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Supplementary Figure 1: Association between cell count or segmentation score and precision
score.  A. Association between number of cells in the test set and the respecting class AP. Each
point is labeled with the class name. B. Average segmentation scores (mean IOU) did not
correlate with mAP (Methods). Each point is labeled with team rank.



Supplementary Figure 2: Score progression during the competition. A. Average of maximum
mAP score that each team achieved so far on public and private leaderboard. B. Average score
progression on the public leaderboard for all teams grouped by medals.



Supplementary Figure 3: Violin plot of the score distribution per label for the top 50 teams,
ordered by decreasing cell count. n=50 teams for each violin. The minimum, mean, percentile
(P), and maximum values are: Nucleoplasm (min: 0.22, mean: 0.68, 25th P: 0.68, 50th P: 0.7,
75th P: 0.72, max: 0.77), Cytosol (min: 0.15, mean: 0.44, 25th P: 0.43, 50th P: 0.45, 75th P:
0.47, max: 0.51), Negative (min: 0.0, mean: 0.34, 25th P: 0.32, 50th P: 0.38, 75th P: 0.41, max:
0.47), Vesicles and punctate cytosolic patterns (min: 0.08, mean: 0.31, 25th P: 0.29, 50th P:
0.32, 75th P: 0.35, max: 0.39), Microtubules (min: 0.21, mean: 0.63, 25th P: 0.63, 50th P: 0.65,
75th P: 0.67, max: 0.71), Plasma membrane (min: 0.14, mean: 0.42, 25th P: 0.41, 50th P: 0.44,
75th P: 0.47, max: 0.5), Nucleoli (min: 0.21, mean: 0.63, 25th P: 0.62, 50th P: 0.64, 75th P:
0.67, max: 0.7), Nuclear bodies (min: 0.1, mean: 0.36, 25th P: 0.34, 50th P: 0.37, 75th P: 0.4,
max: 0.44), Nuclear speckles (min: 0.18, mean: 0.57, 25th P: 0.56, 50th P: 0.59, 75th P: 0.61,
max: 0.65), Golgi apparatus (min: 0.15, mean: 0.51, 25th P: 0.49, 50th P: 0.52, 75th P: 0.56,
max: 0.61), Actin filaments (min: 0.14, mean: 0.48, 25th P: 0.46, 50th P: 0.49, 75th P: 0.53,
max: 0.59), Nucleoli fibrillar center (min: 0.13, mean: 0.5, 25th P: 0.48, 50th P: 0.52, 75th P:
0.54, max: 0.58), Mitochondria (min: 0.17, mean: 0.55, 25th P: 0.54, 50th P: 0.56, 75th P: 0.6,
max: 0.7), Endoplasmic reticulum (min: 0.06, mean: 0.25, 25th P: 0.21, 50th P: 0.25, 75th P:
0.31, max: 0.35), Centrosome (min: 0.09, mean: 0.33, 25th P: 0.31, 50th P: 0.36, 75th P: 0.37,
max: 0.43), Intermediate filaments (min: 0.15, mean: 0.49, 25th P: 0.47, 50th P: 0.51, 75th P:
0.54, max: 0.57), Nuclear membrane (min: 0.22, mean: 0.68, 25th P: 0.66, 50th P: 0.69, 75th P:
0.73, max: 0.77), Mitotic spindle (min: 0.01, mean: 0.38, 25th P: 0.13, 50th P: 0.47, 75th P: 0.59,
max: 0.69), Aggresome (min: 0.19, mean: 0.52, 25th P: 0.51, 50th P: 0.54, 75th P: 0.56, max:
0.66).



Supplementary Figure 4: Team 1 (bestfitting) - Solution summary and model architecture.
Overview of the pipelines for the final solution, which include pipelines for cell-level and
image-level prediction (Fair Cell Activation Network or FCAN) and subsequent cell prediction
(Swin Transformer). The FCAN (blue) was trained on image-level labels and output image and
cell probabilities for each class. Pseudo-cell-level labels were determined by these results, and
used as training targets for the cell-level models (orange, in this case Swin Transformer) to
predict the final single-cell predictions.



Supplementary Figure 5: Team 1 (bestfitting) - Comparison between traditional convolutional
network - EfficientNetB0 (Public AP 0.479, Private AP 0.492), Puzzle-CAM (Public AP 0.480,
Private AP 0.508) and FCAN (Public AP 0.529, Private AP 0.557). A. Inputs of EfficientNet-b0
(whole image), Puzzle-CAM with EfficientNet-b0 backbone (random cropped patches) and
FCAN with EfficientNet-b0 backbone (random cropped masked patches). B. Nuclear membrane
prediction comparison: increasingly more cells were predicted with labels from EfficientNet to
Puzzle-CAM to FCAN. C. Negative example comparison: increasingly fewer cells were
predicted with labels from EfficientNet to Puzzle-CAM to FCAN.



Supplementary Figure 6: Team 2 ([red.ai]) - Solution summary and model architecture. The
final solution was the ensemble of 3 pipelines: duo-branch models which gave image-level and
cell-level predictions, image-level models which gave image-level and cell-level predictions, and
cell-level models which gave cell predictions.



Supplementary Figure 7: Team 3 (MPWARE & ZFTurbo & Dieter) - Solution summary and
model architecture. The final approach consisted of different models, broadly categorized as
Image-level models and cell-level models. For image-level methods, full images were given as
network inputs and the models were trained to find all the cells and their classes. Cell-level
methods intaked single cells and predict the cell labels.



Supplementary Figure 8: Team 4 (MILIMED) - Solution summary and model architecture. The
solution consists of an ensemble of different cell-level models. Instead of model-centric
approaches of other teams, MILIMED employed a data-centric approach, focusing on creating a
better dataset with more accurate cell-level labels that would enable even simpler models to
achieve highly accurate performance.



Supplementary Figure 9. Class attention comparison to signal in green channel: intersection
over union within the cell mask of binarized class activation and binarized protein signal.



Supplementary Figure 10. Subtle single cell heterogeneity discovered by the single cell
model. A. An example of subtle heterogeneity. ZNF195 expression in A-341 cell line is
annotated in Nucleoplasm and Cytosol. While most cells seem to express these two patterns,
some cells only expressed Nucleoplasm. B,C,D. Gene set enrichment analysis of 452 proteins
in GO_Biological_Processes, GO_Molecular_Functions and KEGG at Benjamini-Hochberg
adjusted p-value of 0.05 (two-sided). There is enrichment in DNA binding functions, which is
consistent with the overlap with CCD proteins.



Supplementary Notes 1. Team 1 - bestfitting

1.1 Model description

The final solution (Supplementary Figure 4) was an ensemble of two networks: a Fair Cell
Activation Network trained on image-level annotations and predict image-level and single-cell
label probabilities, and a transformer network trained on thresholded cell-level predictions by
FCAN. This ensemble and post-processing (especially reducing confidence for border cells)
achieved AP 0.566/0.590 on the private/public leaderboard respectively.

Image-level model - Fair Cell Activation Network

The activations of convolutional neural networks (CNN) on feature maps of an image focus on
most discriminative instances of a class despite many instances exist. To address this
phenomena of unfair activation, a network called Fair Cell Activation Network (FCAN) was
proposed. There are two branches in FCAN. The first branch took the full image as input and
predicted the labels of this image (image classification task). Four images are fed into the
second branch, three of them are cells randomly selected from this image, and the last one
contains the remaining cells. The feature maps of these images were calculated and merged
into one feature map, and the final labels were predicted just as if they were from one image.
The backbone is shared among these two branches. The network is trained with Reconstruction
Loss, which forces the feature maps from these two branches to be as close as possible. The
intuition behind this network is that if we input all the cells in a whole, the network will only
activate most discriminative cells, if we get a feature map of every cell and merge them at the
last stage of the network, we can get fairer activations.

Cell-level models

The cells were cropped from images using HPACellSegmentator and labeled to 5 levels with
label [1.0, 0.75, 0.5, 0.25, 0 ], this is a rule based procedure: After getting the outputs of all the
cells of a train set image from FCAN, we give higher label value if the image-level probability
and cell-level probability are high, and we assign a label at least 0.25 if the label exists in the
image level labels. The cells are resized to 128x128px or 224x224px to feed into cell-level
networks, including inceptionv31, DeiT2 transformer and Swin3 transformer.

Ensemble

Final probabilities for single-cell classes are the weighted averages of the predictions from
FCAN and cell-level models.

Post-Processing

According to the setting of this competition, some cells on the border were not labeled. If these
cells were predicted with high confidences, the False Positive cells will increase, so a model
was trained to predict the completeness of a cell. If the probability to be a whole cell is very low,
the confidence of this cell is multiplied by a low value such as 0.3.

https://www.zotero.org/google-docs/?KARZcZ
https://www.zotero.org/google-docs/?No6ZwP
https://www.zotero.org/google-docs/?glYkUX


1.2 Ablation study

Single models and experiments were reported in Supplementary Table 6.

Experiment #1-13 are experiments of FCANs. #2 shows that adding mitotic spindles with high
confidence to other images to generate more positive samples of this type can improve the
score. #3 tried to feed more cells to the FCAN model and the score decreased. #5 trained the
model by adding external data which led to a better model as expected. We replaced
Efficient-B04 backbone with more complex ones such as seresnet1525 in experiments #6 #7 #8
and found no improvements. #9#10#11 suggested that bigger and deeper EfficientNet4 models
did not help performance, particularly in the public leaderboard. #12 #13 shows EfficientNet-B5
and EfficientNet-B7 decrease the score.

Experiment #14-22 are experiments of cell-level models. In experiments #15, #16, #17, we
tested different image sizes and the results suggest that using larger images does not mean
better score on the Swin3 Small model. #20 #21 shows large images can improve the score on
the Deit2 Small model. #23 #24 compared the results before and after border-cells post
processing, we can find that the border-cell model can improve the score significantly.

1.3 Conclusion

● Image-resolution had little impact on the final score.
● The Fair Cell Activation Network can increase cell level recall rate which is very

important to this competition.
● The vision transformer models have shown promising capability.
● Larger models do not always mean better results as our models should find patterns of

relative positions of pixels instead of abstract semantics.
● Data augmentation and Post-Processing are important.

https://www.zotero.org/google-docs/?23PSVZ
https://www.zotero.org/google-docs/?HHChKC
https://www.zotero.org/google-docs/?oVsK4r
https://www.zotero.org/google-docs/?p7bLyY
https://www.zotero.org/google-docs/?u3IxmC


Supplementary Notes 2. Team 2 - [red.ai]

2.1 Model description

Our solution is an ensemble of 3 convolutional neural network (CNN) pipelines: duo-branch cell
pipeline (weight 0.5 in the final prediction), image-level pipeline (0.334 in the final prediction)
and cell-level pipeline (0.167 in the final prediction). To extract single cells from the original
image, HPACellSegmentator6 with some modifications that formalize the manual annotation
workflow was used. In particular, all bordered cells whose nuclei’s areas are less than half the
median area of all the non-border nuclei in the same image were removed.

Each pipeline consisted of ensemble of different single models described below:

Pipeline 1 - Duo-branched cell models

Cell tiles are first produced by cropping 16 random cells from the original 4-channel image,
resizing them to 256x256 and then stacking them 4x4 to form a 1024x1024 image. If the image
has less than 16 cells, the missing cell tiles are replaced with black tiles. The pipeline takes
these cell tiles as input and predicts labels for all cells present on the combined tiled image
(image-level) and for single cells (cell-level). Prediction for every cell is a product of the
predictions of the two levels. The loss function used is a combination of cross-entropy losses
with weights 0.1 for the image-level and 1 for the cell-level labels. Augmentations on tiled
images applied during training included dihedral, shift, rotate, scale, distortions, brightness
contrast and cutout. When predicting, an average of 16 test-time augmentations (TTA) was used
(scale, rotate, flip at random). In this pipeline the following backbone architectures were trained:
EfficientNet-B3, EfficientNet-B5 (both with noisy student weights)4, ResNet200d7,
SEResNext505 - resulting in 64 predictions (4 backbones x 16 TTA) for every initial image.

Pipeline 2 - image-level pipeline

This pipeline consists of two parts, a and b.

a) the original RGB images with masked border cells as described above (red - microtubules,
green - protein of interest, blue - nucleus, no yellow - endoplasmic reticulum was used) were
resized to 512x512 and the labels for these resized images were predicted (multi-label
classification). Weighted cross-entropy loss was used with class weights: 0.1, 1., 0.5, 1., 1., 1.,
1., 0.5, 1., 1., 1., 10., 1., 0.5, 0.5, 5, 0.2, 0.5, 1. for class 0-19. Five architectures (EfficientNet-b5
with noisy student weighs4, ECA-ResNet50t8, EfficientNet-v2-small8,9, ECA-NFNet-L08,10,
ECA-NFNet-L18,10) with 2-fold data splits were trained. Finally, an average of the predictions of
10 models (2 folds x 5 architectures) was used as the final prediction for a. This prediction
contributed 0.167 in the final submission.

b) For every cell in an image, all other cells were masked producing a masked image which is
resized to 512x512. The masked images are fed into the above 10 models. The predictions for
every cell were averaged and this average contributed 0.167 in the final submission.

Pipeline 3 - cell-level pipeline

https://www.zotero.org/google-docs/?bXZjA6
https://www.zotero.org/google-docs/?iJEDiK
https://www.zotero.org/google-docs/?Ev8zKM
https://www.zotero.org/google-docs/?x1ObLn
https://www.zotero.org/google-docs/?EcvGFy
https://www.zotero.org/google-docs/?5qUkUw
https://www.zotero.org/google-docs/?WVw4oO
https://www.zotero.org/google-docs/?lBUjQs
https://www.zotero.org/google-docs/?CI8qRO


Every cell was cropped from the original RGB image, resized to 168x168 and then labels were
predicted (multi-label classification). When training, the labels from the original image were
assigned to each cropped cell. Weighted cross-entropy loss was used with class weights: 0.1,
1., 0.5, 1., 1., 1., 1., 0.5, 1., 1., 1., 10., 1., 0.5, 0.5, 5, 0.2, 0.5, 1. for class 0-19. Ten architectures
(EfficientNet-b5 with noisy student weights4, ECA-ResNet50t8, EfficientNet-v2-small8,9,
dm-NFNet-F0, dm-NFNet-F1, dm-NFNet-F2, dm-NFNet-F38,10, SEResNet-152d11,
ECA-ResNet50d12) without splitting the data into folds were trained. In this pipeline an average
of the predictions of the 10 models (1 fold x 10 architectures) was used as the final prediction.

2.2 Ablation study

Single models and experiments were reported in Supplementary Table 7.

The main finding of our experiments is that the ensemble of the models both between the
pipelines and within every pipeline had the highest effect on the private LB score. More
specifically, the highest LB score for a single pipeline (pipeline 1) was 0.55011 (Experiment #7)
while combining the predictions from all the three pipelines increased the score to 0.57.
Combining the predictions from pipeline 2 and 3 increased the score from 0.50871 (pipeline 2
alone, #8) to 0.51853 (pipeline 2 and 3 combined, #15). Finally, in pipeline 3 the single models
scored between 0.470 and 0.487 (#13) while the averaging of all the predictions from this
pipeline increased the score to 0.50533 (#12).

Because the final submission consisted of many models in combination with test-time
augmentations, it was interesting to evaluate the performance of fewer models in the pipelines.
When only one model of every pipeline was used without any test-time augmentations, the
score dropped to 0.53698 (# 16) which is higher than a score for every used model. This further
supports the finding that ensembling is the key for high score.

Apart from ensembling, the use of external HPA data, especially for the rare classes, was
important for score improvement. For example, comparing #5 and #6 one can see that in
pipeline 1 the use of external data improved the public leaderboard score by 0.044 and private
leaderboard by 0.009. When training models for pipeline 3, we found that training for more
epochs always led to overfitting and decrease in score. Most likely, this is due to bias from
image-level labels that got assigned to cells and no true labels for a single cell were available.

2.3 Conclusion

● The ensemble of the models both between the pipelines and within every pipeline had
the highest effect on the private LB score.

https://www.zotero.org/google-docs/?CHqpWI
https://www.zotero.org/google-docs/?duZaYA
https://www.zotero.org/google-docs/?FxchM4
https://www.zotero.org/google-docs/?Cs7Fou
https://www.zotero.org/google-docs/?hRkqLl
https://www.zotero.org/google-docs/?zneBTh


Supplementary Notes 3. Team 3 - MPWARE & ZFTurbo & Dieter

3.1 Model description

Our solution consists of different methods from each of 3 team members. These methods can
be divided into 2 big classes: “image-level” and “cell-level”. For image-level methods, full images
were given as neural network (NN) inputs and the models were trained to find all the cells and
their classes. Cell-level methods intaked single cells and predict the cell labels.

Image-level models:

Image-level models were trained with ~98K images. These models’ architectures were similar to
PuzzleCAM13. We used a Siamese network14 with CNN backbone followed by a classifier to
build activation maps per class. Global Average Pooling (GAP) and classifier were swapped to
get full image predictions. Combined loss (1.0 x BCELoss + 0.25 x L1Loss) was used. The
models took into account both full and recomposed features as well as the distance between
activation maps. The inputs to the Siamese network were full RBGY images resized to 512x512
and each part of the same image splitted into 4 chunks. Weighted sampling was used to combat
extreme class imbalance. Main training steps were:

● Cross Validation: Train dataset was split in 4 folds with a MultilabelStratifiedKFold strategy

● Weighted random sampling to balance each class during training: Common classes like
Nucleoplasm were given less weight than rare classes like Mitotic spindle. Oversampling were
done for rare classes 11 and 15, with clipped weights value to what computed on Intermediate
filaments (class 8).

● Augmentations on RGBY images: GaussNoise, CoarseDropout, IAAAdditiveGaussianNoise,
HorizontalFlip, RandomRotate90, GridDistortion, ShiftScaleRotate, ElasticTransform,
OpticalDistortion, IAAAffine/Shear, GaussianBlur, MotionBlur, MedianBlur, RandomGamma,
RandomBrightnessContrast.

● Optimizer: Adam (LR=0.0003, beta1=0.9), LR scheduler: ReduceLROnPlateau, (factor = 0.3,
patience = 8).

● Half precision was used to reduce memory consumption and increase batch size.

● Epochs: 48, batch size: From 32 to 36.

● Best ComboLoss only was the criteria to save the model's weights.

Inference consisted of two stages. Predictions at each stage were ensembled at the end for final
prediction.

● Stage 1: Class activation maps (CAM) from the trained model were normalized to [0,1] and
resized to input image size. HPACellSegmentator was executed in parallel to get cell masks.
Each cell is intersected with CAM (overlap + magnitude score) and then weighed with the
per-class probability outputted from the sigmoid layer.

https://www.zotero.org/google-docs/?azrLNJ
https://www.zotero.org/google-docs/?hRDn3M


● Stage 2: Single cell patches were inputted to the same pretrained image-level model to predict
cell probabilities.

Predictions from stage #1 and stage #2 were different by design: Stage 1 are more sparse
whereas stage 2 are more flatten. Both acting together gave some regularization to the results.

Simple cell-level models

The training of cell-level models was straight-forward. Image-level labels were assigned to each
independent cell on the image. The images were KFold splitted using the cell line information for
external data. Compared to random split, splitting by cell line resulted in larger differences
between the validation and training data, forcing models to have better generalization to have
higher validation score. Training on all available data or only external data without the official
training set gave very similar results.

Backbone models included different EfficientNets4: EfficientNet-B0, EfficientNet-B3 and
EfficientNet-B5. The quality for all of them was similar. We used sigmoid on the final layer with
BCE loss and later switched to Focal Loss which observed slight score improvement. We also
used soft labels with 0.01*num_labels coefficient. Large dropout (0.5) was added to prevent
overfitting. Single cell 6-channel images [red, green, blue, yellow, mask, nuclei] were provided
as inputs for most models. Some models were trained only on a single green channel. Various
augmentations were used, including random crops, rotations, etc. At the inference stage, test
time augmentation (TTA2) – original and mirror image - were used. TTA8 (8 augmentations)
could improve the score, though time-consuming.

Several metrics were used for validation: Avg AUC per class, Avg Accuracy per class and
LogLoss. ReduceLROnPlateu for AUC metrics was mainly used for early stopping. After some
point the model tends to overfit.

Simple cell-level models had typical scores from 0.460 to 0.480 on the public leaderboard, and
around 0.465 on the private leaderboard. Because of the weak label challenge, cell-level model
approach observed no improvements after some point. There were great discrepancies
between cell labels and image labels for multi-labeled images, especially for rarer classes. By
training on image-level labels, models gave high probability for incorrect classes, which meant
increasing the number of false positives over time. Attempts at training on single class images
didn’t give an additional boost in score.

Cell-level models trained on OOF predictions

KFold split was used for all our models. Therefore, it was possible to create out-of-fold (OOF)
predictions for all training data and all external data. This approach was applied for some simple
cell-level models as well as for image-level models. Ensemble of these models on test data got
a great score boost, therefore we expected that labels obtained for independent training cells
would become better for ensemble of OOF predictions. Mixed OOF predictions were ensemble
similarly to the ensemble of our models for submission. This way we created markup which was
closer to “ground-truth” e.g. decrease weakness of cell labels. Using these new cell-level labels

https://www.zotero.org/google-docs/?htyNxp


obtained by ensembling OOF predictions as new target, we trained the cell-level models as
described previously. Mean square error loss was minimized during.

These models give around 0.528 on public and private leaderboards. The same models were
trained using green channel only. These two cell-level models, trained on OOF, were included in
our final ensemble instead of simple cell-level models.

While creating OOF data, because cells were extracted with slightly different algorithms, it
wasn’t always possible to find the same cell in predictions of different models. This resulted in
around 90% of cells being included in OOF with some small noise.

Single class cell-level models

Class 11 (Mitotic spindle) had the worst performance particularly on cell-level models, partially
because of the low amount of images available and extremely high single cell variation (1/20
cell in an image actually has this label). Therefore, we spent some time labeling for this class
manually. A binary classifier model was trained with these manual labels, and the score
increased +0.008 on public and +0.014 on private leaderboard.

3.2 Ablation study

Single models and experiments were reported in Supplementary Table 8. This ablation study
aims to understand how the data, validation strategies, loss functions, and network structures
affected the model capabilities.

● Experiment for cell-level models are #1 - #8, all used EfficientNetB5 with image size 224x224.
From default training data and single fold (0.402, #1), the score improved when adding 5 KFold
split (0.421, #2). External data also improved the score for single fold (0.438, #3) and 5 Kfold
split (0.444, #4). Splitting based on cell line information, which was available only for external
data, achieved a similar score on public leaderboard (0.443, #5). Reducing cropped cell regions
increased the score to 0.476 (#6). Finally, TTA8 (8 combinations of rotation and mirror of an
image) increased the score marginally compared to TTA2 (original image and horizontal mirror)
from 0.476 (#6) to 0.47 (#7), but increased inference time by 4 times. Therefore, later
experiments used TTA2.

● Experiments with higher regularization by dropout (0.5 vs 0.25) using a similar cell-level model
(EfficientNet-B0) are #7 (0.470) vs #9 (0.471) and #6 (0.476) vs #10 (0.465).

● Adding a 6th channel with a nucleus mask as input data (#11) improved the score slightly on
public (0.470 -> 0.471), but more on private (0.450 -> 0.457). Scores for EfficientNet-B5 and
EfficientNet-B0 were almost the same, but the number of parameters for B5 was much larger.
Therefore, smaller EfficientNet models, mostly B3 and B0, were used to save inference time.

● Comparison of different losses and soft labels for cell-level models: Training with different
parameters (BCE loss and Focal loss with usage of soft labels in experiments #12, #13, #14)
led to almost the same results. Model trained only on single class images got much lower score
(0.416, #15) on the test set, as it assumed the homogeneity of cells in the same image.



● Manual labels gave a great boost in score (0.012-0.03) for Mitotic Spindle compared to
training on weak image-level labels.

● Experiments #19 to #20 showed that using either part of the siamese network on inference
made little difference. Deeper backbone (#19, #20) showed slightly better results (#21).

● A large ensemble with many parameters can be compressed using OOF prediction to a
smaller single model with very little loss of accuracy as shown in #23 and #24.

3.3 Conclusion

● Ensemble of cell-level and image-level predictions gives a great boost for quality of
predictions.

● It’s possible to compress a large ensemble of models with a small single cell-level model
which was trained on out-of-fold predictions. Furthermore, models trained on OOF have
much closer public and private scores. This insight is highly relevant for deploying an
efficient model in production, as drastic reduction in the number training parameters
could yield roughly the same score.

● The model trained only on green channels had slightly higher performance compared to
RGBY models. It’s possible that in some cases the models were confused by the RBY
context.

● Class 11 had bad quality predictions because it was rare and very heterogeneous.
Image-level models missed this class often while cell-level models sometimes see class
11 in other classes because of weak labels. Additional hand-labels created for this class
helped for overall performance of the final solution.



Supplementary Notes 4. Team 4 - MILIMED

4.1 Model description

Cell-level models

This competition consisted of a dataset with weakly labeled images wherein every image
contained multiple cells. Using image-level labels as cell-level labels was reasonable for
classes, such as the nucleoplasm class, where this approach wouldn’t generate many false
positives. But, for some classes, such as the Mitotic Spindle class, this approach would be
extremely inaccurate since most of the generated cell-level labels would be false positives.
Additionally, the dataset was highly imbalanced. Therefore a data-centric approach to this
challenge (in contrast to the classic model-centric approach) was pursued. The main goal was
to create a better dataset with more accurate cell-level labels that would enable even simpler
models to achieve highly accurate performance.

The training dataset was created using the 16-bit competition and public HPA images. Cells
were segmented using the HPACellSegmentator, which generated nuclei and cell masks. All cell
images were zero-padded to retain original height to width ratio and then resized to 512x512. All
4 channels were used.

Two heuristics were used for dealing with border images and outliers. Based on the nuclei
segmentation masks, calculations were made for each cell to approximate how much of the cell
area is outside of the field of view. Using the cell segmentation masks, sums of cell input values
were calculated for red, blue and yellow input channels. Outliers were detected by comparing
the red channel sums and the product of the blue and yellow channel sums of each cell with a
thresholded average of all cells from the same image. Cells that were discarded by the first
heuristic were ignored when calculating the average values.

To create a clean dataset, rigorous thresholds of the mentioned heuristics were used. The
heuristics had a precision of roughly 50%, but a very high recall. In the end, around 20% of the
cell images generated by the mentioned segmentator were removed from the final training
dataset. Since there was an abundance of cell images, data quality was prioritized over data
quantity.

A GUI was created for fast manual relabeling and consequently around 150 000 cell-level labels
were manually graded, i.e. relabeled. More specifically, positive labels were usually graded with
scores on a scale from 1 to 5, which reflected the confidence that the positive label is correct.
This was done for classes that were harder to predict. These scores were mapped to soft labels
(e.g. 1 to 0.0, 2 to 0.2, 3 to 0.7, 4 to 0.9, and 5 to 1.0) which were used instead of the given
image level labels. These soft label mappings were class specific. This process was done in a
fast manner with the intention to focus on ruling out obvious incorrect cell-level labels.

Special care was taken for the mitotic spindle class. The mitotic spindle image-level labels
matched cell-level labels in only ~3%, since the mitotic spindle is a structure that only appears in
cells during division. All cell-level images that contained a positive mitotic spindle image-level



label were manually relabeled. Around 250 cell-level examples of the mitotic spindle class were
found this way.

Since local validation was hard, a few thousand cell-level images were relabeled for most
classes. This was done in a slower manner, but with higher precision. While this was a
time-consuming process, it eventually led to better local validation. Around 30 000 cell-level
labels were graded and again mapped to class specific soft labels.

With better local validation, it was possible to train better models and use them to further clean
the current dataset. One ResNet1811 with a single output was trained for each class separately.
These models were then used to relabel almost all classes, but only positive labels were
changed. Relabeling was done when the output of the ResNet18 model would be less than 0.3
for a label that was expected to be positive. Approximately 15% of the cells were relabeled this
way. This has led to even better local validation.

By using the inverse approach, false negative examples of the mitotic spindle were detected.
Around 100 examples of the mitotic spindle pattern cell-level images were relabeled this way.

All final models are from the EfficientNet4 family. Three EfficientNet-B0 models as well as one
EfficientNet-B4 model were trained using Adam as an optimizer with either focal loss or binary
cross entropy loss. Best models were selected based on local mAP score. Checkpoint
ensembling was used for most trained models. Different augmentation techniques were used for
training: random resizing, random padding, flipping (horizontal and vertical) and rotation. After
augmenting, images were resized to 512x512 when needed. Resizing images to a smaller size
and random padding on each side was used to train models on different cell sizes and
resolutions. This was inspired by the fact that training images differed in image resolution and
cell size.

After ensembling trained models, negatives were calculated by subtracting the maximum output
value from the value one. Next, border and outlier cells output prediction scores were decreased
based on two previously mentioned heuristics. In the end, the final predictions were weighted
with the average cell-level predictions of an image scene, separately for each output label (e.g.
0.7 * cell output + 0.3 * average image scene cell output). More details about the final submitted
models can be seen on Supplementary Figure 8 and Supplementary Table 9.

4.2 Ablation study

Single models and experiments were reported in Supplementary Table 9. The ablation study
showed that checkpoint ensembling had a negative effect on the final score, although showing a
positive effect on local validation (#16, #22). All models were trained on 16-bit images.
Converting all test images to 8-bit showed little impact on the final score (#5, #10, #15, #21).
Cell weighting (#2, #7, #12, #18), border detection (#3, #8, #13, #19) and outlier detection (#4,
#9, #14, #20) showed a positive effect on the final score. The biggest positive benefit was from
ensembling models trained with different loss functions and augmentations.

https://www.zotero.org/google-docs/?2K3SsX
https://www.zotero.org/google-docs/?zOoC6S


4.3 Conclusion

Using the data-centric approach was the key component in the presented solution. Creating a
better training dataset by using all available data, removing outliers and border images along
with automatic and manual relabeling showed a bigger impact than training more complex
models. The final dataset was still not perfectly labeled, which could explain the better
generalization of simpler models in the presented approach. A single EfficientNetB04 model,
trained on this dataset, resulted with a mAP score 0.53291 which alone would be enough for
11th place, while ensembling multiple models resulted with scores 0.54389 and 0.54361, both
securing 4th place in this competition.

https://www.zotero.org/google-docs/?ALjDB9


Supplementary Notes 5. Method summary

Solutions were assessed based on the following criteria and summarized in Table 2:

- Input and preprocessing

- Pseudo-labelling:

- Label-noise reduction:

- Manual labelling of rare class

- Thresholding:

- Heavy augmentation

- Image resolution: using high resolution (16bit) or not

- Segmentation

- (enhanced) HPACellSegmentator: used or not

- Segmentation postprocessing: use a separate (CNN) classifier for border cells

- Edge heuristics: used heuristics to remove border cells

- Approach to handle single cell:

- MaskRCNN: used or not

- PuzzleCAM and modifications: used or not

- Cell and image models combinations: used or not

- Transformers: used or not

- Loss:

- Weighed-loss/oversample: used weighed loss of oversampling to deal with
imbalance

- Focal loss: used or not

- Combine 2+ losses: whether teams used a combination of multiple losses
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