Supplementary Information

A combination of plasma membrane sterol biosynthesis and autophagy is required for shade-induced hypocotyl elongation.

Yetkin Çaka Ince¹, Johanna Krahmer¹, Anne Sophie Fiorucci¹, Martine Trevisan¹, Vinicius Costa Galvão¹, Leonore Wigger², Sylvain Pradervand², Laeticia Fouillen³, Pierre Van Delft³, Manon Genva³, Sebastien Mongrand³, Hector Gallart-Ayala⁴, Julijana Ivanisevic⁴ and Christian Fankhauser^{1*}

Supplementary figures 1 to 9

Supplementary table 1 and 2

Supplementary Figure 1. LB and LRFR induce distinct transcriptional changes in cotyledons. (a) Principal component (PC) analysis of hypocotyl and cotyledon transcriptomes. PC1 and PC2 of each biological replicate (n = 3) are graphically visualized. (b) Number of up- and downregulated genes in Col-0 cotyledons in the indicated light

conditions (FDR<0.05, T-test with BH correction). (c) GO term enrichment analysis in the cotyledon upregulated gene lists. Each node indicates a significantly enriched GO term (FDR<0.05). Two terms (nodes) are connected if they share 20% or more genes. The line thickness increases with the increased number of shared gene sets between two terms. Only selected GO terms (black circles) are annotated. The full list of enriched GO terms is in 2, the interactive version of (c) is available Supplementary data https://figshare.com/s/268fb1b265883e46f671 See also Figure 1.

Supplementary Figure 2. PIFs & YUCs are required for hormone-associated transcriptional changes in LRFR in cotyledons.

(a) The distribution of cotyledon-induced genes in LRFR according to the dependence on PIFs and YUCs using the comparison of Col-0, *pif457* and *yuc2589* transcriptomes (FDR<0.05, F-test with post-hoc test). (b) Distributions of Z- scores computed from replicates averages for categories shown in (a). The horizontal bar represents the median; boxes extend from the 25th to the 75th percentile, whiskers extend to show the data range. (c) The distribution of cotyledon-induced genes according to the dependence on PIFs and YUCs in each of the selected significantly enriched GO terms. Numbers indicate significantly regulated genes in the given categories and/or GO terms. The full list of misregulated genes and enriched GO terms are given in Supplementary Data 3. See also Figure 2.

Supplementary Figure 3. PIFs & YUCs are required for basal expression of many growth- and hormone- associated genes in WL in cotyledons.

(a) The distribution of LB-induced genes in cotyledons according to the dependence on PIFs and YUCs using the comparison of Col-0, *pif457* and *yuc2589* transcriptomes (FDR<0.05, F-test with post-hoc test). (b) Number of misregulated genes in *pif457* and *yuc2589* hypocotyls compared to Col-0 in WL (FDR<0.05, T-test with BH correction). (c) The distribution of misregulated genes in *pif457* and *yuc2589* hypocotyls (as grouped in Fig. 3C) in each of the selected significantly enriched GO terms. The full list of enriched GO terms is given in Supplementary Data 5. (d) Comparison of PIF dependent genes in cotyledons with putative PIF4 targets (as listed in <u>26</u>), promoters (1 kb upstream) containing G-box (CACGTG) or PBE-box (CATGTG). Asterisks (*) indicate statistically significant overrepresentation compared to expected (P < 0.05, Binomial distribution, one tailed; the exact P values are available in the Source Data). Numbers indicate significantly

regulated genes in the given categories and/or GO terms. The full list of misregulated genes, enriched GO terms, and enriched motifs are given in Supplementary Data 4, 5, and 6. See also Figure 3.

Supplementary Figure 4. SMT2 is locally required for LRFR-induced hypocotyl elongation.

(a) The heatmap showing average Z-scores of genes annotated in sterol biosynthesis (GO: 0016126) in RNA-seq and putative binding of PIF4, PIF5 and PIF7 (ChIP-seq data from 26.45). A gene is shown if it is significantly regulated at least in one treatment (LB or LRFR). (b) PIF7-HA binding to the promoter of the indicated genes. PIF7-HA enrichment is quantified by qPCR and presented as IP/Input. Each data point indicates technically independent samples, horizontal bar represents the median, whiskers extend to show the data range. Control – C, Peak – P. (c, d) Hypocotyl elongation of indicated genotypes in the indicated conditions. (c) The horizontal bar represents the median; boxes extend from the 25th to the 75th percentile, whiskers extend to show the data range. (b, d) Data are means \pm SD with a regression line. Different letters (C, two-way ANOVA with Tukey's HSD test) and asterisks (*) (b, Student's T-test, one-tailed) (d, two-way ANOVA) indicate significant difference (P < 0.05) compared to control (b), and between genotypes in given light condition (d). The exact P values are available in the Source Data. Sample size (n) that is given on top (c); ((d) For Col-0: n (WL) = 17, 16, 19, 19; n (LRFR) = 21, 21, 15, 20. For *smt2-1*: n (WL)= 15, 21, 18, 14; n (LRFR) = 16, 20, 15, 19 with an order of Mock, 5 μ M, 50 µM, 100 µM respectively) indicates biologically independent seedlings examined over one experiment. The experiments were repeated three (c) and two (d) times with similar results. (e) GUS staining of the indicated *promoter::GUSPlus* lines. See also Figure 4.

Supplementary Figure 5. Phenotyping evaluation of *cotyledon vasculature pattern* (*cvp*) mutants and *smt2-1* transcriptome summary.

(a) Representative images of cotyledon vasculature phenotype of indicated genotypes. White bars equal to 200 μ m. (b) Hypocotyl elongation of indicated genotypes. Different letters indicate significant difference (P < 0.05, two-way ANOVA with Tukey's HSD test; the exact P values are available in the Source Data). Sample size (n) that is given on top indicates biologically independent seedlings examined over one experiment. The experiment was repeated three times with similar results. (c) PCA of Col-0 and *smt2-1* transcriptomes. PC1 and PC2 of each biological replicate (n = 3) are graphically visualized. (d) Distributions of Z- scores computed from replicates averages for LRFR-induced genes that are grouped comparing Col-0 and *smt2-1*. The numbers indicate significantly regulated genes in each group (FDR<0.05, F-test with post-hoc test). (b, d) The horizontal bar represents the median; boxes extend from the 25th to the 75th percentile, whiskers extend to show the data range. The full list of misregulated genes is given in Supplementary Data 7. See also Figure 5.

Supplementary Figure 6. Sterol and Sphingolipid composition of *B. rapa* hypocotyls does not change in LRFR

(a) Relative expression of the indicated genes in 5-d-old *B. rapa* hypocotyls. Gene expression values were calculated as fold induction relative to *BrPP2A*. n = 4 (biological) with three technical replicates for each RNA sample. Asterisks (*) indicate P < 0.05 (Student's T-test, one-tailed, the exact P values are available in the Source Data). Sterol (b) and Sphingolipid (c) composition of 5-d-old *B. rapa* hypocotyls. GIPC, Glycosyl Inositol Phospho Ceramides; Cer, Cermides; GluCer, Glucosylceramide. (a, b, c) Each data point indicates biologically independent samples, horizontal bar represents the median, whiskers extend to show the data range.. See also Figure 6.

Supplementary Figure 7. Light conditions used in this study.

Photosynthetically active radiation (PAR, 400-700 nm), Blue (B, 400-500 nm), Green (G, 500-600 nm), Red (600-700 nm), Narrow R (nR, 640-700) and far-red (FR, 700-760 nm).

Supplementary Figure 8. Induction of autophagy depends on LB and the autophagy pathway.

(a) Distributions of Z- scores computed from replicates averages for genes listed in carbon fixation GO term in Col-0 seedlings. The horizontal bar represents the median; boxes extend from the 25th to the 75th percentile, whiskers extend to show the data range. The full list of genes in Carbon fixation GO term is given in Supplementary Data 10. (b) Western blot assay using a 35S::GFP line grown in WL with and without 8h LB. (c) Western blot assay of GFP-ATG8a and Free-GFP levels in WT and atg7-2 seedlings treated with 8h of LB in the presence of 0.5 μ M ConA. In (b) and (c) TUB was used as a loading control. The experiments were repeated four times with similar results. (d, e) Representative image of cotyledon pavement cells of *UBQ10::mCherry-ATG8e* (d) in Col-0 kept in WL or treated with LB in the absence of ConA for 8h and (e) in atg5-1 treated with LB in the presence of ConA for 8h and (e) in atg5-1 treated with LB in the presence of 20 ConA for 8h and (e) in atg5-1 treated with bar the presence of 20 ConA for 8h and (e) in atg5-1 treated with bar the presence of 20 ConA for 8h. The experiment was repeated two times with similar results using 5 to 7 biologically individual seedlings for each condition and the experiment. White bars equal 20 μ m. See also Figure 7.

Supplementary Figure 9. Regulation of hypocotyl elongation in autophagy mutants.

(a) Hypocotyl elongation of the *atg* mutants in LB, LRFR and LRFR+LB. (b) Representative pictures of the indicated genotypes in the indicated light conditions. White bar equals to 5 mm. (c) Hypocotyl elongation of *smt2*, *atg7* and *smt2atg7* in WL, LB and LP. Col-0 data is the same as the one shown in Figure 8c (left panel). (d) Hypocotyl elongation of the indicated genotypes in WL and LB with or without external sucrose. (a, c, d) The horizontal bar represents the median; boxes extend from the 25th to the 75th percentile, whiskers extend to show the data range. Different letters indicate significant difference (P < 0.05, two-way ANOVA with Tukey's HSD test; the exact P values are available in the Source Data). The experiments were repeated three (a) and two (c, d) times with similar results. See also Figure 8.

Supplementary Table 1: List of oligonucleotides used in the study

Included She Description

List of oligonucleotides used in genotyping
List of oligonucleotides used in cloning
List of oligonucleotides used in ChIP-qPCR
List of oligonucleotides used in RT-qPCR

Allele		Collection	Name	Sequence
			YI428	TCACCATCAATCCCCGGAAA
			YI429	CTGCGTACACTTCTTCCAGC
smt2-1	(frl1)	EMS*	*PCR is follo	owed by digestion with BsaHI
			YI426	CTCTCTCTTGGTCTTCCTCACTCTTCACGAAAAT
			YI427	AACCAGTAGATACCGACGGCGAC
smt2-2 (cvp1-3)	EMS**	**PCR is fol	lowed by digestion with MsII
			YI430	CATGATTTTATTTTGTGAAGAAAAATG
smt	3-1	SALK_085292	YI431	CCAGCTTTCTTGTTGTGAAGC
			OM181	CGG TGT ATC CAC GGG AGT AA
			OM182	CGC TTG TTG AGA TGC AGA AT
сvр.	2-1	EMS***	***PCR is fo	blowed by digestion with Bsll
			OM183	TGA TCA GAA AAC CGT GAC TCC
cvli	-1	SALK_029945	OM184	AGC ACA TTT TTG AAT TCA CCG
			MT458	GAATCCAGCCGCGTAAAGTC
yuc	5-1	SAIL_116_CO1	AG178	GACGAGACAAGTGGTCTCTGG
			YI444	GGAGCTTAACAAAGGGAAACG
atg	7-2	GABI_655B06	YI445	CGTGTAACAGTGCATTGTTGG
			oJM1845	TTCTTGCATTTTCTCGCTCTACG
yuc2	2-1	SALK_030199	MT440	AACCCGTGGCGAGTATAATG
			oJM1206	CATCCTCTCCACGTGGCTTCC
уис8	3-1	CS110939	oJM1207	GAACTGACGCTTCGTCGGGTAC
			oJM1199	GCTCGGTAAGCAAAACAAAACTG
yucs	9-1	SAIL_871G01	oJM1200	GAAGGAAATGCCCAATGAGAC
			SL-43	CAGACGGTTGATCATCTG
pif4-	101	SAIL_114_G06	oVCG-61	TAGCATCTGAATTTCATAACCAATCTCGATACAC
			SL-46	TCGCTCACTCGCTTACTTAC
pif5-3 (pil6-1)	SALK_087012	oVCG-56	ATTTTGCCGATTTCGGAAC
			SL-195	GTGGCAAGTTGGCTCTTAGG
pif7	-1	CS68809	SL-169	TGATAGTGACCTTAGGCGACTTTTGAACGC

oASF-27 GGAGAGCCATAGAGTTGG pif7-2 SAIL_622_G02 oVCG-61 TAGCATCTGAATTTCATAACCAATCTCGATACAC

Plasmid	Target	Name	Sequence
pY1001			
(GUSPlus::tOCS in pFP100)*		YI001	TCAAGCTAAGCTTGCATGCCCGGGAAAATGGTAGATCTGAGGGTAA
	GUSPlus::tOCS	Y1002	CCTAAAACCAAAATCCAGTGGCGCTCTAGAGGTCCTGCTGA
pYI006 (pFRO6::GUSPlus::tOCS)**		YI011	ATCCAAGCTCAAGCTAAGCTcgatgctctcaaggccaa
	pFRO6	YI012	TAGAAATTTACCCTCAGATCTACCATctttatttgaatttccacttctc
pYI012 (pGH3.17::GUSPlus::tOCS)*	ł	Y1020	ATCCAAGCTCAAGCTCATAAACATTTACCTTTCATGG
	pGH3.17	YI024	TAGAAATTTACCCTCAGATCTACCATtTtctgaaagcagacacaaaacaaagc
pY1046			
(pUBQ10::SMT2-FLAG::tOCS)*		Y1052	ATCCAAGCTCAAGCTAAGCTTCGACGAGTCAGTAATAAACGGC
	pUBQ10	Y1070	AAGAGTCCATTTTCCGCGGGctagtCTGTT
		YI071	CCCGCGGAAAATGGACTCTTTAACACTCTTCTT
	SMT2-FLAG	Y1072	TATCTCATTAAAGCAGGATCCTCACTTGTCATCGTCGTCCTTGTAATCAGAACTCTCCTCCGGT
		Y1056	GTGAAGGATCCTGCTTTAATGAGA
	tOCS	Y1002	CCTAAAACCAAAATCCAGTGGCGCTCTAGAGGTCCTGCTGA
pY1047			
(pFRO6::SMT2-FLAG::tOCS)**		YI011	ATCCAAGCTCAAGCTAAGCTcgatgctctcaaggccaa
	pFRO6	Y1073	AAGAGTCCATctttatttgaatttccacttctcagtgttg
		Y1074	tcaaataaagATGGACTCTTTAACACTCTTCTTCACC
	SMT2-FLAG	Y1072	TATCTCATTAAAGCAGGATCCTCACTTGTCATCGTCGTCCTTGTAATCAGAACTCTCCTCCGGT
pY1048			
(pGH3.17::SMT2-FLAG::tOCS)**		Y1020	ATCCAAGCTCAAGCTCATAAACATTTACCTTTCATGG
	pGH3.17	Y1075	AAGAGTCCATtTtctgaaagcagacacaaacaaag
		Y1076	ctttcagaAaATGGACTCTTTAACACTCTTCTTCACCG
	SMT2-FLAG	Y1072	TATCTCATTAAAGCAGGATCCTCACTTGTCATCGTCGTCCTTGTAATCAGAACTCTCCTCCGGT
Strategy *	Digestion of pF	P100 with Kpnl	and HindIII was followed by in fusion
Strategy **	Digestion pYI00	01 with HindIII a	nd BgIII was followed by in fusion cloning

Target Name SMT2 (peak) YI633 YI634 SMT2 (Contrc YI522 YI523 SMT3 (Peak 1 YI653 YI654 SMT3 (Peak 2 YI659 YI660 SMT3 (Contrc YI528 YI529 HFR1 (Peak) PH112 PH113 HFR1 (Contro PH126 PH127

Sequence

AGGTCCCTAGAGTGAGGGTG CTCCACCACCACACGTGATT TACGAGTGGGTTACGACGGA CGCCTCTCTCAATCCCTTGG GGTCCTTGGGGTATCCAATTAT GAGTCATGCATGTGATACGACC TTTTCCCTGCCTGACCCTTG GCAAAAATGAAGACGGATCATGG TACCAAGTGCAACGAGCCAA ACGTGTTTTCATCGAACGGC ACGTGATGCCCTCGTGATGGAC GTCGCTCGCTAAGACACCAAC ACGCAACAAACGAACCACAC AGAGCGATCGGATCAGATAG

Target	Name	Sequence
BrSMT2	YI636	GCCGAGATCTACAGGGTGTT
	YI637	TTGGATGACCTCCACGTGTT
BrSMT3	YI640	GATGGGTCGGATTGCGTACT
	YI641	TCCCAACAGCAGACAGAACC
BrSMT1	YI650	GCCAGTCAGACAAGGAAGAT
	YI651	CCTCGTCGTACACAACAGAA
BrIAA29	YI668	TGCATTTGACCCTGACAACG
	YI669	TGGCCAGATCCTTTTCCCAT
BrPP2A	YI656	AACGCCCCCGATACGAATTA
	YI657	CCACGGTCTACATAGTCACCC

Reagent or	Source	Identifier
Resource		
Biological Samples		
DNA and RNA from	See methods	N/A
various plant tissues		
from [sep]Arabidopsis		
and <i>B. rapa</i>		
Hypocotyl samples	See methods	N/A
from <i>B. rapa</i> for		
lipidomics, sterol,		
and sphingolipid		
measurements		
Chemicals, peptides,		
recombinant		
proteins, and		
commercial assays		
Murashige and	Duchefa Biochemie,	
Skoog medium	Haarlem,	
including vitamins	Netherlands	M0222.0010
	Agar-Agar, plant;	
Phytoagar	Roth	ArtNr. 4807.3
Sucrose	AppliChem	A2211,1000
Sorbitol	AppliChem	A2222,0500
	Carbosynth, United	
Fenpropimorph	Kingdom,	FF23264
	Sigma-Aldrich,	
	Steinheim,	
Picloram	Germany,	P5575
	Sigma-Aldrich,	
	Steinheim,	
Concanamycin A	Germany,	C9705

Supplemental Table 2. List of the key resources used in the study

Fast SYBR Green		
Master Mix	Applied Biosystems	Cat# 4385612
	New England	
Phusion [®] High-	Biolabs,	
Fidelity DNA	Massachusetts,	
Polymerase	USA,	Cat. No. M0530
In Fusion® HD	Takara, California,	
Cloning kit	USA	Cat. No. 639649
	Thermo Fisher	
	Scientific, United	
RNAlater [™] -ICE	States	AM7030
NEBNext Ultra II	New England	
Directional RNA	Biolabs,	
Library Prep Kit for	Massachusetts,	
Illumina	USA	E7760L
Illumina HiSeq	Illumina; San	
3000/4000 SR	Diego, California,	
Cluster Kit	USA	TG-410-1005
	Illumina; San	
HiSeq 3000/4000	Diego, California,	
SBS Kit	USA	GD-410-1001
	New England	
	Biolabs,	
	Massachusetts,	
KpnI	USA,	R0142S
	New England	
	Biolabs,	
	Massachusetts,	
HindIII-HF	USA,	R3104S
	New England	
	Biolabs,	
	Massachusetts,	
BglII	USA,	R0144S

	New England	
	Biolabs,	
	Massachusetts,	
BsaHI	USA,	R0556S
	New England	
	Biolabs,	
	Massachusetts,	
MslI	USA,	R0571S
	New England	
	Biolabs,	
	Massachusetts,	
BslI	USA,	R0555S
Trans-Blot ® Turbo		
™ RTA Transfer Kit,	Bio-Rad, Hercules,	
Nitrocellulose	CA, USA	Cat. No. 170-4270
10% Mini-Protean	Bio-Rad, Hercules,	
TGX gels	CA, USA	Cat. No. 4561036
	Clontech,	Cat. No.
Anti-GFP JL-8	California, USA	632380/632381
	Abcam, Cambridge,	
Polyclonal H3	UK	Cat. No.1791
	Abicode, California,	
Anti-TUB	USA	Cat. No. M0267-1a
Horseradish		
peroxidase (HRP)-		
conjugated anti-	Promega, Madison,	
mouse	USA	Cat. No. W4011
Horseradish		
peroxidase (HRP)-		
conjugated anti-	Promega, Madison,	
rabbit	USA	Cat. No. W4021
Immobilon®	Millipore, Merck	Cat. No.
Western	KGaA,Darmstadt,	WBKLS0500

Chemiluminescent	Germany	
HRP Substrate		
	Sigma-Aldrich,	
BSTFA-	Steinheim,	
trimethylchlorosilane	Germany	Cat. No. B-023
SPLASH®	Sigma-Aldrich,	
LIPIDOMIX® Mass	Steinheim,	
Spec Standard	Germany,	330707-1EA
Zorbax Eclipse Plus	Agilent	1.8 μm, 100 mm ×
C18	technologies, USA	2.1 mm I.D. column
Various	See Supplementary	
Oligonucleotides	Table 11	N/A
Deposited data		
RNA-seq data	This study	GSE174655
Experimental		
models:		
organisms/strains		
Agrobacterium		
tumefaciens GV3301	This study	
Escherichia coli		
DH5alpha	This study	
Arabidopsis thaliana		
(Columbia-0)	This study	
		EMS mutant (See
		STAR methods),
		provided by D.
smt2-1 (frl1)	1	Gleen
		EMS mutant (See
		STAR methods),
		provided by D.
smt2-2 (cvp1-3)	2	Gleen

		SALK_085292,
		provided by D.
smt3-1	3	Gleen
pif4-101	4	SAIL_114_G06
pif5-3 (pil6-1)	5	SALK_087012
pif7-1	6	CS68809
		pif4-101, pif5-3,
pif4pif5pif7	7	pif7-1
pif7-2	6	SAIL_622_G02
PIF7-HA line (pif7-		
2/pPIF7::PIF7-		
3HA-tPIF7)	8	N/A
PIF4-HA line (pif4-		
101/pPIF4::PIF4-		
3HA-tPIF4)	9	N/A
		EMS mutant (See
		STAR methods),
сvp2-1		provided by C.
	10	Hardtke
		SALK_029945
		(cvl1),
		provided by C.
cvp2-1cvl1-1	10	Hardtke
		Provided by T.
		Vernoux
DII-VENUS	11	
DII-VENUS (in		
smt2-1)	This study	N/A
		GABI_655B06, prov
atg7-2	12	ided by R. Vierstra
smt2atg7	This study	smt2-1, atg7-2
		SAIL_129B07,
atg5-2	13	provided by Y.

		Dagdas
		Provided by R.
35S::ATG8a-GFP	13	Vierstra
35S::ATG8a-GFP		Provided by R.
(atg7-2)	See above	Vierstra
		Provided by L.
35S::GFP	This study	Allenbach
<i>yuc2-1</i>	14	SALK_030199
<i>yuc5-1</i>	This study	SAIL_116_C0
<i>yuc8-1</i>	14	CS110939
уис9-1	14	SAIL_871G01
		yuc2-1, yuc5-1,
уис2уис5уис8уис9	This study	yuc8-1, yuc9-1
UBQ10::mCherry-	15	Provided by Y.
ATG8e		Dagdas
UBQ10::mCherry-	16	Provided by Y.
ATG8e (atg5-1)		Dagdas
Recombinant DNA		
<i>pFP100</i>	17	N/A
pYI001	This study	Addgene ID: 170833
<i>pYI006</i>	This study	Addgene ID: 170840
<i>pYI012</i>	This study	Addgene ID: 170841
<i>pYI046</i>	This study	Addgene ID: 170842
<i>pYI047</i>	This study	Addgene ID: 170843
<i>pYI048</i>	This study	Addgene ID: 170844
Software and		
algorithms		
	Illumina; San	N/A
bcl2fastq Conversion	Diego, California,	
Software v.2.20	USA	
Cutadapt (v. 1.8)	18	
fastq_screen (v.		N/A
0.11.1)	19	

eaper (v. 15-065	20	N/A
		N/A
STAR (v. 2.5.3a)	21	
htseq-count (v. 0.9.1)	22	N/A
		N/A
RSeQC (v. 2.3.7)	23	
	http://cran.r-	N/A
R version 4.0.2	project.org/	
R Bioconductor		N/A
package "edgeR"	24	
R Bioconductor		N/A
package "limma"	25	
ShinyGO v0.61:Gene		http://bioinformatics.
Ontology Enrichment		sdstate.edu/go/
Analysis	26	
R package	http://cran.r-	N/A
"visNetwork"	project.org/	
	http://cran.r-	N/A
R package "igraph"	project.org/	
	http://rsb.info.nih.go	N/A
ImageJ	v/ij	
		N/A
MS-Dial software	27	
LOWESS/Spline		N/A
normalisation		
program	27	
R package	http://cran.r-	
"agricolae"	project.org/	
ZEN 2012 v.		N/A
8,0,7273 (black		
edition-64 bit)	LSM 710	
ImageQuant LAS	GE Healthcare,	N/A
4000	Buckinghamshire,	

References

- 1 Hase, Y. *et al.* Ectopic endoreduplication caused by sterol alteration results in serrated petals in Arabidopsis. *J Exp Bot* **56**, 1263-1268, doi:10.1093/jxb/eri122 (2005).
- 2 Carland, F. M. The Identification of CVP1 Reveals a Role for Sterols in Vascular Patterning. *The Plant Cell Online* **14**, 2045-2058, doi:10.1105/tpc.003939 (2002).
- 3 Carland, F., Fujioka, S. & Nelson, T. The sterol methyltransferases SMT1, SMT2, and SMT3 influence Arabidopsis development through nonbrassinosteroid products. *Plant Physiol* **153**, 741-756, doi:10.1104/pp.109.152587 (2010).
- 4 Lorrain, S., Allen, T., Duek, P. D., Whitelam, G. C. & Fankhauser, C. Phytochrome-mediated inhibition of shade avoidance involves degradation of growth-promoting bHLH transcription factors. *Plant J* **53**, 312-323, doi:10.1111/j.1365-313X.2007.03341.x (2008).
- 5 Fujimori, T., Yamashino, T., Kato, T. & Mizuno, T. Circadian-controlled basic/helix-loop-helix factor, PIL6, implicated in light-signal transduction in Arabidopsis thaliana. *Plant Cell Physiol* **45**, 1078-1086, doi:10.1093/pcp/pch124 (2004).
- 6 Leivar, P. *et al.* The Arabidopsis phytochrome-interacting factor PIF7, together with PIF3 and PIF4, regulates responses to prolonged red light by modulating phyB levels. *Plant Cell* **20**, 337-352, doi:10.1105/tpc.107.052142 (2008).
- 7 de Wit, M., Ljung, K. & Fankhauser, C. Contrasting growth responses in lamina and petiole during neighbor detection depend on differential auxin responsiveness rather than different auxin levels. *New Phytol* **208**, 198-209, doi:10.1111/nph.13449 (2015).
- 8 Galvao, V. C. *et al.* PIF transcription factors link a neighbor threat cue to accelerated reproduction in Arabidopsis. *Nat Commun* **10**, 4005, doi:10.1038/s41467-019-11882-7 (2019).
- 9 Zhang, B. *et al.* BLADE-ON-PETIOLE proteins act in an E3 ubiquitin ligase complex to regulate PHYTOCHROME INTERACTING FACTOR 4 abundance. *Elife* **6**, doi:10.7554/eLife.26759 (2017).
- 10 Carland, F. & Nelson, T. CVP2- and CVL1-mediated phosphoinositide signaling as a regulator of the ARF GAP SFC/VAN3 in establishment of foliar vein patterns. *Plant J* **59**, 895-907, doi:10.1111/j.1365-313X.2009.03920.x (2009).
- 11 Brunoud, G. *et al.* A novel sensor to map auxin response and distribution at high spatio-temporal resolution. *Nature* **482**, 103-106, doi:10.1038/nature10791 (2012).

- 12 Hofius, D. *et al.* Autophagic components contribute to hypersensitive cell death in Arabidopsis. *Cell* **137**, 773-783, doi:10.1016/j.cell.2009.02.036 (2009).
- 13 Thompson, A. R., Doelling, J. H., Suttangkakul, A. & Vierstra, R. D. Autophagic Nutrient Recycling in Arabidopsis Directed by the ATG8 and ATG12 Conjugation Pathways. *Plant Physiology* **138**, 2097-2110, doi:10.1104/pp.105.060673 (2005).
- 14 Nozue, K. *et al.* Shade avoidance components and pathways in adult plants revealed by phenotypic profiling. *PLoS Genet* **11**, e1004953, doi:10.1371/journal.pgen.1004953 (2015).
- 15 Hu, S., Ye, H., Cui, Y. & Jiang, L. AtSec62 is critical for plant development and is involved in ER-phagy in Arabidopsis thaliana. *J Integr Plant Biol* **62**, 181-200, doi:10.1111/jipb.12872 (2020).
- 16 Stephani, M. *et al.* A cross-kingdom conserved ER-phagy receptor maintains endoplasmic reticulum homeostasis during stress. *Elife* **9**, doi:10.7554/eLife.58396 (2020).
- 17 Bensmihen, S. *et al.* Analysis of an activated ABI5

allele using a new selection method for transgenic Arabidopsis seeds. *FEBS Letters* **561**, 127-131, doi:10.1016/s0014-5793(04)00148-6 (2004).

- 18 Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. *EMBnet.journal* **17**, doi:10.14806/ej.17.1.200 (2011).
- 19 Wingett, S. W. & Andrews, S. FastQ Screen: A tool for multi-genome mapping and quality control. *F1000Res* **7**, 1338, doi:10.12688/f1000research.15931.2 (2018).
- 20 Davis, M. P., van Dongen, S., Abreu-Goodger, C., Bartonicek, N. & Enright, A. J. Kraken: a set of tools for quality control and analysis of highthroughput sequence data. *Methods* **63**, 41-49, doi:10.1016/j.ymeth.2013.06.027 (2013).
- 21 Dobin, A. *et al.* STAR: ultrafast universal RNA-seq aligner. *Bioinformatics* **29**, 15-21, doi:10.1093/bioinformatics/bts635 (2013).
- 22 Anders, S., Pyl, P. T. & Huber, W. HTSeq--a Python framework to work with high-throughput sequencing data. *Bioinformatics* **31**, 166-169, doi:10.1093/bioinformatics/btu638 (2015).
- 23 Wang, L., Wang, S. & Li, W. RSeQC: quality control of RNA-seq experiments. *Bioinformatics* **28**, 2184-2185, doi:10.1093/bioinformatics/bts635 (2012).
- 24 Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. *Bioinformatics* **26**, 139-140, doi:10.1093/bioinformatics/btp616 (2010).
- 25 Ritchie, M. E. *et al.* limma powers differential expression analyses for RNA-sequencing and microarray studies. *Nucleic Acids Res* **43**, e47, doi:10.1093/nar/gkv007 (2015).
- 26 Ge, S. X., Jung, D. & Yao, R. ShinyGO: a graphical gene-set enrichment tool for animals and plants. *Bioinformatics* **36**, 2628-2629, doi:10.1093/bioinformatics/btz931 (2020).

27 Tsugawa, H. *et al.* MS-DIAL: data-independent MS/MS deconvolution for comprehensive metabolome analysis. *Nat Methods* **12**, 523-526, doi:10.1038/nmeth.3393 (2015).