phase was dried over anhydrous MgSO<sub>4</sub>, filtered, concentrated under reduced pressure and purified by column chromatography on silica gel (DCM : cyclohexane 1 : 2) yielding 12 as a yellowish oil (93.0 mg, 353  $\mu$ mol, 52%).

<sup>1</sup>**H-NMR** (500 MHz, CDCl<sub>3</sub>) δ 7.32 (d, J = 8.1 Hz, 1H), 6.71 (d, J = 1.8 Hz, 1H), 6.68 (dd, J = 8.1, 1.8 Hz, 1H), 2.94 (s, 6H), 2.47 (s, 3H), 0.24 (s, 9H).

<sup>13</sup>**C-NMR** (126 MHz, CDCl<sub>3</sub>) δ 155.24, 140.48, 135.24, 117.46, 114.56, 111.34, 104.72, 99.59, 43.32, 15.55, 0.14.

**HRMS (ESI)** m/z: calcd. for  $[C_{14}H_{21}NSSi+H]^+$  264.1239  $[M+H]^+$ ; found 264.1237



Figure S1.45: <sup>13</sup>C-NMR (126 MHz, CDCl<sub>3</sub>) spectrum of 12.



Figure S1.46: HRMS (ESI) spectrum of 12.

| Measured m/z vs. theoretical m/z |           |         |            |           |          |        |          |           |           |        |     |                     |    |
|----------------------------------|-----------|---------|------------|-----------|----------|--------|----------|-----------|-----------|--------|-----|---------------------|----|
|                                  | Meas      | . m/z # | # F        | Formula   | NCC      | Score  | m/z      | err [mDa] | err [ppm] | mSigma | rdb | e <sup>-</sup> Conf | Z  |
| Maaa                             | 264.      | 1239    | 1 (        | C 14 H 22 | 2 N S SI | 100.00 | 264.1237 | -0.2      | -0.7      | 35.0   | 5.5 | even                | 1+ |
| mass                             | iist<br># |         |            | 1.0/      |          |        |          |           |           |        |     |                     |    |
|                                  | -#        | 89.50   | n/z        | 1.0       | 11835    |        |          |           |           |        |     |                     |    |
|                                  | 2         | 90.50   | 82         | 0.6       | 6463     | 3      |          |           |           |        |     |                     |    |
|                                  | 3         | 102.12  | 286        | 0.6       | 6530     | )      |          |           |           |        |     |                     |    |
|                                  | 4         | 113.96  | 41         | 1.1       | 12680    | )      |          |           |           |        |     |                     |    |
|                                  | 5         | 122.08  | 313        | 0.6       | 6700     | )      |          |           |           |        |     |                     |    |
|                                  | 7         | 131.93  | 100        | 79        | 89654    | 1      |          |           |           |        |     |                     |    |
|                                  | 8         | 133.92  | 289        | 4.0       | 44998    | 3      |          |           |           |        |     |                     |    |
|                                  | 9         | 135.92  | 265        | 1.9       | 22091    |        |          |           |           |        |     |                     |    |
|                                  | 10        | 141.95  | 588        | 1.0       | 11929    | )      |          |           |           |        |     |                     |    |
|                                  | 11        | 149.02  | 233        | 2.9       | 33335    | 2      |          |           |           |        |     |                     |    |
|                                  | 13        | 149.95  | 32         | 0.8       | 9256     | 3      |          |           |           |        |     |                     |    |
|                                  | 14        | 155.04  | 66         | 0.8       | 9351     | Í      |          |           |           |        |     |                     |    |
|                                  | 15        | 156.07  | 67         | 0.7       | 8008     | 3      |          |           |           |        |     |                     |    |
|                                  | 16        | 158.95  | 533        | 1.0       | 11822    | -      |          |           |           |        |     |                     |    |
|                                  | 18        | 172.05  | 180<br>161 | 2.7       | 31016    | 5      |          |           |           |        |     |                     |    |
|                                  | 19        | 173.07  | /84        | 0.6       | 7167     | ,      |          |           |           |        |     |                     |    |
|                                  | 20        | 174.95  | 53         | 2.1       | 23424    | 1      |          |           |           |        |     |                     |    |
|                                  | 21        | 175.04  | 47         | 0.7       | 8070     | )      |          |           |           |        |     |                     |    |
|                                  | 22        | 175.11  | 87         | 0.9       | 9789     | )<br>7 |          |           |           |        |     |                     |    |
|                                  | 23        | 176.95  | 29         | 1.0       | 11672    | ,<br>, |          |           |           |        |     |                     |    |
|                                  | 25        | 183.07  | 79         | 3.1       | 34773    | 3      |          |           |           |        |     |                     |    |
|                                  | 26        | 186.07  | '45        | 0.7       | 8011     |        |          |           |           |        |     |                     |    |
|                                  | 27        | 190.06  | 683        | 11.0      | 124708   | 3      |          |           |           |        |     |                     |    |
|                                  | 20        | 191.07  | 12         | 1.4       | 7035     | 5      |          |           |           |        |     |                     |    |
|                                  | 30        | 214.08  | 394        | 0.5       | 6248     | ŝ      |          |           |           |        |     |                     |    |
|                                  | 31        | 217.10  | )46        | 1.2       | 13659    | )      |          |           |           |        |     |                     |    |
|                                  | 32        | 217.12  | 275        | 0.7       | 8135     | 5      |          |           |           |        |     |                     |    |
|                                  | 33        | 223.09  | 884        | 0.8       | 9297     | Ś      |          |           |           |        |     |                     |    |
|                                  | 35        | 249.09  | 995        | 0.8       | 9500     | Ś      |          |           |           |        |     |                     |    |
|                                  | 36        | 249.98  | 321        | 0.6       | 6385     | 5      |          |           |           |        |     |                     |    |
|                                  | 37        | 257.24  | 67         | 1.2       | 14143    | 3      |          |           |           |        |     |                     |    |
|                                  | 30        | 264.10  | 230        | 100.0     | 1136988  | 2      |          |           |           |        |     |                     |    |
|                                  | 40        | 265.12  | 259        | 15.4      | 174993   | 3      |          |           |           |        |     |                     |    |
|                                  | 41        | 266.12  | 204        | 6.3       | 72097    | 7      |          |           |           |        |     |                     |    |
|                                  | 42        | 267.12  | 225        | 1.2       | 13321    | >      |          |           |           |        |     |                     |    |
|                                  | 43        | 273.10  | 130        | 1.4       | 15720    | 2      |          |           |           |        |     |                     |    |
|                                  | 45        | 279.15  | 686        | 1.5       | 17108    | ŝ      |          |           |           |        |     |                     |    |
|                                  | 46        | 281.21  | 03         | 0.9       | 10329    | 9      |          |           |           |        |     |                     |    |
|                                  | 47        | 295.19  | 941        | 1.3       | 15225    | ō      |          |           |           |        |     |                     |    |
|                                  | 48        | 301.14  | 109<br>504 | 1.0       | 10808    | 5      |          |           |           |        |     |                     |    |
|                                  | 50        | 311.16  | 61         | 1.2       | 13092    | 2      |          |           |           |        |     |                     |    |
|                                  | 51        | 313.20  | 38         | 0.8       | 8831     |        |          |           |           |        |     |                     |    |
|                                  | 52        | 315.17  | 69         | 0.6       | 7248     | 3      |          |           |           |        |     |                     |    |
|                                  | 53        | 324.16  | 75         | 0.6       | 1214     | +      |          |           |           |        |     |                     |    |
|                                  | 55        | 331.20  | 91         | 0.8       | 8880     | ś      |          |           |           |        |     |                     |    |
|                                  | 56        | 336.22  | 206        | 0.6       | 7009     | )      |          |           |           |        |     |                     |    |
|                                  | 57        | 338.17  | 79         | 0.7       | 8000     | )      |          |           |           |        |     |                     |    |
|                                  | 58<br>59  | 352.19  | 128        | 2.7       | 30485    | 1      |          |           |           |        |     |                     |    |
|                                  | 60        | 354.19  | 40         | 0.6       | 6408     | 3      |          |           |           |        |     |                     |    |
|                                  | 61        | 359.24  | 00         | 0.6       | 6279     | )      |          |           |           |        |     |                     |    |
|                                  | 62        | 362.17  | '88        | 0.8       | 9290     | )      |          |           |           |        |     |                     |    |

Bruker Compass DataAnalysis 4.0

Acquisition Date 15.09.2020 11:11:50

Page 2 of 3

Figure S1.47: HRMS (ESI) peak table of 12.

| #   | m/z      | ۱%  | 1     |
|-----|----------|-----|-------|
| 63  | 369.3508 | 1.8 | 19917 |
| 64  | 373.2191 | 0.6 | 6843  |
| 65  | 380.2236 | 0.7 | 7418  |
| 66  | 381.2975 | 0.6 | 6386  |
| 67  | 383.1402 | 1.7 | 19741 |
| 68  | 388.1696 | 0.6 | 6881  |
| 69  | 391.2839 | 3.3 | 37183 |
| 70  | 392.2871 | 0.9 | 10063 |
| 71  | 393.2194 | 1.2 | 13667 |
| 72  | 393.2964 | 0.9 | 9737  |
| 73  | 395.2200 | 0.7 | 7466  |
| 74  | 399.2495 | 1.0 | 11452 |
| 75  | 403.2324 | 0.7 | 8290  |
| 76  | 413.2657 | 2.6 | 29877 |
| 77  | 414.2688 | 0.7 | 7660  |
| 78  | 419.3147 | 0.9 | 10403 |
| 79  | 425.2141 | 2.1 | 23334 |
| 80  | 425.2871 | 0.6 | 6820  |
| 81  | 425.3622 | 2.9 | 33064 |
| 82  | 426.3652 | 0.9 | 9691  |
| 83  | 427.3915 | 0.6 | 7234  |
| 84  | 429.2397 | 0.6 | 6636  |
| 85  | 439.2026 | 0.9 | 10766 |
| 86  | 441.2970 | 0.6 | 6658  |
| 87  | 447.3445 | 2.6 | 29123 |
| 88  | 448.3482 | 0.8 | 9272  |
| 89  | 451.4503 | 0.6 | 6994  |
| 90  | 473.3200 | 4.3 | 48678 |
| 91  | 474.3233 | 1.5 | 16922 |
| 92  | 475.3188 | 2.0 | 22736 |
| 93  | 476.3217 | 0.7 | 8032  |
| 94  | 479.4815 | 0.8 | 9116  |
| 95  | 493.4969 | 0.7 | 8466  |
| 96  | 507.5128 | 1.1 | 12428 |
| 97  | 521.5278 | 0.6 | 6892  |
| 98  | 533.5284 | 0.9 | 10707 |
| 99  | 535.5436 | 0.8 | 9611  |
| 100 | 551.5024 | 0.6 | 6762  |

### Acquisition Parameter

| General                                   | Fore Vacuum<br>Scan Begin       | 2.60e+<br>75 m/z | 000 mBar | High Vacuum<br>Scan End               | 1.37e-007 mBar<br>1700 m/z | Source Type<br>Ion Polarity | ESI<br>Positive |
|-------------------------------------------|---------------------------------|------------------|----------|---------------------------------------|----------------------------|-----------------------------|-----------------|
| Source                                    | Set Nebulizer<br>Set Dry Heater | 0.4 Ba<br>180 °C | r        | Set Capillary<br>Set End Plate Offset | 3600 V<br>-500 V           | Set Dry Gas                 | 3.0 l/min       |
| Quadrupole                                | Set Ion Energy ( MS on          | ly)              | 4.0 eV   |                                       |                            | 55 Q X/                     |                 |
| Coll. Cell                                | Collision Energy                |                  | 8.0 eV   | Set Collision Cell RF                 | 350.0 Vpp                  | 55.0 Vpp                    |                 |
| Ion Cooler Set Ion Cooler Transfer Time 5 |                                 |                  | 55.0 µs  | Set Ion Cooler Pre Puls               | e Storage Time 7           | .0 μs                       |                 |

Bruker Compass DataAnalysis 4.0

Acquisition Date 15.09.2020 11:11:50

Page 3 of 3

Figure S1.48: HRMS (ESI) peak table of 12.



**1,2-bis(4-(***tert***-butylthio)-2-nitrophenyl)ethyne 14**: An oven dried Schlenk tube was charged with  $K_2CO_3$  (306 mg, 2.21 mmol, 4 eq.), CuI (10.5 mg, 55.3 µmol, 0.1 eq.) and Pd(PPh<sub>3</sub>)<sub>4</sub> (32 mg, 27.7 µmol, 0.05 eq.). The solids were purged with argon and dissolved in a degassed mixture of dry THF (2 mL), MeOH (2 mL) and TEA (1mL). To this was added the acetylene 11 (170 mg, 553 µmol, 1 eq.) and the iodine 6 (224 mg, 664 µmol, 1.2 eq.). The mixture was stirred at r.t. for 16 h and poured into aq. sat. NH<sub>4</sub>Cl and extracted with DCM. The combined organic phase was dried over anhydrous MgSO<sub>4</sub>, filtered, concentrated under reduced pressure and purified by column chromatography on silica gel (cyclohexane : toluene 1:1) followed by GPC(CHCl<sub>3</sub>) yielding a white solid (209 mg, 470 µmol, 85%).

<sup>1</sup>**H-NMR** (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.28 (d, J = 1.6 Hz, 2H), 7.78 (dd, J = 8.0, 1.6 Hz, 2H), 7.76 (d, J = 8.0 Hz, 2H), 1.36 (s, 18H).

<sup>13</sup>C-NMR (126 MHz, CDCl<sub>3</sub>) δ 148.97, 141.08, 136.69, 134.82, 132.33, 117.69, 92.87, 47.92, 31.05.

| HRMS (ESI) m/z: calcd. for | $[C_{22}H_{24}N_2O_4S_2+Na]^+$ | 467.1070 | [M+Na] <sup>+</sup> ; found 467.1070  |
|----------------------------|--------------------------------|----------|---------------------------------------|
|                            | $[C_{44}H_{48}N_4O_8S_4+Na]^+$ | 911.2255 | [2M+Na] <sup>+</sup> ; found 911.2247 |



Figure S1.50: <sup>13</sup>C-NMR (126 MHz, CDCl<sub>3</sub>) spectrum of 14.



Figure S1.51: HRMS (ESI) spectrum of 14.

|      | Meas. | m/z  | # F   | ormula  |                | Score  | m/z      | err [mDa] | err [ppm] | mSigma | rdb  | e Conf | z  |  |
|------|-------|------|-------|---------|----------------|--------|----------|-----------|-----------|--------|------|--------|----|--|
|      | 467.1 | 070  | 1 0   | 22 H 24 | N 2 Na O 4 S 2 | 100.00 | 467.1070 | -0.1      | -0.2      | 16.4   | 11.5 | even   | 1+ |  |
|      | 911.2 | 255  | 1 0   | 44 H 48 | N 4 Na O 8 5 4 | 100.00 | 911.2247 | -0.8      | -0.8      | 14.2   | 22.5 | even   |    |  |
| Mass | iist  |      |       |         |                |        |          |           |           |        |      |        |    |  |
|      | #     |      | m/z   | 1%      | <u> </u>       |        |          |           |           |        |      |        |    |  |
|      | 1     | 171. | 0993  | 2.3     | 5779           |        |          |           |           |        |      |        |    |  |
|      | 2     | 1/3. | 1150  | 3.2     | 7949           |        |          |           |           |        |      |        |    |  |
|      | 4     | 205  | 0602  | 3.4     | 8370           |        |          |           |           |        |      |        |    |  |
|      | 5     | 215. | 1255  | 6.0     | 14842          |        |          |           |           |        |      |        |    |  |
|      | 6     | 217. | 1048  | 6.1     | 14944          |        |          |           |           |        |      |        |    |  |
|      | 7     | 226. | 9516  | 2.4     | 5903           |        |          |           |           |        |      |        |    |  |
|      | 8     | 227. | 1258  | 3.1     | 7632           |        |          |           |           |        |      |        |    |  |
|      | 10    | 236. | 0716  | 2.8     | 6949           |        |          |           |           |        |      |        |    |  |
|      | 10    | 242. | 2844  | 2.8     | 0848           |        |          |           |           |        |      |        |    |  |
|      | 12    | 263  | 0563  | 2.0     | 2821           |        |          |           |           |        |      |        |    |  |
|      | 13    | 269. | 1367  | 1.4     | 3402           |        |          |           |           |        |      |        |    |  |
|      | 14    | 273. | 1676  | 3.3     | 8208           |        |          |           |           |        |      |        |    |  |
|      | 15    | 279. | 0936  | 7.7     | 18895          |        |          |           |           |        |      |        |    |  |
|      | 16    | 280. | 0970  | 1.6     | 4008           |        |          |           |           |        |      |        |    |  |
|      | 17    | 297. | 2405  | 1.1     | 2718           |        |          |           |           |        |      |        |    |  |
|      | 10    | 301. | 1/115 | 90.3    | 23//90         |        |          |           |           |        |      |        |    |  |
|      | 20    | 301. | 2115  | 2.6     | 6522           |        |          |           |           |        |      |        |    |  |
|      | 21    | 302  | 0791  | 18.1    | 44649          |        |          |           |           |        |      |        |    |  |
|      | 22    | 303. | 0820  | 2.1     | 5101           |        |          |           |           |        |      |        |    |  |
|      | 23    | 305. | 1576  | 1.2     | 2965           |        |          |           |           |        |      |        |    |  |
|      | 24    | 317. | 1727  | 1.9     | 4768           |        |          |           |           |        |      |        |    |  |
|      | 25    | 331. | 1548  | 1.6     | 4008           |        |          |           |           |        |      |        |    |  |
|      | 27    | 341  | 2663  | 1.0     | 2511           |        |          |           |           |        |      |        |    |  |
|      | 28    | 349. | 1839  | 1.3     | 3296           |        |          |           |           |        |      |        |    |  |
|      | 29    | 352. | 1829  | 3.1     | 7599           |        |          |           |           |        |      |        |    |  |
|      | 30    | 353. | 2665  | 4.0     | 9764           |        |          |           |           |        |      |        |    |  |
|      | 31    | 381. | 2984  | 3.8     | 9447           |        |          |           |           |        |      |        |    |  |
|      | 32    | 382. | 3011  | 1.0     | 2558           |        |          |           |           |        |      |        |    |  |
|      | 34    | 393  | 2102  | 1.1     | 3147           |        |          |           |           |        |      |        |    |  |
|      | 35    | 393. | 2993  | 1.0     | 2575           |        |          |           |           |        |      |        |    |  |
|      | 36    | 413. | 2669  | 3.6     | 8960           |        |          |           |           |        |      |        |    |  |
|      | 37    | 414. | 2698  | 1.0     | 2483           |        |          |           |           |        |      |        |    |  |
|      | 38    | 417. | 3454  | 1.3     | 3317           |        |          |           |           |        |      |        |    |  |
|      | 39    | 437. | 2364  | 1.1     | 2643           |        |          |           |           |        |      |        |    |  |
|      | 40    | 439. | 3452  | 2.2     | 5388           |        |          |           |           |        |      |        |    |  |
|      | 42    | 449  | 3743  | 1.0     | 2592           |        |          |           |           |        |      |        |    |  |
|      | 43    | 451. | 1125  | 1.4     | 3387           |        |          |           |           |        |      |        |    |  |
|      | 44    | 463. | 2019  | 1.5     | 3718           |        |          |           |           |        |      |        |    |  |
|      | 45    | 467. | 1070  | 100.0   | 246890         |        |          |           |           |        |      |        |    |  |
|      | 40    | 468. | 1084  | 28.1    | 09398          |        |          |           |           |        |      |        |    |  |
|      | 48    | 409. | 1037  | 4.1     | 10120          |        |          |           |           |        |      |        |    |  |
|      | 49    | 471. | 1000  | 1.4     | 3482           |        |          |           |           |        |      |        |    |  |
|      | 50    | 481. | 1239  | 1.1     | 2720           |        |          |           |           |        |      |        |    |  |
|      | 51    | 483. | 0807  | 1.2     | 2898           |        |          |           |           |        |      |        |    |  |
|      | 52    | 483. | 1458  | 1.6     | 4014           |        |          |           |           |        |      |        |    |  |
|      | 53    | 521. | 1550  | 0.3     | 15443          |        |          |           |           |        |      |        |    |  |
|      | 55    | 525  | 0657  | 2.1     | 2623           |        |          |           |           |        |      |        |    |  |
|      | 56    | 535. | .0951 | 3.1     | 7652           |        |          |           |           |        |      |        |    |  |
|      | 57    | 535. | 1707  | 3.6     | 8915           |        |          |           |           |        |      |        |    |  |
|      | 58    | 536. | 1738  | 1.1     | 2764           |        |          |           |           |        |      |        |    |  |
|      | 59    | 541. | 1218  | 9.0     | 22182          |        |          |           |           |        |      |        |    |  |
|      | 60    | 542  | 1227  | 4.5     | 11055          |        |          |           |           |        |      |        |    |  |
|      | 01    | 543. | 1197  | 3.0     | 6974           |        |          |           |           |        |      |        |    |  |

Bruker Compass DataAnalysis 4.0

Measured m/z vs. theoretical m/z

Acquisition Date 16.08.2019 09:37:35

Page 2 of 3

Figure S1.52: HRMS (ESI) peak table of 14.

| #   | m/z       | ۱%   | 1      |
|-----|-----------|------|--------|
| 62  | 544.1200  | 1.3  | 3311   |
| 63  | 549.1860  | 2.0  | 4821   |
| 64  | 579.1630  | 81.3 | 200736 |
| 65  | 579.2266  | 1.1  | 2712   |
| 66  | 580.1661  | 30.3 | 74912  |
| 67  | 581.1689  | 5.8  | 14432  |
| 68  | 615.1411  | 1.5  | 3758   |
| 69  | 616.1418  | 1.0  | 2461   |
| 70  | 685.4360  | 1.3  | 3303   |
| 71  | 691.3535  | 3.7  | 9226   |
| 72  | 692.3573  | 1.8  | 4451   |
| 73  | 705.5833  | 1.0  | 2582   |
| 74  | 725.4317  | 2.4  | 5863   |
| 75  | 726.4348  | 1.2  | 2903   |
| 76  | 745.1942  | 25.6 | 63290  |
| 77  | 746.1971  | 11.4 | 28224  |
| 78  | 747.1947  | 4.7  | 11490  |
| 79  | 748.1942  | 1.6  | 3985   |
| 80  | 797.3848  | 1.0  | 2562   |
| 81  | 799.2411  | 2.0  | 4905   |
| 82  | 800.2447  | 1.2  | 2865   |
| 83  | 813.2569  | 1.2  | 2914   |
| 84  | 825.4160  | 1.0  | 2550   |
| 85  | 857.2483  | 9.2  | 22726  |
| 86  | 857.3851  | 1.2  | 2862   |
| 87  | 858.2516  | 5.4  | 13318  |
| 88  | 859.2551  | 1.6  | 3884   |
| 89  | 911.2255  | 14.3 | 35207  |
| 90  | 912.2283  | 7.6  | 18762  |
| 91  | 913.2260  | 4.3  | 10634  |
| 92  | 914.2264  | 1.8  | 4347   |
| 93  | 963.5229  | 1.2  | 2950   |
| 94  | 965.2722  | 2.7  | 6693   |
| 95  | 966.2745  | 1.6  | 4059   |
| 96  | 967.2739  | 1.1  | 2795   |
| 97  | 979.2865  | 1.5  | 3776   |
| 98  | 980.2913  | 1.0  | 2564   |
| 99  | 1241.6068 | 1.5  | 3686   |
| 100 | 1242.6104 | 1.5  | 3643   |

### Acquisition Parameter

| General    | Fore Vacuum<br>Scan Begin       | 2.68e+000 mBa<br>75 m/z | High Vacuum<br>Scan End               | 1.21e-007 mBar<br>1700 m/z | Source Type<br>Ion Polarity | ESI<br>Positive |
|------------|---------------------------------|-------------------------|---------------------------------------|----------------------------|-----------------------------|-----------------|
| Source     | Set Nebulizer<br>Set Dry Heater | 0.4 Bar<br>180 °C       | Set Capillary<br>Set End Plate Offset | 3600 V<br>-500 V           | Set Dry Gas                 | 4.0 l/min       |
| Quadrupole | Set Ion Energy ( MS on          | ly) 4.0 eV              |                                       |                            |                             |                 |
| Coll. Cell | Collision Energy                | 8.0 eV                  | Set Collision Cell RF                 | 350.0 Vpp                  |                             |                 |
| Ion Cooler | Set Ion Cooler Transfer         | Time 75.0 µs            | Set Ion Cooler Pre Pul                | se Storage Time            | 10.0 µs                     |                 |

Bruker Compass DataAnalysis 4.0

Acquisition Date 16.08.2019 09:37:35

Page 3 of 3

Figure S1.53: HRMS (ESI) peak table of 14.



**1,2-bis(4-(methylthio)-2-nitrophenyl)ethyne 2b**: An oven dried argon flushed Schlenk tube was charged with iodine 5 (61.0 mg, 207  $\mu$ mol, 1.1 eq.), K<sub>2</sub>CO<sub>3</sub> (104 mg, 752  $\mu$ mol, 4 eq.), CuI (3.58 mg, 18.8  $\mu$ mol, 0.1 eq.) and Pd(PPh<sub>3</sub>)<sub>4</sub> (10.9 mg, 9.40  $\mu$ mol, 0.05 eq.). The solids were purged with argon and dissolved in degassed THF (1 mL), MeOH (1 mL) and TEA (0.5 mL). To this was added a degassed solution of the TMS acetylene 10 (50.0 mg, 188  $\mu$ mol, 1 eq.) in THF (1 mL). The solution was stirred at r.t. for 16 h, poured into an aq. sat. NH<sub>4</sub>Cl solution and extracted with DCM. The combined organic phase was dried over anhydrous MgSO<sub>4</sub>, filtered, concentrated under reduced pressure and purified by column chromatography on silica gel (DCM) and GPC(CHCl<sub>3</sub>) yielding 2b as an orange solid (59.0 mg, 164  $\mu$ mol, 87%).

<sup>1</sup>**H-NMR** (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.91 (d, J = 2.0 Hz, 2H), 7.68 (d, J = 8.2 Hz, 2H), 7.44 (dd, J = 8.3, 2.0 Hz, 2H), 2.58 (s, 6H).

<sup>13</sup>**C-NMR** (126 MHz, CDCl<sub>3</sub>) δ 149.37(extracted form HMBC/HMQC), 142.89, 135.11, 129.97, 121.02, 113.97, 91.99, 15.29.

| HRMS (ESI) m/z: calcd. for | $[C_{16}H_{12}N_2O_4S_2{+}H]^+$ | 361.0305 | $[M+H]^+$ ; found 361.0311           |
|----------------------------|---------------------------------|----------|--------------------------------------|
|                            | $[C_{16}H_{12}N_2O_4S_2+Na]^+$  | 383.0126 | [M+Na] <sup>+</sup> ; found 383.0131 |
|                            | $[C_{16}H_{12}N_2O_4S_2+K]^+$   | 398.9864 | $[M+K]^+$ ; found 398.9870           |



Figure S1.54: <sup>1</sup>H-NMR (500 MHz, CDCl<sub>3</sub>) spectrum of 2b.



Figure S1.55: <sup>13</sup>C-NMR (126 MHz, CDCl<sub>3</sub>) spectrum of 2b.



Figure S1.56: HMQC\_GPSW (  $CDCl_3$ ) spectrum of 2b.



Figure S1.57: HMBC\_GPSW (  $CDCl_3$ ) spectrum of 2b.



Sample Name VOE\_364 Comment

Instrument maXis 4G Method ms\_nocolumn\_mid\_pos.m



Figure S1.58: HRMS (ESI) spectrum of 2b.

### Measured m/z vs. theoretical m/z

| mous | area | 110/2 |       | licoretie | ai 11/2    |        |          |           |           |        |      |        |    |  |
|------|------|-------|-------|-----------|------------|--------|----------|-----------|-----------|--------|------|--------|----|--|
|      | Meas | . m/z | #     | Formula   |            | Score  | m/z      | err (mDa) | err (ppm) | mSigma | rdb  | e Conf | Z  |  |
|      | 361  | 0305  | 1     | C 16 H 13 | 3N2O4S2    | 100.00 | 361.0311 | 0.6       | 1.7       | 11.4   | 11.5 | even   | 1+ |  |
|      | 383  | 0126  | 1     | C 16 H 12 | 2N2Na04S2  | 100.00 | 383.0131 | 0.5       | 1.2       | 11.8   | 11.5 | even   |    |  |
|      | 398  | 9864  | 1     | C 16 H 12 | 2KN204S2   | 100.00 | 398 9870 | 0.0       | 16        | 55.9   | 11.5 | even   |    |  |
|      | 000. | 5004  | · ·   | 0 1011 12 | 2111120402 | 100.00 | 550.5070 | 0.7       | 1.0       | 00.0   | 11.0 | 64611  |    |  |
| Mass | list |       |       |           |            |        |          |           |           |        |      |        |    |  |
|      |      |       |       |           |            |        |          |           |           |        |      |        |    |  |
|      |      |       | m/z   | 1%        | <u> </u>   |        |          |           |           |        |      |        |    |  |
|      | 1    | 140.9 | 9618  | 7.8       | 7245       |        |          |           |           |        |      |        |    |  |
|      | 2    | 141.9 | 9588  | 6.1       | 5617       |        |          |           |           |        |      |        |    |  |
|      | 3    | 147.0 | 0916  | 5.8       | 5413       |        |          |           |           |        |      |        |    |  |
|      | 4    | 183.0 | 0777  | 12.0      | 11090      |        |          |           |           |        |      |        |    |  |
|      | 5    | 185   | 1146  | 47.3      | 43906      |        |          |           |           |        |      |        |    |  |
|      | ĕ    | 199   | 1301  | 14.6      | 13570      |        |          |           |           |        |      |        |    |  |
|      | 7    | 205 ( | 0507  | 81.3      | 75452      |        |          |           |           |        |      |        |    |  |
|      | ó    | 200.0 | 0621  | 6.9       | 621/       |        |          |           |           |        |      |        |    |  |
|      | ~    | 200.0 | 4455  | 0.0       | 0014       |        |          |           |           |        |      |        |    |  |
|      | 40   | 213.  | 1400  | 7.0       | 0010       |        |          |           |           |        |      |        |    |  |
|      | 10   | 215.  | 1249  | 1.3       | 6774       |        |          |           |           |        |      |        |    |  |
|      | 11   | 210.  | 9/91  | 10.4      | 9680       |        |          |           |           |        |      |        |    |  |
|      | 12   | 217.0 | 0469  | 16.9      | 15664      |        |          |           |           |        |      |        |    |  |
|      | 13   | 217.  | 1044  | 11.2      | 10350      |        |          |           |           |        |      |        |    |  |
|      | 14   | 220.9 | 9342  | 5.6       | 5159       |        |          |           |           |        |      |        |    |  |
|      | 15   | 226.9 | 9511  | 21.5      | 19978      |        |          |           |           |        |      |        |    |  |
|      | 16   | 227.1 | 1249  | 9.7       | 8990       |        |          |           |           |        |      |        |    |  |
|      | 17   | 229.1 | 1408  | 5.9       | 5494       |        |          |           |           |        |      |        |    |  |
|      | 18   | 229.8 | 8927  | 8.2       | 7649       |        |          |           |           |        |      |        |    |  |
|      | 19   | 235.9 | 9096  | 7.3       | 6763       |        |          |           |           |        |      |        |    |  |
|      | 20   | 236.0 | 0709  | 7.3       | 6764       |        |          |           |           |        |      |        |    |  |
|      | 21   | 237.0 | 0782  | 7.3       | 6763       |        |          |           |           |        |      |        |    |  |
|      | 22   | 239.0 | 0884  | 11.6      | 10788      |        |          |           |           |        |      |        |    |  |
|      | 23   | 243.9 | 9412  | 7.4       | 6857       |        |          |           |           |        |      |        |    |  |
|      | 24   | 245 ( | 0780  | 26.1      | 24194      |        |          |           |           |        |      |        |    |  |
|      | 25   | 251 ( | 0522  | 8.9       | 8237       |        |          |           |           |        |      |        |    |  |
|      | 26   | 255   | 1559  | 6.4       | 5959       |        |          |           |           |        |      |        |    |  |
|      | 27   | 261   | 1304  | 7.4       | 6904       |        |          |           |           |        |      |        |    |  |
|      | 20   | 201.  | 1074  | 12.4      | 12/72      |        |          |           |           |        |      |        |    |  |
|      | 20   | 271.  | 1666  | 6.0       | 6254       |        |          |           |           |        |      |        |    |  |
|      | 29   | 275   | 1612  | 20.0      | 26020      |        |          |           |           |        |      |        |    |  |
|      | 30   | 2/0.  | 0404  | 20.1      | 20030      |        |          |           |           |        |      |        |    |  |
|      | 31   | 280.  | 9401  | 11.3      | 10523      |        |          |           |           |        |      |        |    |  |
|      | 32   | 281.0 | 0482  | 0.3       | 5879       |        |          |           |           |        |      |        |    |  |
|      | 33   | 284.0 | 8908  | 6.1       | 5655       |        |          |           |           |        |      |        |    |  |
|      | 34   | 288.9 | 9214  | 20.4      | 18934      |        |          |           |           |        |      |        |    |  |
|      | 35   | 291.  | 1560  | 8.0       | 7436       |        |          |           |           |        |      |        |    |  |
|      | 36   | 294.9 | 9193  | 24.0      | 22228      |        |          |           |           |        |      |        |    |  |
|      | 37   | 301.1 | 1403  | 7.6       | 7085       |        |          |           |           |        |      |        |    |  |
|      | 38   | 303.8 | 8969  | 24.4      | 22667      |        |          |           |           |        |      |        |    |  |
|      | 39   | 305.  | 1707  | 7.1       | 6577       |        |          |           |           |        |      |        |    |  |
|      | 40   | 313.2 | 2345  | 8.0       | 7404       |        |          |           |           |        |      |        |    |  |
|      | 41   | 348.9 | 9895  | 12.1      | 11180      |        |          |           |           |        |      |        |    |  |
|      | 42   | 350.9 | 9865  | 11.7      | 10883      |        |          |           |           |        |      |        |    |  |
|      | 43   | 353.1 | 1448  | 20.8      | 19311      |        |          |           |           |        |      |        |    |  |
|      | 44   | 353.2 | 2658  | 7.2       | 6716       |        |          |           |           |        |      |        |    |  |
|      | 45   | 354.1 | 1479  | 6.1       | 5700       |        |          |           |           |        |      |        |    |  |
|      | 46   | 360.3 | 3227  | 11.6      | 10768      |        |          |           |           |        |      |        |    |  |
|      | 47   | 361.0 | 0305  | 18.0      | 16716      |        |          |           |           |        |      |        |    |  |
|      | 48   | 365.1 | 1055  | 8.3       | 7657       |        |          |           |           |        |      |        |    |  |
|      | 49   | 381.2 | 2968  | 5.5       | 5060       |        |          |           |           |        |      |        |    |  |
|      | 50   | 383.0 | 0126  | 32.2      | 29868      |        |          |           |           |        |      |        |    |  |
|      | 51   | 384.0 | 0156  | 5.9       | 5500       |        |          |           |           |        |      |        |    |  |
|      | 52   | 387.9 | 9733  | 6.1       | 5638       |        |          |           |           |        |      |        |    |  |
|      | 53   | 398.9 | 9864  | 6.9       | 6425       |        |          |           |           |        |      |        |    |  |
|      | 54   | 401.0 | 0232  | 47.9      | 44479      |        |          |           |           |        |      |        |    |  |
|      | 55   | 402 ( | 0260  | 9.0       | 8342       |        |          |           |           |        |      |        |    |  |
|      | 56   | 407   | 0124  | 14.8      | 13706      |        |          |           |           |        |      |        |    |  |
|      | 57   | 413   | 2651  | 7.6       | 7074       |        |          |           |           |        |      |        |    |  |
|      | 58   | 416   | 0802  | 5.4       | 5016       |        |          |           |           |        |      |        |    |  |
|      | 50   | 422   | 00.49 | 12.9      | 12844      |        |          |           |           |        |      |        |    |  |
|      | 60   | 420.  | 1244  | 13.0      | 0002       |        |          |           |           |        |      |        |    |  |
|      | 00   | 439.  | 1241  | 9.0       | 0000       |        |          |           |           |        |      |        |    |  |

Bruker Compass DataAnalysis 4.0

Acquisition Date 21.07.2020 09:57:25

Page 2 of 3

Figure S1.59: HRMS (ESI) peak table of 2b.

| #   | m/z      | 1%    | 1     |
|-----|----------|-------|-------|
| 61  | 439.8716 | 9.9   | 9180  |
| 62  | 441.2967 | 31.1  | 28864 |
| 63  | 442.2998 | 9.4   | 8745  |
| 64  | 443.3332 | 5.7   | 5318  |
| 65  | 444.9867 | 9.7   | 8969  |
| 66  | 445.1191 | 8.0   | 7395  |
| 67  | 455.3123 | 6.9   | 6380  |
| 68  | 462.1457 | 8.1   | 7505  |
| 69  | 467.1011 | 25.7  | 23877 |
| 70  | 468.1021 | 11.3  | 10450 |
| 71  | 469.0993 | 7.6   | 7025  |
| 72  | 469.3264 | 6.0   | 5565  |
| 73  | 475.3247 | 30.6  | 28405 |
| 74  | 476.3278 | 8.7   | 8061  |
| 75  | 508.1876 | 6.2   | 5788  |
| 76  | 513.1430 | 8.9   | 8247  |
| 77  | 536.1648 | 100.0 | 92779 |
| 78  | 537.1654 | 48.6  | 45134 |
| 79  | 538.1632 | 33.9  | 31409 |
| 80  | 539.1630 | 12.8  | 11830 |
| 81  | 541.1201 | 32.7  | 30328 |
| 82  | 542.1206 | 15.7  | 14536 |
| 83  | 543.1181 | 11.8  | 10937 |
| 84  | 553.4581 | 7.4   | 6880  |
| 85  | 557.0939 | 15.0  | 13904 |
| 86  | 558.0947 | 8.0   | 7399  |
| 87  | 559.0926 | 7.0   | 6501  |
| 88  | 601.3912 | 6.2   | 5791  |
| 89  | 610.1832 | 29.0  | 26908 |
| 90  | 611.1838 | 16.3  | 15153 |
| 91  | 612.1815 | 12.9  | 11974 |
| 92  | 613.1815 | 5.5   | 5117  |
| 93  | 615.1386 | 5.8   | 5369  |
| 94  | 645.4169 | 5.7   | 5257  |
| 95  | 684.2018 | 7.3   | 6742  |
| 96  | 685.4343 | 5.4   | 5021  |
| 97  | 743.0358 | 26.9  | 24995 |
| 98  | 744.0380 | 10.7  | 9891  |
| 99  | 745.0344 | 6.6   | 6159  |
| 100 | 952.7975 | 7.9   | 7285  |

#### Acquisition Parameter

| General    | Fore Vacuum<br>Scan Begin       | 2.39e+000 mBar<br>75 m/z | High Vacuum<br>Scan End               | 1.21e-007 mBar<br>2000 m/z | Source Type<br>Ion Polarity | ESI<br>Positive |
|------------|---------------------------------|--------------------------|---------------------------------------|----------------------------|-----------------------------|-----------------|
| Source     | Set Nebulizer<br>Set Dry Heater | 2.0 Bar<br>200 °C        | Set Capillary<br>Set End Plate Offset | 4500 V<br>-500 V           | Set Dry Gas                 | 8.0 l/min       |
| Quadrupole | e Set Ion Energy (MS on         | ly) 4.0 eV               |                                       |                            |                             |                 |
| Coll. Cell | Collision Energy                | 8.0 eV                   | Set Collision Cell RF                 | 600.0 Vpp                  | 100.0 Vpp                   |                 |
| Ion Cooler | Set Ion Cooler Transfer         | Time 75.0 µs             | Set Ion Cooler Pre Puls               | e Storage Time             | 10.0 µs                     |                 |

Bruker Compass DataAnalysis 4.0

Acquisition Date 21.07.2020 09:57:25

Page 3 of 3

Figure S1.60: HRMS (ESI) peak table of 2b.



**6,6'-(ethyne-1,2-diyl)bis(3-(***tert***-butylthio)***-N,N***-dimethylaniline) 15**: An oven dried argon flushed Schlenk tube was charged with iodine 9 (40.9 mg, 122 µmol, 1.1 eq.), K<sub>2</sub>CO<sub>3</sub> (61.4 mg, 444 µmol, 4 eq.), CuI (2.11 mg, 11.1 µmol, 0.1 eq.) and Pd(PPH<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub> ( 3.4 mg, 6.00 µmol, 0.05eq.). The solids were purged with argon and dissolved in a degassed mixture of THF (1.2 mL), MeOH (1.2 mL) and TEA (0.6 mL). To this was added a degassed solution of acetylene 13 (33.9 mg, 111 µmol, 1eq.) in THF (0.6 mL). The solution was stirred at r.t. for 16 h, poured into aq. sat. NH<sub>4</sub>Cl solution and extracted with DCM. The combined organic phase was dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, filtered, concentrated under reduced pressure and purified by column chromatography on silica gel (DCM) yielding 15 as a yellow solid (28.5 mg, 65.0 µmol, 58%).

<sup>1</sup>**H-NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.42 (d, J = 7.8 Hz, 2H), 7.07 (d, J = 1.6 Hz, 2H), 7.05 (dd, J = 7.8, 1.7 Hz, 2H), 3.00 (s, 12H), 1.31 (s, 18H).

<sup>13</sup>C-NMR (101 MHz, CDCl<sub>3</sub>) δ 154.19, 133.87, 133.68, 129.17, 126.00, 116.03, 95.09, 46.54, 43.61, 31.22.

**HRMS (ESI)** m/z: calcd. for  $[C_{26}H_{36}N_2S_2+H]^+$  441.2390  $[M+H]^+$ ; found 441.2393



Figure S1.61: <sup>1</sup>H-NMR (500 MHz, CDCl<sub>3</sub>) spectrum of 15.



Figure S1.62: <sup>13</sup>C-NMR (126 MHz, CDCl<sub>3</sub>) spectrum of 15.



Figure S1.63: HRMS (ESI) spectrum of 15.

| Meas | sured          | m/z v      | /s. the    | eoretica          | l m/z   |              |                 |                  |                  |                |            |                |         |  |
|------|----------------|------------|------------|-------------------|---------|--------------|-----------------|------------------|------------------|----------------|------------|----------------|---------|--|
|      | Meas.<br>441.2 | m/z<br>390 | # F<br>1 C | ormula<br>26 H 37 | N 2 S 2 | Score 100.00 | m/z<br>441.2393 | err [mDa]<br>0.3 | err [ppm]<br>0.7 | mSigma<br>15.3 | rdb<br>9.5 | e Conf<br>even | z<br>1+ |  |
| Mass | s list         |            |            |                   |         |              |                 |                  |                  |                |            |                |         |  |
|      | #              |            | m/z        | 1%                | 1       |              |                 |                  |                  |                |            |                |         |  |
|      | 1              | 353        | .2662      | 9.5               | 6690    |              |                 |                  |                  |                |            |                |         |  |
|      | 2              | 369        | .2401      | 6.1               | 4325    |              |                 |                  |                  |                |            |                |         |  |
|      | 3              | 381        | 29/0       | 10.4              | 7315    |              |                 |                  |                  |                |            |                |         |  |
|      | 5              | 383        | 1819       | 2.6               | 1837    |              |                 |                  |                  |                |            |                |         |  |
|      | ĕ              | 397        | .2707      | 8.0               | 5637    |              |                 |                  |                  |                |            |                |         |  |
|      | 7              | 409        | 1854       | 2.7               | 1913    |              |                 |                  |                  |                |            |                |         |  |
|      | 8              | 409        | .2694      | 3.4               | 2384    |              |                 |                  |                  |                |            |                |         |  |
|      | 10             | 413        | 2663       | 5.5               | 3890    |              |                 |                  |                  |                |            |                |         |  |
|      | 10             | 421        | 2884       | 2.9               | 2035    |              |                 |                  |                  |                |            |                |         |  |
|      | 12             | 429        | 2396       | 7.5               | 5287    |              |                 |                  |                  |                |            |                |         |  |
|      | 13             | 430        | 2422       | 3.0               | 2150    |              |                 |                  |                  |                |            |                |         |  |
|      | 14             | 435        | .3422      | 2.5               | 1768    |              |                 |                  |                  |                |            |                |         |  |
|      | 15             | 437        | .3025      | 2.8               | 2011    |              |                 |                  |                  |                |            |                |         |  |
|      | 10             | 441        | 2057       | 100.0             | 3221    |              |                 |                  |                  |                |            |                |         |  |
|      | 18             | 442        | 2418       | 28.8              | 20317   |              |                 |                  |                  |                |            |                |         |  |
|      | 19             | 443        | 2374       | 11.5              | 8118    |              |                 |                  |                  |                |            |                |         |  |
|      | 20             | 444        | .2391      | 3.2               | 2248    |              |                 |                  |                  |                |            |                |         |  |
|      | 21             | 447        | .3444      | 7.4               | 5260    |              |                 |                  |                  |                |            |                |         |  |
|      | 22             | 448        | 3471       | 2.7               | 1942    |              |                 |                  |                  |                |            |                |         |  |
|      | 23             | 449        | 2088       | 2.6               | 1809    |              |                 |                  |                  |                |            |                |         |  |
|      | 25             | 455        | .2201      | 2.7               | 1877    |              |                 |                  |                  |                |            |                |         |  |
|      | 26             | 457        | .2706      | 6.3               | 4478    |              |                 |                  |                  |                |            |                |         |  |
|      | 27             | 463        | .2201      | 6.8               | 4799    |              |                 |                  |                  |                |            |                |         |  |
|      | 28             | 463        | .3180      | 13.8              | 9725    |              |                 |                  |                  |                |            |                |         |  |
|      | 30             | 464        | 3203       | 5.2               | 3649    |              |                 |                  |                  |                |            |                |         |  |
|      | 31             | 465        | .3287      | 3.3               | 2336    |              |                 |                  |                  |                |            |                |         |  |
|      | 32             | 469        | .3276      | 2.9               | 2031    |              |                 |                  |                  |                |            |                |         |  |
|      | 33             | 471        | .2852      | 3.1               | 2217    |              |                 |                  |                  |                |            |                |         |  |
|      | 34             | 4/9        | 2110       | 5.5               | 3889    |              |                 |                  |                  |                |            |                |         |  |
|      | 36             | 483        | 2731       | 2.5               | 1797    |              |                 |                  |                  |                |            |                |         |  |
|      | 37             | 485        | .3007      | 5.2               | 3655    |              |                 |                  |                  |                |            |                |         |  |
|      | 38             | 489        | .3169      | 2.7               | 1890    |              |                 |                  |                  |                |            |                |         |  |
|      | 39             | 503        | .1602      | 4.6               | 3261    |              |                 |                  |                  |                |            |                |         |  |
|      | 40             | 500        | 3221       | 3.6               | 2569    |              |                 |                  |                  |                |            |                |         |  |
|      | 42             | 533        | .3437      | 3.0               | 2140    |              |                 |                  |                  |                |            |                |         |  |
|      | 43             | 539        | .2982      | 2.8               | 1967    |              |                 |                  |                  |                |            |                |         |  |
|      | 44             | 547        | 1366       | 3.8               | 2665    |              |                 |                  |                  |                |            |                |         |  |
|      | 45             | 549        | .1346      | 3.3               | 2339    |              |                 |                  |                  |                |            |                |         |  |
|      | 40             | 507        | 3030       | 2.8               | 2094    |              |                 |                  |                  |                |            |                |         |  |
|      | 48             | 605        | .4010      | 2.5               | 1786    |              |                 |                  |                  |                |            |                |         |  |
|      | 49             | 609        | .3626      | 3.0               | 2108    |              |                 |                  |                  |                |            |                |         |  |
|      | 50             | 611        | 3151       | 3.0               | 2086    |              |                 |                  |                  |                |            |                |         |  |
|      | 51             | 617        | .3651      | 2.5               | 1797    |              |                 |                  |                  |                |            |                |         |  |
|      | 52             | 621        | 4477       | 2.8               | 1965    |              |                 |                  |                  |                |            |                |         |  |
|      | 54             | 625        | 3334       | 3.4               | 2373    |              |                 |                  |                  |                |            |                |         |  |
|      | 55             | 635        | .4114      | 3.2               | 2243    |              |                 |                  |                  |                |            |                |         |  |
|      | 56             | 637        | .3914      | 3.0               | 2090    |              |                 |                  |                  |                |            |                |         |  |
|      | 5/             | 640        | .3513      | 2.8               | 1969    |              |                 |                  |                  |                |            |                |         |  |
|      | 59             | 649        | 4784       | 3.2               | 2283    |              |                 |                  |                  |                |            |                |         |  |
|      | 60             | 653        | .3630      | 2.5               | 1740    |              |                 |                  |                  |                |            |                |         |  |
|      | 61             | 659        | .9818      | 3.0               | 2085    |              |                 |                  |                  |                |            |                |         |  |
|      | 62             | 663        | .4525      | 12.0              | 8446    |              |                 |                  |                  |                |            |                |         |  |

Bruker Compass DataAnalysis 4.0

Acquisition Date 27.05.2020 14:41:16

Page 2 of 3

Figure S1.64: HRMS (ESI) peak table of 15.

| #   | m/z       | 1%   | 1     |
|-----|-----------|------|-------|
| 63  | 664.4555  | 5.4  | 3847  |
| 64  | 665.4233  | 3.5  | 2507  |
| 65  | 677.5062  | 3.5  | 2489  |
| 66  | 679.4422  | 3.3  | 2357  |
| 67  | 680.4784  | 7.6  | 5388  |
| 68  | 681.4819  | 3.8  | 2651  |
| 69  | 685.4355  | 8.2  | 5805  |
| 70  | 686.4379  | 4.3  | 3046  |
| 71  | 693.4631  | 4.3  | 3007  |
| 72  | 695.3982  | 2.6  | 1853  |
| 73  | 701.4085  | 18.5 | 13090 |
| 74  | 702.4124  | 9.0  | 6389  |
| 75  | 703.4124  | 4.0  | 2802  |
| 76  | 705.4207  | 2.6  | 1807  |
| 77  | 707.4836  | 3.9  | 2769  |
| 78  | 708.5063  | 2.6  | 1863  |
| 79  | 709.4446  | 3.3  | 2352  |
| 80  | 721.4985  | 3.8  | 2687  |
| 81  | 721.5734  | 2.9  | 2043  |
| 82  | 733.5269  | 2.8  | 1960  |
| 83  | 735.5171  | 3.7  | 2632  |
| 84  | 736.5415  | 5.7  | 3993  |
| 85  | 737.4873  | 2.5  | 1775  |
| 86  | 737.5471  | 5.5  | 3855  |
| 87  | 738.5514  | 2.5  | 1768  |
| 88  | 749.5262  | 2.9  | 2083  |
| 89  | 751.5109  | 3.2  | 2234  |
| 90  | 763.5441  | 3.0  | 2131  |
| 91  | 791.5703  | 2.6  | 1846  |
| 92  | 922.0163  | 2.7  | 1898  |
| 93  | 959.9704  | 3.8  | 2656  |
| 94  | 1015.7188 | 2.5  | 1780  |
| 95  | 1103.6972 | 8.2  | 5803  |
| 96  | 1104.6977 | 6.1  | 4293  |
| 97  | 1105.6999 | 3.6  | 2560  |
| 98  | 1222.0094 | 3.0  | 2149  |
| 99  | 1259.9675 | 3.6  | 2559  |
| 100 | 1559.9780 | 3.3  | 2331  |

#### Acquisition Parameter

| General    | Fore Vacuum<br>Scan Begin       | 2.60e+<br>75 m/z | 000 mBar | High Vacuum<br>Scan End               | 1.14e-007 mBar<br>2500 m/z | Source Type<br>Ion Polarity | ESI<br>Positive |
|------------|---------------------------------|------------------|----------|---------------------------------------|----------------------------|-----------------------------|-----------------|
| Source     | Set Nebulizer<br>Set Dry Heater | 0.4 Ba<br>180 °C |          | Set Capillary<br>Set End Plate Offset | 3600 V<br>-500 V           | Set Dry Gas                 | 4.0 l/min       |
| Quadrupole | Set Ion Energy ( MS on          | ly)              | 4.0 eV   |                                       |                            |                             |                 |
| Coll. Cell | Collision Energy                |                  | 10.0 eV  | Set Collision Cell RF                 | 1000.0 Vpp                 |                             |                 |
| Ion Cooler | Set Ion Cooler Transfer         | Time             | 160.0 µs | Set Ion Cooler Pre Puls               | e Storage Time 1           | 8.0 µs                      |                 |

Bruker Compass DataAnalysis 4.0

Acquisition Date 27.05.2020 14:41:16

Page 3 of 3

Figure S1.65: HRMS (ESI) peak table of 15.



**6,6'-(ethyne-1,2-diyl)bis**(*N*,*N*-dimethyl-3-(methylthio)aniline) **3b**: An oven dried argon flushed Schlenk tube was charged with iodine 8 (178 mg, 607  $\mu$ mol, 1 eq.), K<sub>2</sub>CO<sub>3</sub> (336 mg, 2.43 mmol, 4 eq.), CuI (11.6 mg, 60.7  $\mu$ mol, 0.1 eq.) and Pd(PPh<sub>3</sub>)<sub>4</sub> (21.3 mg, 30.4  $\mu$ mol, 0.05 eq.). The solids were purged with argon and dissolved in a mixture of degassed THF(2 mL), MeOH(5 mL) and TEA(3 mL). To this was added a degassed solution of acetylene 12 (160 mg, 607  $\mu$ mol, 1eq.) in THF (3 mL). The solution was stirred at r.t. for 16 h, poured into an aq. sat. NH<sub>4</sub>Cl solution and extracted with DCM. The combined organic phase was dried over anhydrous MgSO<sub>4</sub>, filtered, concentrated under reduced pressure and purified by column chromatography on silica gel (DCM)(TLC spectroscopy reviled that the product is poorly visible at 254 nm but shows a clearly visible fluorescent spot at an irradiation of 366 nm) followed by GPC (CHCl<sub>3</sub>) yielding 3b as a yellow solid (169 mg, 474  $\mu$ mol, 78%).

<sup>1</sup>**H-NMR** (500 MHz, CDCl<sub>3</sub>) 7.39 (d, J = 8.0 Hz, 2H), 6.78 (d, J = 1.8 Hz, 2H), 6.75 (dd, J = 8.0, 1.8 Hz, 2H), 2.98 (s, 12H), 2.49 (s, 6H).

<sup>13</sup>C-NMR (126 MHz, CDCl<sub>3</sub>) δ 154.43, 139.70, 134.20, 118.00, 115.00, 112.66, 94.05, 43.51, 15.70.

**HRMS (ESI)** m/z: calcd. for  $[C_{20}H_{24}N_2S_2+H]^+$  357.1456  $[M+H]^+$ ; found 357.1454



Figure S1.66: <sup>1</sup>H-NMR (500 MHz, CDCl<sub>3</sub>) spectrum of 3b.



Figure S1.67: <sup>13</sup>C-NMR (126 MHz, CDCl<sub>3</sub>) spectrum of 3b.



Figure S1.68: HRMS (ESI) spectrum of 3b.

| Meas | ured         | m/z v         | s.t    | heoretica            | al m/z    |              |                 |                   |                   |                |            |                             |         |   |
|------|--------------|---------------|--------|----------------------|-----------|--------------|-----------------|-------------------|-------------------|----------------|------------|-----------------------------|---------|---|
|      | Meas<br>357. | . m/z<br>1456 | #<br>1 | Formula<br>C 20 H 25 | 5 N 2 S 2 | Score 100.00 | m/z<br>357.1454 | err [mDa]<br>-0.3 | err [ppm]<br>-0.7 | mSigma<br>27.4 | rdb<br>9.5 | e <sup>-</sup> Conf<br>even | z<br>1+ | _ |
| Mass | list         |               |        |                      |           |              |                 |                   |                   |                |            |                             |         |   |
|      | #            |               | m/z    | 1%                   | 1         |              |                 |                   |                   |                |            |                             |         |   |
|      | 1            | 163.0         | 390    | 1.9                  | 20134     |              |                 |                   |                   |                |            |                             |         |   |
|      | 2            | 164.9         | 205    | 2.9                  | 29642     |              |                 |                   |                   |                |            |                             |         |   |
|      | 3            | 204.9         | 127    | 0.5                  | 4874      |              |                 |                   |                   |                |            |                             |         |   |
|      | 5            | 210.9         | 467    | 1.3                  | 13266     |              |                 |                   |                   |                |            |                             |         |   |
|      | 6            | 218.9         | 285    | 0.8                  | 7935      |              |                 |                   |                   |                |            |                             |         |   |
|      | 7            | 227.0         | 398    | 1.0                  | 10489     |              |                 |                   |                   |                |            |                             |         |   |
|      | 8            | 249.8         | 977    | 1.1                  | 11090     |              |                 |                   |                   |                |            |                             |         |   |
|      | 10           | 262.8         | 875    | 1.4                  | 13988     |              |                 |                   |                   |                |            |                             |         |   |
|      | 11           | 275.1         | 638    | 0.5                  | 7388      |              |                 |                   |                   |                |            |                             |         |   |
|      | 12           | 279.0         | 927    | 1.6                  | 16467     |              |                 |                   |                   |                |            |                             |         |   |
|      | 13           | 284.8         | 695    | 2.2                  | 22901     |              |                 |                   |                   |                |            |                             |         |   |
|      | 14           | 293.9         | 801    | 0.7                  | 7613      |              |                 |                   |                   |                |            |                             |         |   |
|      | 15           | 297.1         | 955    | 0.6                  | 20717     |              |                 |                   |                   |                |            |                             |         |   |
|      | 17           | 334.8         | 753    | 0.6                  | 5729      |              |                 |                   |                   |                |            |                             |         |   |
|      | 18           | 341.1         | 134    | 1.7                  | 17655     |              |                 |                   |                   |                |            |                             |         |   |
|      | 19           | 342.1         | 190    | 0.6                  | 6280      |              |                 |                   |                   |                |            |                             |         |   |
|      | 20           | 356.1         | 368    | 0.8                  | 7787      |              |                 |                   |                   |                |            |                             |         |   |
|      | 21           | 357.1         | 456    | 20.4                 | 211042    |              |                 |                   |                   |                |            |                             |         |   |
|      | 23           | 359.1         | 419    | 7.7                  | 79506     |              |                 |                   |                   |                |            |                             |         |   |
|      | 24           | 360.1         | 441    | 1.7                  | 17637     |              |                 |                   |                   |                |            |                             |         |   |
|      | 25           | 373.1         | 394    | 0.9                  | 9601      |              |                 |                   |                   |                |            |                             |         |   |
|      | 26           | 379.1         | 267    | 1.9                  | 19350     |              |                 |                   |                   |                |            |                             |         |   |
|      | 28           | 391.8         | 290    | 1.2                  | 12901     |              |                 |                   |                   |                |            |                             |         |   |
|      | 29           | 404.8         | 191    | 1.3                  | 13836     |              |                 |                   |                   |                |            |                             |         |   |
|      | 30           | 417.0         | 868    | 0.5                  | 5516      |              |                 |                   |                   |                |            |                             |         |   |
|      | 31           | 419.3         | 150    | 4.3                  | 44648     |              |                 |                   |                   |                |            |                             |         |   |
|      | 33           | 420.3         | 006    | 1.3                  | 13205     |              |                 |                   |                   |                |            |                             |         |   |
|      | 34           | 433.3         | 305    | 1.1                  | 11633     |              |                 |                   |                   |                |            |                             |         |   |
|      | 35           | 441.2         | 969    | 4.4                  | 45747     |              |                 |                   |                   |                |            |                             |         |   |
|      | 36           | 442.3         | 001    | 1.2                  | 12819     |              |                 |                   |                   |                |            |                             |         |   |
|      | 38           | 447.3         | 400    | 0.0                  | 6739      |              |                 |                   |                   |                |            |                             |         |   |
|      | 39           | 449.2         | 439    | 1.5                  | 16000     |              |                 |                   |                   |                |            |                             |         |   |
|      | 40           | 450.2         | 474    | 0.5                  | 5218      |              |                 |                   |                   |                |            |                             |         |   |
|      | 41           | 455.3         | 124    | 1.1                  | 11171     |              |                 |                   |                   |                |            |                             |         |   |
|      | 42           | 4/6.8         | 28/    | 0.8                  | 8472      |              |                 |                   |                   |                |            |                             |         |   |
|      | 43           | 480.5         | 130    | 0.9                  | 9234      |              |                 |                   |                   |                |            |                             |         |   |
|      | 45           | 482.4         | 044    | 0.6                  | 6125      |              |                 |                   |                   |                |            |                             |         |   |
|      | 46           | 483.0         | 413    | 1.4                  | 14417     |              |                 |                   |                   |                |            |                             |         |   |
|      | 47           | 506.5         | 288    | 2.3                  | 23375     |              |                 |                   |                   |                |            |                             |         |   |
|      | 49           | 508.5         | 433    | 0.9                  | 9351      |              |                 |                   |                   |                |            |                             |         |   |
|      | 50           | 511.7         | 782    | 0.8                  | 8419      |              |                 |                   |                   |                |            |                             |         |   |
|      | 51           | 522.2         | 058    | 1.5                  | 15812     |              |                 |                   |                   |                |            |                             |         |   |
|      | 52           | 523.2         | 089    | 0.6                  | 5981      |              |                 |                   |                   |                |            |                             |         |   |
|      | 54           | 526.4         | 307    | 0.5                  | 5245      |              |                 |                   |                   |                |            |                             |         |   |
|      | 55           | 528.5         | 103    | 0.9                  | 9026      |              |                 |                   |                   |                |            |                             |         |   |
|      | 56           | 533.0         | 639    | 0.6                  | 5891      |              |                 |                   |                   |                |            |                             |         |   |
|      | 57           | 533.7         | 603    | 0.8                  | 8552      |              |                 |                   |                   |                |            |                             |         |   |
|      | 59           | 536.0         | 626    | 0.7                  | 7056      |              |                 |                   |                   |                |            |                             |         |   |
|      | 60           | 546.7         | 500    | 0.7                  | 6881      |              |                 |                   |                   |                |            |                             |         |   |
|      | 61           | 548.5         | 030    | 1.0                  | 10434     |              |                 |                   |                   |                |            |                             |         |   |
|      | 62           | 553.4         | 581    | 0.8                  | 7825      |              |                 |                   |                   |                |            |                             |         |   |

Bruker Compass DataAnalysis 4.0

Acquisition Date 13.05.2020 14:08:31

Page 2 of 3

Figure S1.69: HRMS (ESI) peak table of 3b.

| #   | m/z      | ۱%   | 1      |
|-----|----------|------|--------|
| 63  | 565.6017 | 0.6  | 6226   |
| 64  | 618.7378 | 0.6  | 6130   |
| 65  | 624.1114 | 0.5  | 5396   |
| 66  | 626.1102 | 5.7  | 59276  |
| 67  | 627.1120 | 13.3 | 137936 |
| 68  | 628.1113 | 18.0 | 186395 |
| 69  | 629.1122 | 6.9  | 71411  |
| 70  | 630.1105 | 17.0 | 175662 |
| 71  | 631.1126 | 5.3  | 54648  |
| 72  | 632.1109 | 8.5  | 88256  |
| 73  | 633.1133 | 2.7  | 27617  |
| 74  | 634.1100 | 1.1  | 11819  |
| 75  | 675.6921 | 0.5  | 5060   |
| 76  | 683.6000 | 0.9  | 9589   |
| 77  | 684.6029 | 0.5  | 4962   |
| 78  | 699.5951 | 4.3  | 45035  |
| 79  | 700.6265 | 7.6  | 79197  |
| 80  | 701.6297 | 3.7  | 38295  |
| 81  | 702.6302 | 1.1  | 11250  |
| 82  | 705.5824 | 8.1  | 84153  |
| 83  | 706.5854 | 3.8  | 39469  |
| 84  | 707.5861 | 1.1  | 11462  |
| 85  | 721.5770 | 4.7  | 48812  |
| 86  | 722.5802 | 2.2  | 22815  |
| 87  | 723.5814 | 0.7  | 7119   |
| 88  | 742.6744 | 0.9  | 8811   |
| 89  | 758.6683 | 1.1  | 11004  |
| 90  | 759.6722 | 0.6  | 5937   |
| 91  | 832.1686 | 0.6  | 6162   |
| 92  | 833.1673 | 0.9  | 9410   |
| 93  | 834.1681 | 0.5  | 4976   |
| 94  | 835.1661 | 0.8  | 8129   |
| 95  | 936.8533 | 0.6  | 6037   |
| 96  | 942.8480 | 0.7  | 7742   |
| 97  | 944.8451 | 0.5  | 4902   |
| 98  | 963.8766 | 0.8  | 8657   |
| 99  | 965.8715 | 1.9  | 19360  |
| 100 | 966.8729 | 0.7  | 7172   |

### Acquisition Parameter

| General    | Fore Vacuum<br>Scan Begin       | 2.39e+<br>75 m/z | 000 mBar | High Vacuum<br>Scan End               | 1.14e-007 mBar<br>2000 m/z | Source Type<br>Ion Polarity | ESI<br>Positive |
|------------|---------------------------------|------------------|----------|---------------------------------------|----------------------------|-----------------------------|-----------------|
| Source     | Set Nebulizer<br>Set Dry Heater | 2.0 Ba<br>200 °C |          | Set Capillary<br>Set End Plate Offset | 4500 V<br>-500 V           | Set Dry Gas                 | 8.0 l/min       |
| Quadrupole | Set Ion Energy ( MS on          | ly)              | 4.0 eV   |                                       |                            |                             |                 |
| Coll. Cell | Collision Energy                |                  | 8.0 eV   | Set Collision Cell RF                 | 600.0 Vpp                  |                             |                 |
| Ion Cooler | Set Ion Cooler Transfer         | Time             | 75.0 µs  | Set Ion Cooler Pre Puls               | e Storage Time             | 0.0 µs                      |                 |

Bruker Compass DataAnalysis 4.0

Acquisition Date 13.05.2020 14:08:31

Page 3 of 3

Figure S1.70: HRMS (ESI) peak table of 3b.


*S,S'*-(ethyne-1,2-diylbis(3-nitro-4,1-phenylene)) diethanethioate 2a: An oven dried argon flushed two necked round bottom flask was charged with tolane 14 (54.0 mg, 121  $\mu$ mol, 1 eq.) and purged with argon. Dry CH<sub>3</sub>CN (1 mL), acetyl chloride (0.02 mL, 303  $\mu$ mol, 2.5 eq.) and bismuth(III)triflate (24.0 mg, 36.3  $\mu$ mol, 0.3 eq.) were added and the reaction mixture was stirred at r.t. for 3 h. The reaction was quenched with water and extracted with DCM. The combined organic phase was dried over anhydrous MgSO<sub>4</sub>, filtered, concentrated under reduced pressure and purified by column chromatography on silica gel (DCM : toluene 1:1) and GPC(CHCl<sub>3</sub>) yielding 2a as a yellow solid (19.0 mg, 46.0  $\mu$ mol, 38%).

<sup>1</sup>**H-NMR** (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.22 (d, J = 1.7 Hz, 2H), 7.85 (d, J = 8.1 Hz, 2H), 7.68 (dd, J = 8.1, 1.8 Hz, 2H), 2.50 (s, 6H).

<sup>13</sup>C-NMR (126 MHz, CDCl<sub>3</sub>) δ 191.34, 149.31, 138.47, 135.54, 131.06, 130.18, 118.45, 92.99, 30.50.

**HRMS (ESI)** m/z: calcd. for  $[C_{18}H_{12}N_2O_6S_2+H]^+$  417.0205  $[M+H]^+$ ; found 417.0210



Figure S1.72: <sup>13</sup>C-NMR (126 MHz, CDCl<sub>3</sub>) spectrum of 2a.



Figure S1.73: HMBC\_GPSW (  $CDCl_3$ ) spectrum of 2a.



Figure S1.74: HRMS (ESI) spectrum of 2a

## Measured m/z vs. theoretical m/z

|      | Meas<br>417 | s. m/z<br>.0205 | #<br>1 | Formula<br>C 18 H 1 | 3 N 2 O 6 S 2 | Score<br>100.00 | m/z<br>417.0210 | err [mDa]<br>0.5 | err [ppm]<br>1.2 | mSigma<br>15.7 | rdb<br>13.5 | e <sup>-</sup> Conf<br>even | z<br>1+ |  |
|------|-------------|-----------------|--------|---------------------|---------------|-----------------|-----------------|------------------|------------------|----------------|-------------|-----------------------------|---------|--|
| Mass | s list      |                 |        |                     |               |                 |                 |                  |                  |                |             |                             |         |  |
|      | #           |                 | m/z    | 1%                  | 1             |                 |                 |                  |                  |                |             |                             |         |  |
|      | 1           | 122.0           | 970    | 26.1                | 6089          |                 |                 |                  |                  |                |             |                             |         |  |
|      | 2           | 124.0           | 875    | 8.7                 | 2030          |                 |                 |                  |                  |                |             |                             |         |  |
|      | 3           | 155.0           | 471    | 5.6                 | 1313          |                 |                 |                  |                  |                |             |                             |         |  |
|      | 4           | 165.9           | 961    | 5.7                 | 1322          |                 |                 |                  |                  |                |             |                             |         |  |
|      | 5           | 183.0           | 782    | 12.0                | 2793          |                 |                 |                  |                  |                |             |                             |         |  |
|      | 6           | 186.9           | 560    | 5.6                 | 1312          |                 |                 |                  |                  |                |             |                             |         |  |
|      | 7           | 194.1           | 174    | 5.5                 | 1270          |                 |                 |                  |                  |                |             |                             |         |  |
|      | 8           | 200.2           | 006    | 13.0                | 3036          |                 |                 |                  |                  |                |             |                             |         |  |
|      | 9           | 208.0           | 062    | 11.8                | 2747          |                 |                 |                  |                  |                |             |                             |         |  |
|      | 10          | 224.1           | 276    | 4.7                 | 1088          |                 |                 |                  |                  |                |             |                             |         |  |
|      | 11          | 279.0           | 929    | 9.9                 | 2300          |                 |                 |                  |                  |                |             |                             |         |  |
|      | 12          | 352.3           | 392    | 35.0                | 8144          |                 |                 |                  |                  |                |             |                             |         |  |
|      | 13          | 353.3           | 415    | 10.1                | 2342          |                 |                 |                  |                  |                |             |                             |         |  |
|      | 14          | 375.0           | 097    | 9.7                 | 2252          |                 |                 |                  |                  |                |             |                             |         |  |
|      | 15          | 401.0           | 256    | 8.1                 | 1884          |                 |                 |                  |                  |                |             |                             |         |  |
|      | 16          | 417.0           | 205    | 100.0               | 23290         |                 |                 |                  |                  |                |             |                             |         |  |
|      | 17          | 418.0           | 234    | 22.1                | 5137          |                 |                 |                  |                  |                |             |                             |         |  |
|      | 18          | 419.0           | 182    | 10.3                | 2390          |                 |                 |                  |                  |                |             |                             |         |  |
|      | 19          | 434.0           | 470    | 20.9                | 4865          |                 |                 |                  |                  |                |             |                             |         |  |
|      | 20          | 435.0           | 499    | 4.6                 | 1083          |                 |                 |                  |                  |                |             |                             |         |  |
|      | 21          | 439.0           | 027    | 19.4                | 4519          |                 |                 |                  |                  |                |             |                             |         |  |
|      | 22          | 440.0           | 052    | 4.6                 | 1066          |                 |                 |                  |                  |                |             |                             |         |  |
|      | 23          | 454.9           | 765    | 5.2                 | 1201          |                 |                 |                  |                  |                |             |                             |         |  |
|      | 24          | 850.0           | 586    | 4.8                 | 1108          |                 |                 |                  |                  |                |             |                             |         |  |
|      |             |                 |        |                     |               |                 |                 |                  |                  |                |             |                             |         |  |

#### Acquisition Parameter

| General    | Fore Vacuum<br>Scan Begin       | 2.60e+<br>75 m/z | 000 mBar | High Vacuum<br>Scan End               | 1.22e-007 mBar<br>1700 m/z | Source Type<br>Ion Polarity | ESI<br>Positive |
|------------|---------------------------------|------------------|----------|---------------------------------------|----------------------------|-----------------------------|-----------------|
| Source     | Set Nebulizer<br>Set Dry Heater | 2.0 Ba<br>200 °C | r        | Set Capillary<br>Set End Plate Offset | 4500 V<br>-500 V           | Set Dry Gas                 | 8.0 l/min       |
| Quadrupole | Set Ion Energy ( MS on          | ly)              | 4.0 eV   |                                       |                            |                             |                 |
| Coll. Cell | Collision Energy                |                  | 8.0 eV   | Set Collision Cell RF                 | 350.0 Vpp                  |                             |                 |
| Ion Cooler | Set Ion Cooler Transfer         | Time             | 75.0 µs  | Set Ion Cooler Pre Puls               | se Storage Time            | 10.0 µs                     |                 |

Bruker Compass DataAnalysis 4.0

Acquisition Date 16.08.2019 12:55:58

Page 2 of 2

Figure S1.75: HRMS (ESI) peak table of 2a



*S,S*'-(ethyne-1,2-diylbis(3-(dimethylamino)-4,1-phenylene)) diethanethioate 3a: An oven dried Schlenk tube was charged with tolane 15 (23.0 mg, 52.2  $\mu$ mol, 1 eq.) and purged with argon. Dry DCM (1 mL) was added followed by acetyl chloride (0.11 mL, 123 mg, 1.57 mmol, 30 eq.) and BBr<sub>3</sub> (0.01 mL, 115  $\mu$ mol, 2.2 eq.). The mixture was stirred at r.t. for 1 h, poured over ice and extracted fife times with DCM. The combined organic phase was washed with aq. 1M Na<sub>2</sub>SO<sub>3</sub>, Brine, dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, filtered, concentrated under reduced pressure and purified by GPC (CHCL<sub>3</sub>) yielding 3a as an off-white solid (11.0 mg, 27.0  $\mu$ mol, 51%).

<sup>1</sup>**H-NMR** (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.48 (d, J = 7.9 Hz, 2H), 6.96 – 6.90 (m, 4H), 3.00 (s, 12H), 2.42 (s, 6H).

<sup>13</sup>C-NMR (126 MHz, CDCl<sub>3</sub>) δ 193.92, 154.63, 134.36, 128.61, 125.74, 122.64, 116.28, 94.98, 43.29, 30.28.

**HRMS (ESI)** m/z: calcd. for  $[C_{22}H_{24}N_2O_2S_2+H]^+$  413.1360  $[M+H]^+$ ; found 413.1352.



Figure S1.77: <sup>13</sup>C-NMR (126 MHz, CDCl<sub>3</sub>) spectrum of 3a.



Figure S1.78: HRMS (ESI) spectrum of 3a.

| Mea | Measured m/z vs. theoretical m/z |               |            |                      |        |              |                 |                   |                   |                |             |                |         |  |
|-----|----------------------------------|---------------|------------|----------------------|--------|--------------|-----------------|-------------------|-------------------|----------------|-------------|----------------|---------|--|
|     | Meas<br>413                      | . m/z<br>1360 | #<br>1     | Formula<br>C 22 H 25 | N20252 | Score 100.00 | m/z<br>413.1352 | err [mDa]<br>-0.8 | err [ppm]<br>-2.0 | mSigma<br>27.3 | rdb<br>11.5 | e Conf<br>even | z<br>1+ |  |
| Mas | s list                           | 1000          | ·          | 0 22 11 20           |        | 100.00       | 110.1002        | 0.0               | 2.0               | 21.0           | 11.0        | 01011          |         |  |
|     | #                                |               | m/z        | 1%                   |        |              |                 |                   |                   |                |             |                |         |  |
|     | 1                                | 123.0         | 914        | 16                   | 8060   |              |                 |                   |                   |                |             |                |         |  |
|     | 2                                | 137.1         | 072        | 1.3                  | 6574   |              |                 |                   |                   |                |             |                |         |  |
|     | 3                                | 140.9         | 615        | 4.7                  | 23107  |              |                 |                   |                   |                |             |                |         |  |
|     | 4                                | 147.0         | 914        | 3.0                  | 14834  |              |                 |                   |                   |                |             |                |         |  |
|     | 5                                | 157.0         | 969        | 1.2                  | 6080   |              |                 |                   |                   |                |             |                |         |  |
|     | 6                                | 161.1         | 071        | 3.0                  | 14554  |              |                 |                   |                   |                |             |                |         |  |
|     | 7                                | 183.0         | 776        | 1.8                  | 8725   |              |                 |                   |                   |                |             |                |         |  |
|     | 8                                | 185.1         | 146        | 20.9                 | 102630 |              |                 |                   |                   |                |             |                |         |  |
|     | 10                               | 100.1         | 223        | 1.9                  | 9433   |              |                 |                   |                   |                |             |                |         |  |
|     | 11                               | 189.0         | 858        | 1.2                  | 6084   |              |                 |                   |                   |                |             |                |         |  |
|     | 12                               | 199.1         | 300        | 3.6                  | 17541  |              |                 |                   |                   |                |             |                |         |  |
|     | 13                               | 201.1         | 381        | 1.2                  | 6134   |              |                 |                   |                   |                |             |                |         |  |
|     | 14                               | 205.0         | 598        | 27.2                 | 133789 |              |                 |                   |                   |                |             |                |         |  |
|     | 15                               | 206.0         | 630        | 2.1                  | 10244  |              |                 |                   |                   |                |             |                |         |  |
|     | 16                               | 213.1         | 453        | 1.4                  | 6757   |              |                 |                   |                   |                |             |                |         |  |
|     | 1/                               | 214.9         | 240        | 1.5                  | 7612   |              |                 |                   |                   |                |             |                |         |  |
|     | 10                               | 210.1         | 240<br>0/3 | 1.0                  | 0449   |              |                 |                   |                   |                |             |                |         |  |
|     | 20                               | 226.9         | 512        | 3.4                  | 16744  |              |                 |                   |                   |                |             |                |         |  |
|     | 21                               | 229.0         | 500        | 3.4                  | 16802  |              |                 |                   |                   |                |             |                |         |  |
|     | 22                               | 229.1         | 404        | 1.8                  | 8972   |              |                 |                   |                   |                |             |                |         |  |
|     | 23                               | 229.8         | 928        | 5.4                  | 26400  |              |                 |                   |                   |                |             |                |         |  |
|     | 24                               | 235.9         | 096        | 1.8                  | 8635   |              |                 |                   |                   |                |             |                |         |  |
|     | 25                               | 236.0         | 711        | 1.3                  | 6420   |              |                 |                   |                   |                |             |                |         |  |
|     | 20                               | 239.0         | 348        | 2.3                  | 0729   |              |                 |                   |                   |                |             |                |         |  |
|     | 28                               | 244.8         | 683        | 2.4                  | 11803  |              |                 |                   |                   |                |             |                |         |  |
|     | 29                               | 245.0         | 775        | 1.2                  | 6105   |              |                 |                   |                   |                |             |                |         |  |
|     | 30                               | 251.0         | 525        | 2.1                  | 10340  |              |                 |                   |                   |                |             |                |         |  |
|     | 31                               | 259.1         | 298        | 1.4                  | 6862   |              |                 |                   |                   |                |             |                |         |  |
|     | 32                               | 261.1         | 305        | 1.9                  | 9244   |              |                 |                   |                   |                |             |                |         |  |
|     | 33                               | 261.1         | 443        | 1.4                  | 7028   |              |                 |                   |                   |                |             |                |         |  |
|     | 34                               | 262.0         | 303        | 1.2                  | 7478   |              |                 |                   |                   |                |             |                |         |  |
|     | 36                               | 271.1         | 872        | 1.5                  | 7364   |              |                 |                   |                   |                |             |                |         |  |
|     | 37                               | 273.1         | 669        | 1.3                  | 6248   |              |                 |                   |                   |                |             |                |         |  |
|     | 38                               | 275.1         | 614        | 13.8                 | 68048  |              |                 |                   |                   |                |             |                |         |  |
|     | 39                               | 276.1         | 647        | 2.3                  | 11339  |              |                 |                   |                   |                |             |                |         |  |
|     | 40                               | 277.1         | 762        | 1.5                  | 7186   |              |                 |                   |                   |                |             |                |         |  |
|     | 41                               | 282.0         | 053        | 1.4                  | 6/85   |              |                 |                   |                   |                |             |                |         |  |
|     | 42                               | 200.8         | 217        | 2.0                  | 19890  |              |                 |                   |                   |                |             |                |         |  |
|     | 44                               | 291.1         | 561        | 3.8                  | 18675  |              |                 |                   |                   |                |             |                |         |  |
|     | 45                               | 297.8         | 800        | 1.6                  | 8025   |              |                 |                   |                   |                |             |                |         |  |
|     | 46                               | 301.1         | 400        | 2.2                  | 10703  |              |                 |                   |                   |                |             |                |         |  |
|     | 47                               | 303.8         | 971        | 6.7                  | 32697  |              |                 |                   |                   |                |             |                |         |  |
|     | 48                               | 305.1         | 575        | 1.6                  | 7695   |              |                 |                   |                   |                |             |                |         |  |
|     | 49                               | 305.1         | /11        | 2.4                  | 11/04  |              |                 |                   |                   |                |             |                |         |  |
|     | 51                               | 353.1         | 449        | 12.3                 | 60362  |              |                 |                   |                   |                |             |                |         |  |
|     | 52                               | 354.1         | 481        | 3.4                  | 16556  |              |                 |                   |                   |                |             |                |         |  |
|     | 53                               | 360.3         | 230        | 4.2                  | 20573  |              |                 |                   |                   |                |             |                |         |  |
|     | 54                               | 365.8         | 673        | 1.4                  | 6779   |              |                 |                   |                   |                |             |                |         |  |
|     | 55                               | 370.1         | 166        | 1.8                  | 8625   |              |                 |                   |                   |                |             |                |         |  |
|     | 56                               | 400.2         | 427        | 1.3                  | 6209   |              |                 |                   |                   |                |             |                |         |  |
|     | 58                               | 413.1         | 360        | 100.0                | 491556 |              |                 |                   |                   |                |             |                |         |  |
|     | 59                               | 413.2         | 656        | 2.0                  | 9789   |              |                 |                   |                   |                |             |                |         |  |
|     | 60                               | 414.1         | 385        | 30.6                 | 150584 |              |                 |                   |                   |                |             |                |         |  |
|     | 61                               | 415.1         | 334        | 9.6                  | 47313  |              |                 |                   |                   |                |             |                |         |  |
|     | 62                               | 416.1         | 344        | 2.5                  | 12432  |              |                 |                   |                   |                |             |                |         |  |

Bruker Compass DataAnalysis 4.0

Acquisition Date 08.06.2020 08:43:02

Page 2 of 3

Figure S1.79: HRMS (ESI) peak table of 3a.

| #   | m/z      | 1%  | 1     |
|-----|----------|-----|-------|
| 63  | 422.2556 | 1.4 | 6927  |
| 64  | 433.8548 | 1.5 | 7190  |
| 65  | 435.1166 | 5.0 | 24799 |
| 66  | 436.1195 | 1.3 | 6316  |
| 67  | 439.1243 | 2.3 | 11212 |
| 68  | 439.8717 | 2.7 | 13244 |
| 69  | 444.2686 | 1.4 | 6905  |
| 70  | 448.8303 | 1.3 | 6325  |
| 71  | 466.2816 | 1.2 | 6103  |
| 72  | 467.1011 | 2.9 | 14387 |
| 73  | 468.1019 | 1.2 | 6090  |
| 74  | 469.3130 | 2.1 | 10080 |
| 75  | 475.0563 | 1.4 | 6912  |
| 76  | 501.8419 | 1.5 | 7400  |
| 77  | 513.1432 | 2.5 | 12474 |
| 78  | 513.3388 | 2.3 | 11102 |
| 79  | 536.1644 | 5.8 | 28688 |
| 80  | 537.1651 | 2.9 | 14127 |
| 81  | 538.1628 | 2.0 | 9814  |
| 82  | 541.1198 | 5.5 | 26862 |
| 83  | 542.1206 | 2.8 | 13802 |
| 84  | 543.1187 | 1.9 | 9465  |
| 85  | 557.0937 | 1.8 | 9026  |
| 86  | 557.3649 | 3.0 | 14740 |
| 87  | 601.3908 | 3.5 | 17354 |
| 88  | 602.3943 | 1.2 | 6121  |
| 89  | 610.1829 | 2.4 | 11771 |
| 90  | 611.1837 | 1.4 | 6761  |
| 91  | 615.1387 | 1.3 | 6169  |
| 92  | 645.4175 | 3.5 | 17006 |
| 93  | 646.4204 | 1.2 | 6122  |
| 94  | 689.4434 | 3.0 | 14599 |
| 95  | 705.5811 | 1.9 | 9546  |
| 96  | 733.4698 | 2.3 | 11248 |
| 97  | 739.2249 | 2.1 | 10348 |
| 98  | 769.8482 | 1.4 | 6773  |
| 99  | 777.4962 | 1.6 | 7942  |
| 100 | 952.7983 | 1.9 | 9135  |

#### Acquisition Parameter

| General    | Fore Vacuum<br>Scan Begin       | 2.39e+<br>75 m/z | 000 mBar | High Vacuum<br>Scan End               | 1.12e-007 mBar<br>2000 m/z | Source Type<br>Ion Polarity | ESI<br>Positive |
|------------|---------------------------------|------------------|----------|---------------------------------------|----------------------------|-----------------------------|-----------------|
| Source     | Set Nebulizer<br>Set Dry Heater | 2.0 Ba<br>200 °C |          | Set Capillary<br>Set End Plate Offset | 4500 V<br>-500 V           | Set Dry Gas                 | 8.0 l/min       |
| Quadrupole | Set Ion Energy ( MS on          | ly)              | 4.0 eV   |                                       |                            |                             |                 |
| Coll. Cell | Collision Energy                |                  | 8.0 eV   | Set Collision Cell RF                 | 600.0 Vpp                  |                             |                 |
| Ion Cooler | Set Ion Cooler Transfer         | Time             | 75.0 µs  | Set Ion Cooler Pre Puls               | e Storage Time             | 10.0 µs                     |                 |

Bruker Compass DataAnalysis 4.0

Acquisition Date 08.06.2020 08:43:02

Page 3 of 3

Figure S1.80: HRMS (ESI) peak table of 3a.

## 1.1 CV measurement



**Figure S1.81.** CV spectra of the 6 different tolanes (1a, 1b, 2a, 2b, 3a and 3b) recorded in dry deaerated  $CH_3CN$  with 0.1 M TBAPF<sub>6</sub> as electrolyte at a scan rate of 0.1 V/s and calibrated against the Fc/Fc<sup>+</sup> couple. The CV spectra of 1a, 2a, 3a and 3b were recorded at a molar concentration of 2 mM while the spectra of 1b was recorded at a concentration 2.5 mM and 2b was recorded at a concentration of 1.5 mM. 2b was recorded in a concentration of 1.5 mM due to its poor solubility. None of the recorded oxidation/reduction peaks showed reversibility at any scan rate. The irreversibility also causes artefacts to appear because of the irreversible nature of the reduction and oxidation processes. Therefore, the onset potential was used to determine the HOMO/LUMO levels of the compounds. The solvent acetonitrile was chosen such that it has a wide RED/OX window so all spectra could be recorded in the same solvent.



**Figure S1.82.** UV-Vis absorption and emission spectra of all 6 tolanes (1a, 1b, 2a, 2b, 3a, and 3b) in DCM: The black line shows the UV-Vis spectra while the red line shows the fluorescence spectra. All measurements were normalised to the longest (highest wavelength) absorption peak and the shortest emission peak respectively. The 0-0 transition of every spectra couple is given by the number displayed in each graph.



**Figure S1.83.** UV-Vis absorption measurement before (green) and after (blue) the florescence measurement (scan rate of 1000 nm/s excitation band with 5 nm using a xenon lamp, the excitation shutter was only opened during the measurement). The nitro derivatives 2a and 2b show clear degradation while the dimethyl amine derivatives 3a and 3b as well as the parent tolanes 1a and 1b seem to be photostable under the given conditions.

| Table S1.1. Cyclic voltammetry data, their respective calculated HOMO/LUMO level and Egap_CV, the 0-0 transition                                                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| determined by UV-Vis, the respective Egap_UV-Vis as well as the HOMO/LUMO level calculated using first principle                                                    |
| methods and there resulting Egap calc. The HOMO/LUMO level determined by CV were determined by an empirical                                                         |
| relationship established in literature <sup>1,2</sup> . The 0-0 transition was used to determine the E <sub>gap</sub> _UV-Vis according to Petr Klán <sup>3</sup> . |

| Molecule | E <sup>ox</sup> onset<br>[V] | HOMO<br>[eV] | E <sup>red</sup> onset<br>[V] | LUMO<br>[eV] | UV-Vis<br>0-0<br>transition<br>[nm] | E <sub>gap</sub> _UV-<br>Vis<br>[eV] | E <sub>gap</sub> _CV<br>[eV] | HOMO<br>calc.<br>[eV] | LUMO<br>calc.<br>[eV] | E <sub>gap</sub><br>calc.<br>[eV] |
|----------|------------------------------|--------------|-------------------------------|--------------|-------------------------------------|--------------------------------------|------------------------------|-----------------------|-----------------------|-----------------------------------|
| 1a       | 0.94                         | -5.74        | -2.34                         | -2.46        | 332                                 | 3.73                                 | 3.3                          | -4.49                 | -1.91                 | 2.58                              |
| 1b       | 0.70                         | -5.48        | -2.57                         | -2.22        | 345                                 | 3.59                                 | 3.3                          | -4.28                 | -1.77                 | 2.50                              |
| 2a       | 1.51                         | -6.31        | -0.98                         | -3.82        | 391                                 | 3.17                                 | 2.5                          | -5.00                 | -3.27                 | 1.72                              |
| 2b       | 1.24                         | -6.04        | -1.04                         | -3.76        | 475                                 | 2.61                                 | 2.3                          | -4.77                 | -3.16                 | 1.60                              |
| 3a       | 0.41                         | -5.21        | -2.14                         | -2.66        | 418                                 | 2.97                                 | 2.6                          | -3.79                 | -1.49                 | 2.29                              |
| 3b       | 0.17                         | -4.97        | -2.65                         | -2.15        | 400                                 | 3.1                                  | 2.8                          | -3.63                 | -1.35                 | 2.27                              |

## 2 MCBJ measurements and data analysis

For the classification of empty traces, the feature space was defined as follows. The 2D-histogram of the trace computed on a 25x32 grid, with limits set to -0.5nm to 3nm in displacement and -0.5 to -6  $\log(G/G_0)$  in conductance. Rows are then concatenated to each other to obtain an 800 dimensional vector. The 1D histogram of the trace with 100 bins and limits 1 to -6  $\log(G/G_0)$  was also appended to the previous vector, for a total of 900 dimensions.

The fully-connected neural network used for classification consists of an input layer with 900 nodes, 2 hidden layer having 128 and 64 nodes respectively, and an output layer of 2 dimensions (tunnelling vs. molecular). A 30% dropout rate was used between each hidden layer to prevent overfitting. Additionally, a Rectified Linear Unit (ReLU) function was applied to the output of each hidden layer, while a Softmax function was used on the output nodes. When a trace is input into the network, it will result in two scalar values, which can be interpreted as the probability of the trace being empty, and the probability of it being molecular. If the output value of the trace being molecular is >0.5, while the probability of it being empty is <0.5, the trace is classified as molecular.

The network was then trained using the adaptive moment estimation (Adam) algorithm<sup>4</sup> on a set of around 200.000 hand-classified traces containing a roughly equal amount of empty traces and molecular traces (where the molecular traces consisted of alkanes of different lengths: propanedithiol, hexanedithiol, and octanedithiol). A 4:1 ratio between training and validation set was used.

Each dataset measured for this study was first run through the neural network described above, which yielded a class of "empty" traces for each measurement. Subsequently, the remaining "molecular" traces were further classified using k-means++, according to a previously published method<sup>5</sup>. Note that the feature space used in this study consists of a 30x40 bins 2D histogram, with limits set as 0nm to 1.5nm in displacement, and -1 to -6  $\log(G/G_0)$  in conductance. The 1D histogram of the trace with 100 bins and limits -1 to -6.5  $\log(G/G_0)$  was also appended to the previous vector, for a total of 1300 dimensions.

## 2.1 Measurement Overview

In this section it is possible to find tables summarising the results of all measurements for each molecule, as well as the 1D-conductance and the 2D-conductance/displacement histograms obtained from the raw data and from the classification analysis explained in the method section.

**Table S2.1**. Summary table for the results of molecule **1a** measurements; The columns report the total number of traces in the measurement, the conductance extracted through fitting the raw data, the percentage of traces that were classified as molecular by the Neural Network (Yield); then, the conductance and yield for HC, LC1, and LC2 classes are reported. Note that the yield is reported with respect to the total number of traces.

| Measure<br>ment | N traces | Raw<br>Data<br>conduct<br>ance<br>(G <sub>0</sub> ) | Yield<br>(%) | HC<br>conduct<br>ance<br>(G <sub>0</sub> ) | HC<br>Yield<br>(%) | LC1<br>conduct<br>ance<br>(G <sub>0</sub> ) | LC1<br>Yield<br>(%) | LC2<br>conduct<br>ance<br>(G <sub>0</sub> ) | LC2<br>Yield<br>(%) |
|-----------------|----------|-----------------------------------------------------|--------------|--------------------------------------------|--------------------|---------------------------------------------|---------------------|---------------------------------------------|---------------------|
| 7               | 1000     | 1 2 1 2 3                                           |              | 2                                          |                    |                                             |                     |                                             |                     |
| Ι               | 1000     | 1.2.10-3                                            | 43           | $1.2 \cdot 10^{-3}$                        | 14                 | $1.4 \cdot 10^{-5}$                         | 10                  | $2.0 \cdot 10^{-6}$                         | 4                   |

**Table S2.2**. Summary table for the results of molecule 2a measurements; The columns report the total number of traces in the measurement, the conductance extracted through fitting the raw data, the percentage of traces that were classified as molecular by the Neural Network (Yield); then, the conductance and yield for HC, LC1<sup>H</sup>, and LC1<sup>L</sup> classes are reported.

Note that the yield is reported with respect to the total number of traces.

| Measure<br>ment | N traces | Raw<br>Data<br>conduct<br>ance | Yield<br>(%) | HC<br>conduct<br>ance<br>(G <sub>0</sub> ) | HC<br>Yield<br>(%) | LC1 <sup>H</sup><br>conduct<br>ance<br>(G <sub>0</sub> ) | LC1 <sup>H</sup><br>Yield<br>(%) | LC1 <sup>L</sup><br>conduct<br>ance<br>(G <sub>0</sub> ) | LC1 <sup>L</sup><br>Yield<br>(%) |
|-----------------|----------|--------------------------------|--------------|--------------------------------------------|--------------------|----------------------------------------------------------|----------------------------------|----------------------------------------------------------|----------------------------------|
|                 |          | $(G_0)$                        |              |                                            |                    |                                                          |                                  |                                                          |                                  |
| 1               | 10000    | 2.3.10-5                       | 23           | $1.1 \cdot 10^{-3}$                        | 5                  | 2.0.10-4                                                 | 8                                | 3.0.10-5                                                 | 10                               |
| 2               | 10000    | 3.8.10-5                       | 38           | $1.5 \cdot 10^{-3}$                        | 3                  | 3.4.10-4                                                 | 5                                | $4.3 \cdot 10^{-5}$                                      | 30                               |
| 3               | 10000    | $2.2 \cdot 10^{-5}$            | 30           | $1.8 \cdot 10^{-3}$                        | 2                  | $2.1 \cdot 10^{-4}$                                      | 4                                | $2.5 \cdot 10^{-5}$                                      | 28                               |

**Table S2.3**. Summary table for the results of molecule **3a** measurements; The columns report the total number of traces in the measurement, the conductance extracted through fitting the raw data, the percentage of traces that were classified as molecular by the Neural Network (Yield); then, the conductance and yield for HC, LC1, and LC2 classes are reported. Note that the yield is reported with respect to the total number of traces.

| Measure<br>ment | N traces | Raw<br>Data<br>conduct<br>ance<br>(G <sub>0</sub> ) | Yield<br>(%) | HC<br>conduct<br>ance<br>(G <sub>0</sub> ) | HC<br>Yield<br>(%) | LC1<br>conduct<br>ance<br>(G <sub>0</sub> ) | LC1<br>Yield<br>(%) | LC2<br>conduct<br>ance<br>(G <sub>0</sub> ) | LC2<br>Yield<br>(%) |
|-----------------|----------|-----------------------------------------------------|--------------|--------------------------------------------|--------------------|---------------------------------------------|---------------------|---------------------------------------------|---------------------|
| 1               | 2218     | 1.7.10-3                                            | 55           | $2.0 \cdot 10^{-3}$                        | 32                 | 6.7·10 <sup>-5</sup>                        | 19                  | 9.7·10 <sup>-7</sup>                        | 4                   |
| 2               | 2230     | $2.2 \cdot 10^{-3}$                                 | 64           | $2.7 \cdot 10^{-3}$                        | 28                 | //                                          | //                  | //                                          | //                  |
| 3               | 10000    | $1.6 \cdot 10^{-3}$                                 | 42           | $2.0 \cdot 10^{-3}$                        | 27                 | 5.3·10 <sup>-5</sup>                        | 13                  | $3.0 \cdot 10^{-6}$                         | 2.3                 |

**Table S2.4**. Summary table for the results of molecule **1b** measurements; The columns report the total number of traces in the measurement, the conductance extracted through fitting the raw data, the percentage of traces that were classified as molecular by the Neural Network (Yield); then, the conductance and yield for HC, LC1, and LC2 classes are reported. Note that the yield is reported with respect to the total number of traces.

| Measurem<br>ent | N traces | <i>Raw Data</i> conductance ( $G_0$ ) | Yield (%) | HC<br>conductance<br>(G <sub>0</sub> ) | HC<br>Yield<br>(%) | LC<br>conductance<br>(G <sub>0</sub> ) | LC<br>Yield<br>(%) |
|-----------------|----------|---------------------------------------|-----------|----------------------------------------|--------------------|----------------------------------------|--------------------|
| 1               | 14994    | 3.3 · 10 <sup>-4</sup>                | 51        | 4.7 · 10 <sup>-4</sup>                 | 24                 | 1.8 · 10 <sup>-5</sup>                 | 27                 |
| 2               | 86885    | $3.6 \cdot 10^{-4}$                   | 87        | $5.4 \cdot 10^{-4}$                    | 40                 | $1.9 \cdot 10^{-5}$                    | 47                 |
| 3               | 33368    | $4.6 \cdot 10^{-4}$                   | 77        | $5.0 \cdot 10^{-4}$                    | 37                 | 9.0 · 10 <sup>-6</sup>                 | 40                 |
| 4               | 10000    | $6.8 \cdot 10^{-4}$                   | 96        | 6.9 · 10 <sup>-4</sup>                 | 40                 | $1.2 \cdot 10^{-5}$                    | 56                 |
| 5               | 10000    | $7.2 \cdot 10^{-4}$                   | 97        | $7.5 \cdot 10^{-4}$                    | 69                 | 9.6 · 10 <sup>-6</sup>                 | 28                 |
| 6               | 10000    | $5.2 \cdot 10^{-4}$                   | 92        | $5.7 \cdot 10^{-4}$                    | 69                 | 9.1 · 10 <sup>-6</sup>                 | 23                 |

**Table S2.5**. Summary table for the results of molecule **2b** measurements; The columns report the total number of traces in the measurement, the conductance extracted through fitting the raw data, the percentage of traces that were classified as molecular by the Neural Network (Yield); then, the conductance and yield for HC, LC1, and LC2 classes are reported. Note that the yield is reported with respect to the total number of traces.

| Measurem<br>ent | N traces | <i>Raw Data</i><br>conductance (G <sub>0</sub> ) | Yield (%) | HC<br>conductance<br>(G <sub>0</sub> ) | HC<br>Yield<br>(%) | LC<br>conductance<br>(G <sub>0</sub> ) | LC<br>Yield<br>(%) |
|-----------------|----------|--------------------------------------------------|-----------|----------------------------------------|--------------------|----------------------------------------|--------------------|
| 1               | 14994    | 7.9 10-4                                         | 90        | $8.6 \cdot 10^{-4}$                    | 34                 | $2.5 \cdot 10^{-5}$                    | 56                 |

| 2 | 86885 | $4.9 \cdot 10^{-4}$    | 63 | $5.1 \cdot 10^{-4}$    | 19 | $1.9 \cdot 10^{-5}$ | 20 |
|---|-------|------------------------|----|------------------------|----|---------------------|----|
| 3 | 33368 | $6.0 \cdot 10^{-4}$    | 65 | $6.7 \cdot 10^{-4}$    | 23 | $1.2 \cdot 10^{-5}$ | 26 |
| 4 | 10000 | $6.9 \cdot 10^{-4}$    | 80 | $7.3 \cdot 10^{-4}$    | 34 | $1.8 \cdot 10^{-5}$ | 46 |
| 5 | 10000 | 6.6 · 10 <sup>-4</sup> | 82 | 6.8 · 10 <sup>-4</sup> | 26 | $2.1 \cdot 10^{-5}$ | 56 |
| 6 | 10000 | $7.2 \cdot 10^{-4}$    | 51 | $7.3 \cdot 10^{-4}$    | 22 | $1.4 \cdot 10^{-5}$ | 29 |

**Table S2.6**. Summary table for the results of molecule **3b** measurements; The columns report the total number of traces in the measurement, the conductance extracted through fitting the raw data, the percentage of traces that were classified as molecular by the Neural Network (Yield); then, the conductance and yield for HC, LC1, and LC2 classes are reported. Note that the yield is reported with respect to the total number of traces.

| Measurem<br>ent | N traces | <i>Raw Data</i> conductance ( $G_0$ ) | Yield (%) | HC<br>conductance<br>(G <sub>0</sub> ) | HC<br>Yield<br>(%) | LC<br>conductance<br>(G <sub>0</sub> ) | LC<br>Yield<br>(%) |
|-----------------|----------|---------------------------------------|-----------|----------------------------------------|--------------------|----------------------------------------|--------------------|
| 1               | 10000    | 8.0 · 10 <sup>-4</sup>                | 94        | 8.7 · 10 <sup>-4</sup>                 | 64                 | $1.5 \cdot 10^{-5}$                    | 30                 |
| 2               | 10000    | $7.4 \cdot 10^{-4}$                   | 74        | 7.6 · 10 <sup>-4</sup>                 | 31                 | $8.2 \cdot 10^{-6}$                    | 43                 |
| 3               | 10000    | $7.4 \cdot 10^{-4}$                   | 85        | 8.0 · 10 <sup>-4</sup>                 | 27                 | 7.3 · 10 <sup>-6</sup>                 | 58                 |
| 4               | 10000    | $6.0 \cdot 10^{-4}$                   | 73        | $6.5 \cdot 10^{-4}$                    | 30                 | $1.3 \cdot 10^{-5}$                    | 43                 |
| 5               | 10000    | $4.8 \cdot 10^{-4}$                   | 85        | $5.6 \cdot 10^{-4}$                    | 30                 | 9.6 · 10 <sup>-6</sup>                 | 55                 |

## 2.1.1 -SAc Anchoring Group Measurements' Histograms



#### 1a: Measurement 1

**Figure S2.1**. 2D and 1D histograms for measurement 1 and 2 of molecule 1a; In addition to the data before any classification, the histograms are reported for the traces excluded using the neural network ("empty") and for the classes identified with clustering analysis (HC, LC1, and LC2). When present, the light-blue shaded area corresponds to the log-normal fit performed on the corresponding 1D-histogram.

## 2a: Measurement 1



**Figure S2.2**. 2D and 1D histograms for measurement 1 and 2 of molecule 2a; In addition to the data before any classification, the histograms are reported for the traces excluded using the neural network ("empty") and for the classes identified with clustering analysis (HC,  $LC1^{H}$  and  $LC1^{L}$ ). When present, the light-blue shaded area corresponds to the log-normal fit performed on the corresponding 1D-histogram.



**Figure S2.3.** 2D and 1D histograms for measurement 3 of molecule 2a; In addition to the data before any classification, the histograms are reported for the traces excluded using the neural network ("empty") and for the classes identified with clustering analysis (HC,  $LC1^{H}$  and  $LC1^{L}$ ). When present, the light-blue shaded area corresponds to the log-normal fit performed on the corresponding 1D-histogram.



**Figure S2.4**. 2D and 1D histograms for measurement 1 and 2 of molecule 3a; In addition to the data before any classification, the histograms are reported for the traces excluded using the neural network ("empty") and for the classes identified with clustering analysis (HC, LC1, and LC2). When present, the light-blue shaded area corresponds to the log-normal fit performed on the corresponding 1D-histogram. Note that in measurement 2 it was not possible to identify clearly the low-conductance classes. Instead, a class containing traces with two steps was found.



**Figure S2.5**. 2D and 1D histograms for measurement 3 of molecule 3a; In addition to the data before any classification, the histograms are reported for the traces excluded using the neural network ("empty") and for the classes identified with clustering analysis (HC, LC1, and LC2). When present, the light-blue shaded area corresponds to the log-normal fit performed on the corresponding 1D-histogram.

## 2.1.2 -SMe Anchoring Group Measurements' Histograms



#### 1b: Measurement 1

**Figure S2.6.** 2D and 1D histograms for measurement 1 and 2 of molecule 1b; In addition to the data before any classification, the histograms are reported for the traces excluded using the neural network ("empty") and for the classes identified with clustering analysis (HC, and LC1). When present, the light-blue shaded area corresponds to the log-normal fit performed on the corresponding 1D-histogram.



**Figure S2.7**. 2D and 1D histograms for measurement 3 and 4 of molecule 1b; In addition to the data before any classification, the histograms are reported for the traces excluded using the neural network ("empty") and for the classes identified with clustering analysis (HC, and LC1). When present, the light-blue shaded area corresponds to the log-normal fit performed on the corresponding 1D-histogram.



**Figure S2.8.** 2D and 1D histograms for measurement 5 and 6 of molecule 1b; In addition to the data before any classification, the histograms are reported for the traces excluded using the neural network ("empty") and for the classes identified with clustering analysis (HC, and LC1). When present, the light-blue shaded area corresponds to the log-normal fit performed on the corresponding 1D-histogram.



**Figure S2.9.** 2D and 1D histograms for measurement 1 and 2 of molecule 2b; In addition to the data before any classification, the histograms are reported for the traces excluded using the neural network ("empty") and for the classes identified with clustering analysis (HC, and LC1). When present, the light-blue shaded area corresponds to the log-normal fit performed on the corresponding 1D-histogram. Note that measurement 2 also shows a class containing traces with multiple steps. This class was not consistently identified across measurements.



**Figure S2.10.** 2D and 1D histograms for measurement 3 and 4 of molecule 2b; In addition to the data before any classification, the histograms are reported for the traces excluded using the neural network ("empty") and for the classes identified with clustering analysis (HC, and LC1). When present, the light-blue shaded area corresponds to the log-normal fit performed on the corresponding 1D-histogram. Note that measurement 3 also shows a class containing traces with multiple steps. This class was not consistently identified across measurements.



**Figure S2.11.** 2D and 1D histograms for measurement 5 and 6 of molecule 2b; In addition to the data before any classification, the histograms are reported for the traces excluded using the neural network ("empty") and for the classes identified with clustering analysis (HC, and LC1). When present, the light-blue shaded area corresponds to the log-normal fit performed on the corresponding 1D-histogram.



**Figure S2.12.** 2D and 1D histograms for measurement 1 and 2 of molecule 3b; In addition to the data before any classification, the histograms are reported for the traces excluded using the neural network ("empty") and for the classes identified with clustering analysis (HC, and LC1). When present, the light-blue shaded area corresponds to the log-normal fit performed on the corresponding 1D-histogram.



**Figure S2.13**. 2D and 1D histograms for measurement 3 and 4 of molecule 3b; In addition to the data before any classification, the histograms are reported for the traces excluded using the neural network ("empty") and for the classes identified with clustering analysis (HC, and LC1). When present, the light-blue shaded area corresponds to the log-normal fit performed on the corresponding 1D-histogram.



**Figure S2.14**. 2D and 1D histograms for measurement 5 of molecule 3b; In addition to the data before any classification, the histograms are reported for the traces excluded using the neural network ("empty") and for the classes identified with clustering analysis (HC, and LC1). When present, the light-blue shaded area corresponds to the log-normal fit performed on the corresponding 1D-histogram.

## **3 STMBJ measurements and data**

From the raw data, it is performed a selection of traces with the expected shape for a molecular junction, removing "empty" and "bad" traces that come as a result of several events during the experiment like the saturation of the electrical signal, mechanical perturbations, or junctions with a non-well-defined breaking. To this "cleaned" dataset, an unsupervised algorithm for clustering, in this case, the k-means, is applied. The parameters used to introduce the data in the algorithm are the same as the ones used for the MCBJ data classification: For each trace, a linear vector is created appending consecutively the raws of a 2D-histogram with 40 bins between -2 and -6  $log(G/G_0)$  values and 30 bins between 0 and 1.5 nm of displacement. Besides, another vector from a 1D-histogram with 100 bins between -1 and -6.5  $log(G/G_0)$  values is appended.

Up to 6 clusters may be separated to isolate both different conductance behaviors and tunnel traces. For some clusters with a molecular feature, the algorithm may be applied again to remove the remaining tunnel traces. Then all the clusters with molecular features are put together and the algorithm is applied one more time considering the number of clusters accordingly to the selection observed in the previous process, since clusters belonging to the same behavior may have been separated, or traces belonging to a different cluster may have been misclassified.

## 3.1 Conductance values and histograms

**Table S3.1**. Summary table for the results of all the molecules. The columns report the conductance values as  $log(G/G_0)$  for HC, LC1, and LC2 classes and the percentage of traces with a molecular feature with respect to the total number of

| Molecule | All              | НС            |                  | LC            | l                | LC2           |                  | Double           |
|----------|------------------|---------------|------------------|---------------|------------------|---------------|------------------|------------------|
|          | % <sub>Raw</sub> | $\log(G/G_0)$ | % <sub>Raw</sub> | $\log(G/G_0)$ | % <sub>Raw</sub> | $\log(G/G_0)$ | % <sub>Raw</sub> | % <sub>Raw</sub> |
| 1a       | 28.0             | -2.6          | 15.8             | -4.5          | 1.3              | -5.5          | 1.7              | 9.2              |
| 2a       | 25.0             | -2.7          | 8.8              | -3.8          | 9.4              | //            | //               | //               |
|          |                  |               |                  | -4.7          | 6.8              |               |                  |                  |
| 3a       | 24.9             | -2.6          | 13.8             | -3.8          | 21.3             | -5.6          | 4.6              | 1.2              |
| 1b       | 22.3             | -3.2          | 12.8             | -5.0          | 2.3              | //            | //               | 6.8              |
| 2b       | 14.6             | -3.1          | 8.5              | -4.5          | 6.1              | //            | //               | //               |
| 3b       | 6.1              | -3.1          | 3.3              | -5.0          | 2.8              | //            | //               | //               |

traces for HC, LC1, LC2, and Double classes, including the sum of all the classes.



**Figure S3.1**. Conductance  $(Log(G/G_0))$  1D-histograms for all the compounds, -SAc compounds **1a**, **2a** and **3a** in the upper part (A-C) and -SMe compounds **1b**, **2b** and **3b** in the lower part (D-F). The peaks correspond to the different classes HC, LC1, LC2 and Double identified by colors in the legend, including the histogram with all the classes together in black.



**Figure S3.2**. Conductance  $(Log(G/G_0)) / displacement (Z) 2D-histograms of molecule$ **1a**for classes HC, LC1, LC2 and Double, plus all combined (A-E) (inset) Examples of individual traces for each class.



**Figure S3.3**. Conductance  $(Log(G/G_0)) / displacement (Z) 2D-histograms of molecule$ **2a**for classes HC, LC1<sup>H</sup>, and LC1<sup>L</sup>, plus all combined (A-D) (inset) Examples of individual traces for each class.



**Figure S3.4**. Conductance  $(Log(G/G_0)) / displacement (Z) 2D-histograms of molecule$ **3a**for classes HC, LC1, LC2 and Double, plus all combined (A-E) (inset) Examples of individual traces for each class.



**Figure S3.5**. Conductance  $(Log(G/G_0)) / displacement (Z) 2D-histograms of molecule$ **1b**for classes HC, LC1, and Double, plus all combined (A-D) (inset) Examples of individual traces for each class.



**Figure S3.6**. Conductance  $(Log(G/G_0)) / displacement (Z) 2D$ -histograms of molecule **2b** for classes HC and LC1, plus all combined (A-C) (inset) Examples of individual traces for each class.



**Figure S3.7**. Conductance  $(Log(G/G_0)) / displacement (Z) 2D$ -histograms of molecule **3b** for classes HC and LC1, plus all combined (A-C) (inset) Examples of individual traces for each class.

### 3.1.1 Comparison of MCBJ and STMBJ measurements

Overall, MCBJ and STMBJ measurements show very similar classes across the series molecules, with similar conductance values and trends. However, there are some noticeable differences between MCBJ and STMBJ measurements. In general, STMBJ traces are statistically shorter than MCBJ traces, which is related to the stability of the junctions. This is not the case for compounds **3a** and **3b** traces, which are remarkably large for STMBJ. In addition to this, for compound **1a** it seems to be difficult to form a junction in MCBJ experiments, while in STMBJ experiments the percentage of LC traces is low compared to the HC. Finally, a remarkable fact is the appearance of clusters formed by double plateau traces in compounds 1a and 1b. It was possible to isolate a cluster of these traces also for compound 3a, but not many. In fact, this behavior is observable for all the compounds in STMBJ experiments. Nevertheless, for measurements of compounds 1a and 1b, the amount of traces in the Double class is even higher than for LC. On the other hand, in MCBJ measurements, this kind of behaviour is not found in clustering. Some measurements show classes with two steps (see Figure S2.4, S2.9, or S2.10), but such classes do not show two clear plateaus as it is found in STMBJ. Additionally, the presence of two-peak clusters in MCBJ measurements is not consistent across all molecules, and not even across different measurements on the same molecule. This Double-class might be related to  $\pi$ -stacking, since it is present in the measurements at 1 mM concentration, while when measuring at 0.1 mM concentration, the same as for the MCBJ experiments, the class is no longer found when clustering (Figure S3.8).



**Figure S3.8**. Conductance  $(Log(G/G_0)) / displacement (Z) 2D-histograms of molecule$ **1a** $at a concentration 0.1 mM, and order of magnitude lower than the previous measurements, for classes HC, LC1, and LC2, plus all combined (A-D). (E) Conductance <math>(Log(G/G_0))$  1D-histogram. The peaks correspond to the different classes HC, LC1 and LC2 identified by colors in the legend, including the histogram with all the classes together in black.

#### 3.2 Thermopower



Figure S3.9. Seebeck Coefficient (*S*) / Conductance ( $Log(G/G_0)$ ) histograms for all the compounds, -SAc compounds 1a, 2a and 3a in the upper part (A-C) and -SMe compounds 1b, 2b and 3b in the lower part (D-F). The distribution of the points follows the tendency of the 1D-histograms in Figure S.3.1.



**Figure S3.10**. Linear regressions of the temperature difference dependence of the thermovoltage measurements for all the compounds, centered to the origin for comparison. The slope of each line is the total Seebeck coefficient corresponding to the values in Table 2.



**Figure S3.11**. IV-curves measured for compound **2b** corresponding to class HC, under tip-sample temperature difference of 0K and 30 K. The slope of the curves is the conductance and the offset in voltage at 30K is the thermovoltage. Therefore, conductance and thermopower are simultaneously determined for every measurement in every single-molecule junction.

| Molecule | HC length     |               | LC1 length    |               | LC2 length    |               |  |
|----------|---------------|---------------|---------------|---------------|---------------|---------------|--|
|          | (nm)          |               | (nm)          |               | (nm)          |               |  |
|          | MCBJ          | STMBJ         | MCBJ          | STMBJ         | MCBJ          | STMBJ         |  |
| 1a       | $0.70\pm0.06$ | $0.72\pm0.17$ | $0.90\pm0.04$ | $1.09\pm0.32$ | $1.41\pm0.09$ | $1.29\pm0.15$ |  |
| 2a       | $0.79\pm0.19$ | $0.78\pm0.22$ | $0.70\pm0.12$ | $0.61\pm0.54$ | //            | //            |  |
|          |               |               | $0.92\pm0.09$ | $0.92\pm0.58$ |               |               |  |
| 3a       | $0.80\pm0.11$ | $1.37\pm0.16$ | $0.94\pm0.10$ | $1.58\pm0.19$ | $2.00\pm0.38$ | $2.08\pm0.14$ |  |
|          |               |               |               |               |               |               |  |
| 1b       | $0.59\pm0.08$ | $0.62\pm0.12$ | $1.07\pm0.11$ | $1.44\pm0.26$ | //            | //            |  |
| 2b       | $0.60\pm0.08$ | $0.56\pm0.17$ | $1.08\pm0.08$ | $0.91\pm0.14$ | //            | //            |  |
| 3b       | $0.64\pm0.08$ | $1.29\pm0.24$ | $1.14\pm0.08$ | $1.48\pm0.30$ | //            | //            |  |

 Table S3.2. Length of molecular junctions obtained from MCBJ and STMBJ experiments.

## 4 Theory and modelling

### 4.1 Computational methods

**Geometry optimization:** The geometry of each structure studied in this paper was relaxed to the force tolerance of 10 meV/Å using the SIESTA<sup>6</sup> implementation of density functional theory (DFT), with a double- $\zeta$  polarized basis set (DZP) and the Local Density Approximation (LDA) functional with CA parameterization. A

real-space grid was defined with an equivalent energy cut-off of 250 Ry. To calculate molecular orbitals and spin density of gas phase molecules, an experimentally parameterised B3LYP functional was employed using Gaussian g09v2 with 6-311++g basis set and tight convergence criteria.

**Electron transport:** To calculate the electronic properties of the device, from the converged DFT calculation, the underlying mean-field Hamiltonian *H* was combined with our quantum transport code, GOLLUM<sup>7,8</sup>. This yields the transmission coefficient  $T_e(E)$  for electrons of energy *E* (passing from the source to the drain) via the relation  $T_e(E) = Tr(\Gamma_L^e(E)G_e^R(E)\Gamma_R^e(E)G_e^{R^{\dagger}}(E))$  where  $\Gamma_{L,R}^e(E) = i(\sum_{L,R}^e(E) - \sum_{L,R}^e^{\dagger}(E))$  describes the level broadening due to the coupling between left *L* and right *R* electrodes and the central scattering region,  $\Sigma_{L,R}^e(E)$  are the retarded self-energies associated with this coupling, and  $G_e^R = (ES - H - \sum_{L}^e - \sum_{R}^e)^{-1}$  is the retarded Green's function, where *H* is the Hamiltonian and *S* is the overlap matrix obtained from SIESTA implementation of DFT. DFT+ $\Sigma$  approach has been employed for spectral adjustment<sup>8</sup>.

**Electrical conductance:** Using the approach explained in<sup>8,9</sup>, the electrical conductance  $G = G_0 \int_{-\infty}^{+\infty} dE T_e(E)(-\partial f_{FD}(E,T,E_F)/\partial E)$  is calculated from the electron transmission coefficient  $T_e(E)$  where  $f_{FD} = (e^{(E-E_F)/k_BT} + 1)^{-1}$  is the Fermi-Dirac probability distribution function, *T* is the temperature,  $E_F$  is the Fermi energy,  $G_0 = 2e^2/h$  is the conductance quantum, *e* is electron charge and *h* is the Planck's constant.

**Data analysis and theoretical conductance histograms:** First, we form a series of junctions with different contacting modalities to electrodes and calculate the electrical conductance G for a range of electrodes Fermi energies. Next, we create the conductance histograms using the calculated conductance for each junction and for a wide range of  $E_F$  between the HOMO-LUMO gap. To ensure including conductance values in co-tunnelling regime, the range of  $E_F$  is chosen such that they do not include HOMO and LUMO resonances. For this,  $E_H + \Delta/5 < E_F < E_L - \Delta/5$  where  $\Delta = E_L - E_H$  is the energy gap and  $E_H$  and  $E_L$  are energy of HOMO and LUMO, respectively. The peaks in conductance histograms are fitted with a log-normal distribution and their centre is defined as the most probable conductance.

|    |                  | НОМО-3 | HOMO-2 | HOMO-1 | HOMO  | <u>Gap</u> | LUMO  | LUMO+1 | LUMO+2 | LUMO+3 |
|----|------------------|--------|--------|--------|-------|------------|-------|--------|--------|--------|
| 1a | <del>،</del> ېښې | -6.18  | -6.13  | -5.27  | -4.49 | 2.58       | -1.91 | -1.10  | -1.09  | -0.59  |
| 2a | ᠂ᢜ᠊ᢩᡮ            | -6.20  | -5.70  | -5.34  | -5.00 | 1.72       | -3.27 | -2.83  | -2.10  | -1.23  |
| 3a | ٠Å÷Å٠            | -4.99  | -4.76  | -4.56  | -3.79 | 2.29       | -1.49 | -0.58  | -0.44  | -0.15  |
|    |                  | HOMO-3 | HOMO-2 | HOMO-1 | HOMO  | <u>Gap</u> | LUMO  | LUMO+1 | LUMO+2 | LUMO+3 |
| 1b | *XX2             | -6.01  | -5.86  | -4.95  | -4.28 | 2.50       | -1.77 | -0.97  | -0.97  | -0.45  |
| 2b | પ્લેન્ટ્રન       | -6.08  | -5.35  | -5.21  | -4.77 | 1.60       | -3.16 | -2.70  | -1.92  | -1.05  |
| 3b | - भूर्द्र- दूस-  | -4.73  | -4.63  | -4.46  | -3.63 | 2.27       | -1.35 | -0.45  | -0.34  | -0.06  |

## 4.2 Molecular orbitals

Figure S4.1. Molecular orbitals of molecule 1-3 with thiol (a) and SME (b) anchor groups. All energy units are eV.


Figure S4.2. The effect of substituents on the electron transmission probability through junctions.

The substituents (e.g. side groups) are expected to affect electrical conductance in three ways. They might tune energy levels of the molecular backbone (e.g. shift the position of HOMO and LUMO) just like doping in the semiconductors (Figure S4.2)<sup>10,11</sup> leading to a shift in the transport resonances (Figure S4.2I). If the energy level of a side group happens to be in the HOMO-LUMO gap of the molecule, it can also open a new transport channel (e.g. due to quantum interference) and affect the electrical conductance (Figure S4.2II)<sup>12–16</sup>. Side groups can also affect electrical conductance if they alter conjugation of the system<sup>17–21</sup> which is not our focus in the present study (Figure S4.2III).



**Figure S4.3.** Conductance of **1a** with additional conformations including pi-pi stacking. (a) examples of different molecule electrodes conformations. (b) associated conductance histogram with (dashed line) and without (solid line) pi-pi stacking conformations. (c) correspondence G vs  $E_F$  for full range of energies between HOMO and LUMO resonances.



Figure S4.4. Example of T(E) for 1a, 2a and 3a with similar anchor-electrode conformations. The HOMO-LUMO gap of 2a is smaller compared to 1a and 3a and a new resonance close to E=0eV is formed in 2a (blue line) between the HOMO-LUMO of tolane 1a (red line). This additional resonance is due to the nitro groups. Around DFT Fermi energy (E=0eV), the transport is dominated by HOMO for 1a and 3a while transport is through LUMO for 2b. Around this Fermi energy, a positive Seebeck coefficient (S) is expected for 1a and 3a whereas a negative S is predicted for 2a.



Figure S4.5. The effect of asymmetric contacting to electrode. (a) examples of binding configurations between OPE2 and electrode through 1Au-1Au, 2Au-2Au, 3Au-3Au and 1Au-3Au atoms, (b) conductance histograms with (1a) and without (1a') asymmetric configurations, (c) the conductance of 1a versus  $E_F$  with different configurations to electrode. The conductance histogram changes while retaining the main feature without additional asymmetric configurations. There are still two peaks in the histogram, and the mean of each peak is almost the same with and without additional configurations.



**Figure S4.6.** The Seebeck coefficient calculations. (a-d) room temperature electrical conductance and (e-h) corresponding Seebeck coefficient of 1a, 2a, 3a, 1b, 2b, 3b with 1Au-1Au (b, d, f, h) and 3Au-3Au (a, c, e, g) electrode structures.

To ensure the impartiality of our calculations, we have kept the procedure the same for forming different configurations with different anchors and molecules. For example, we begin from the ground-state Au-S binding configuration for all molecules and then move the electrodes away from them by the same amount. However, the probability of forming junctions with a certain Au-S distance experimentally depends on the binding energy between Au-S in SAc and SMe, which is different. For longer junctions, Au-S with a SMe anchor is likely to break earlier than the corresponding junction with a SAc anchor. This is supported by our length analysis of the junctions using the experimental conductance traces (see Table S3.2 in the SI), which shows that the junctions formed by SMe anchors are generally shorter (by ~1-2Å) than those of SAc Anchors.

The probability of electron transmission through molecules with SMe anchors is more sensitive to the Au-S distance and decreases rapidly as the distance increases (see Figure 5a). For example, if the Au-S distance is increased by 1-2 Å, the conductance decreases by up to an order of magnitude in junctions with SMe anchors. These low conductance configurations contribute to the low conductance peak in the computed conductance histograms. If we avoid these low conductance junctions, the conductance histograms are less broadened (see Figure S4.7 in the SI). But this is not desirable. The key point is that even without data selection and using a similar and equivalent number of configurations, our proposed method provides qualitative agreement between features observed experimentally and theoretically. This predictive modelling ability of the proposed theoretical method makes it a valuable tool for predicting the conductance of various molecular junctions.



**Figure S4.7. Conductance histograms for molecules with SMe anchor.** (a) with the same and equivalent number of configurations as junctions with SAc anchor, (b) without junctions with large Au-S distance.

## **Supporting References**

- Adeniyi, A. A.; Ngake, T. L.; Conradie, J. Cyclic Voltammetric Study of 2-Hydroxybenzophenone (HBP) Derivatives and the Correspondent Change in the Orbital Energy Levels in Different Solvents. *Electroanalysis* 2020, 32 (12), 2659–2668. https://doi.org/https://doi.org/10.1002/elan.202060163.
- (2) de Leeuw, D. M.; Simenon, M. M. J.; Brown, A. R.; Einerhand, R. E. F. Stability of N-Type Doped Conducting Polymers and Consequences for Polymeric Microelectronic Devices. *Synth. Met.* **1997**, 87 (1), 53–59. https://doi.org/https://doi.org/10.1016/S0379-6779(97)80097-5.
- (3) A Crash Course in Photophysics and a Classification of Primary Photoreactions. In *Photochemistry of Organic Compounds*; John Wiley & Sons, Ltd, 2009; pp 25–72. https://doi.org/https://doi.org/10.1002/9781444300017.ch2.
- (4) Kingma, D. P.; Ba, J. L. Adam: A Method for Stochastic Optimization. 3rd Int. Conf. Learn. Represent. ICLR 2015 Conf. Track Proc. 2015.
- (5) Phys, A.; Cabosart, D.; Abbassi, M. El; Stefani, D.; Frisenda, R.; Calame, M.; Herre, S. J.; Cabosart, D.; Abbassi, E. A Reference-Free Clustering Method for the Analysis of Molecular Break-Junction Measurements A Reference-Free Clustering Method for the Analysis of Molecular Break-Junction Measurements. 2019, 143102 (March). https://doi.org/10.1063/1.5089198.
- (6) Soler, J. M.; Artacho, E.; Gale, J. D.; García, A.; Junquera, J.; Ordejón, P.; Sánchez-Portal, D. The SIESTA Method for Ab Initio Order- N Materials Simulation. *J. Phys. Condens. Matter* **2002**, *14* (11), 2745–2779. https://doi.org/10.1088/0953-8984/14/11/302.
- (7) Ferrer, J.; Lambert, C. J.; García-Suárez, V. M.; Manrique, D. Z.; Visontai, D.; Oroszlany, L.; Rodríguez-Ferradás, R.; Grace, I.; Bailey, S. W. D.; Gillemot, K.; Sadeghi, H.; Algharagholy, L. A. GOLLUM: A next-Generation Simulation Tool for Electron, Thermal and Spin Transport. *New J. Phys.* 2014, *16*, 093029. https://doi.org/10.1088/1367-2630/16/9/093029.
- Sadeghi, H. Theory of Electron, Phonon and Spin Transport in Nanoscale Quantum Devices. *Nanotechnology* 2018, 29 (37), 373001. https://doi.org/10.1088/1361-6528/aace21.
- (9) Sadeghi, H.; Sangtarash, S.; Lambert, C. J. Oligoyne Molecular Junctions for Efficient Room Temperature Thermoelectric Power Generation. *Nano Lett.* 2015, 15 (11), 7467–7472. https://doi.org/10.1021/acs.nanolett.5b03033.
- (10) Low, J. Z.; Capozzi, B.; Cui, J.; Wei, S.; Venkataraman, L.; Campos, L. M. Tuning the Polarity of Charge Carriers Using Electron Deficient Thiophenes. *Chem. Sci.* **2017**, *8* (4), 3254–3259. https://doi.org/10.1039/c6sc05283e.
- (11) Venkataraman, L.; Park, Y. S.; Whalley, A. C.; Nuckolls, C.; Hybertsen, M. S.; Steigerwald, M. L. Electronics and Chemistry: Varying Single-Molecule Junction Conductance Using Chemical Substituents. *Nano Lett.* 2007, 7 (2), 502–506. https://doi.org/10.1021/nl062923j.
- (12) Sadeghi, H. Quantum and Phonon Interference-Enhanced Molecular-Scale Thermoelectricity. J. Phys. Chem. C 2019, 123 (20), 12556–12562. https://doi.org/10.1021/acs.jpcc.8b12538.
- Jiang, F.; Trupp, D. I.; Algethami, N.; Zheng, H.; He, W.; Alqorashi, A.; Zhu, C.; Tang, C.; Li, R.; Liu, J.; Sadeghi, H.; Shi, J.; Davidson, R.; Korb, M.; Sobolev, A. N.; Naher, M.; Sangtarash, S.; Low, P. J.; Hong, W.; Lambert, C. J. Turning the Tap: Conformational Control of Quantum Interference to Modulate Single-Molecule Conductance. *Angew. Chemie Int. Ed.* 2019, *58* (52), 18987–18993. https://doi.org/10.1002/anie.201909461.
- (14) Mowbray, D. J.; Jones, G.; Thygesen, K. S. Influence of Functional Groups on Charge Transport in Molecular Junctions. J. Chem. Phys. 2008, 128 (11). https://doi.org/10.1063/1.2894544.
- (15) Nozaki, D.; Sevinçli, H.; Avdoshenko, S. M.; Gutierrez, R.; Cuniberti, G. A Parabolic Model to Control Quantum Interference in T-Shaped Molecular Junctions. *Phys. Chem. Chem. Phys.* 2013, 15 (33), 13951–13958. https://doi.org/10.1039/C3CP44578J.
- (16) Stadler, R. Conformation Dependence of Charge Transfer and Level Alignment in Nitrobenzene Junctions with Pyridyl Anchor Groups. *Phys. Rev. B Condens. Matter Mater. Phys.* **2010**, *81* (16), 1–9. https://doi.org/10.1103/PhysRevB.81.165429.
- (17) Mishchenko, A.; Vonlanthen, D.; Meded, V.; Bürkle, M.; Li, C.; Pobelov, I. V.; Bagrets, A.; Viljas, J. K.; Pauly, F.; Evers, F.; Mayor, M.; Wandlowski, T. Influence of Conformation on Conductance of Biphenyl-Dithiol Single-Molecule Contacts. *Nano Lett.* **2010**, *10* (1), 156–163. https://doi.org/10.1021/nl903084b.
- (18) Alqahtani, J.; Sadeghi, H.; Sangtarash, S.; Lambert, C. J. Breakdown of Curly Arrow Rules in Anthraquinone. *Angew. Chemie* **2018**, *130* (46), 15285–15289. https://doi.org/10.1002/ange.201807257.
- (19) Strange, M.; Seldenthuis, J. S.; Verzijl, C. J. O.; Thijssen, J. M.; Solomon, G. C. Interference Enhanced Thermoelectricity in Quinoid Type Structures Interference Enhanced Thermoelectricity in Quinoid Type Structures. 2015, 084703 (May). https://doi.org/10.1063/1.4913290.
- (20) Valkenier, H.; Guédon, C. M.; Markussen, T.; Thygesen, K. S.; van der Molen, S. J.; Hummelen, J. C. Cross-Conjugation and Quantum Interference: A General Correlation? *Phys. Chem. Chem. Phys.* 2014, *16* (2), 653–662. https://doi.org/10.1039/C3CP53866D.
- (21) Valkenier, H.; Markussen, T.; Thygesen, K. S.; Hummelen, J. C.; Molen, S. J. Van Der. Observation of Quantum Interference in Molecular Charge Transport. **2012**, *7* (May), 305–309. https://doi.org/10.1038/nnano.2012.37.