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Supplementary Note 1

All the reagents were obtained from commercial suppliers and used as received unless
otherwise noted. Aqueous solutions were prepared from MilliQ water. Flash column
chromatography was performed using pre-coated 0.2 mm silica plates from Selecto Scientific.
Chemical yields refer to pure isolated substances. *H NMR spectra were recorded on Bruker
ACF-400 (400 MHz) using CDClz or DMSO-ds as the solvent. CDCls is referenced at & = 7.26
ppm and DMSO-ds at & = 2.50 ppm. Coupling constants (J values) are reported in Hertz (Hz).
!H NMR data are recorded in the order: chemical shift value, multiplicity (s, singlet; d, doublet;
t, triplet; g, quartet; m, multiplet; br, broad), number of protons. 3C NMR spectra are proton-
decoupled and recorded on Bruker ACF-400 (400 MHz) using CDClz or DMSO-ds as the
solvent. CDCls is referenced at 6 = 77 ppm and DMSO-ds is referenced at 39.5 ppm. CDCl;
(99.8%-Deuterated) and DMSO-ds (99.9%-Deuterated) were purchased from Sigma-Aldrich
and used without further purification. Mass spectra were acquired with Waters 3100 mass
spectrometer. Single channel current measurements in a planar lipid bilayer were carried out
using Planar Lipid Bilayer Workstation (Warner Instruments, Hamden, CT). UV-Vis spectra

were recorded on UV-Vis absorption spectrophotometer (UV1800, Shimadzu, Japan).
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Supplementary Methods
Synthetic Procedures and Compound Characterizations
Ts-OEG-1

NG 4-toluenesulfonyl chloride (3.81 g, 20.0 mmol) was dissolved in anhydrous ethylene

Ts-0EG-1  9lycol (30 mL) to which triethylamine (2.78 mL, 20.0 mmol) was added. The reaction
was allowed to stir at room temperature for 14 h. The reaction mixture was then dissolved in
dichloromethane (150 mL) and washed with water (3 x 100 mL). Romoval of dichloromethane solvent
in vacuo gave the crude product, which was purified by flash column chromatography (methanol :
dichloromethane = 1 : 50) to afford pure product Ts-OEG-1 as a colorless liquid. Yield: 2.64 g, 61%.
'H NMR (400 MHz, CDCls3) 6 7.81 (d, J = 8.2 Hz, 2H), 7.36 (d, J = 8.0 Hz, 2H), 4.14 (dd, J = 6.2, 2.7
Hz, 2H), 3.82 (dd, J = 6.1, 2.8 Hz, 2H), 2.46 (s, 3H). *C NMR (100 MHz, CDCls) & 145.18, 132.60,
130.01, 128.03, 71.65, 60.83, 21.72. MS-ESI: calculated for [M+H]* (CoH1304S): m/z 217.05, found:

m/z 217.17.

Ts-OEG-3
O g O Triethylene glycol (3.00 g, 20.0 mmol) and 4-toluenesulfonyl chloride (3.81 g,
Ts-OEG-3 20.0 mmol) were dissolved in anhydrous dichloromethane (80 mL) to which

triethylamine (2.78 mL, 20.0 mmol) was added. The reaction was allowed to stir at room temperature
for 14 h. Romoval of the solvent in vacuo gave the crude product, which was purified by flash column
chromatography (methanol : dichloromethane = 3 : 100) to afford pure product Ts-OEG-3 as a colorless
liquid. Yield: 2.19 g, 36%. *H NMR (400 MHz, CDCls) & 7.85 — 7.76 (m, 2H), 7.34 (dd, J = 8.6, 0.6
Hz, 2H), 4.21 — 4.13 (m, 2H), 3.71 (ddd, J = 6.4, 5.3, 4.1 Hz, 4H), 3.62 — 3.55 (m, 6H), 2.45 (s, 3H).
13C NMR (100 MHz, CDCl3) § 144.95, 132.86, 129.89, 128.02, 72.50, 70.81, 70.30, 69.18, 68.73, 61.78,
21.70. MS-ESI: calculated for [M+H]* (C13H2106S): m/z 305.11, found: m/z 305.25.

Ts-OEG-5
150 OO~ Pentaethylene glycol (2.38 g, 10.0 mmol) and 4-toluenesulfonyl
Ts-OEG-5 chloride (1.91 g, 10.0 mmol) were dissolved in anhydrous

dichloromethane (40 mL) to which triethylamine (1.39 mL, 10.0 mmol) was added. The reaction was
allowed to stir at room temperature overnight. Romoval of the solvent in vacuo gave the crude product,
which was purified by flash colunm (methanol : dichloromethane = 3 : 100) to afford pure product Ts-
OEG-3 as a colorless liquid. Yield: 1.18 g, 30%. *H NMR (400 MHz, CDCls) 6 7.73 (d, J = 8.4 Hz,
2H), 7.28 (d, J = 8.0 Hz, 2H), 4.09 (dd, J = 5.3, 4.3 Hz, 2H), 3.66 — 3.46 (m, 19H), 2.38 (s, 3H). 1*C
NMR (100 MHz, CDCls) 6 144.85, 132.91, 129.86, 128.02, 72.62, 70.75, 70.58, 70.55, 70.51, 70.46,
70.24, 69.28, 68.70, 61.72, 21.70. MS-ESI: calculated for [M+H]* (C17H290sS): m/z 393.16, found:
m/z 393.39.
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The synthesis of Ts-OEG-7 follows the similar protocol as Ts-OEG-5

Ts-OEG-7

'H NMR (400 MHz, CDCls) & 7.80 (d, J = 8.3 Hz, 2H),
7.34 (d, J = 8.1 Hz, 2H), 4.19 — 4.10 (m, 2H), 3.74 — 3.58
(m, 26H), 2.45 (s, 3H). *C NMR (100 MHz, CDCls) &
144.84, 132.93, 129.86, 128.03, 72.79, 70.72, 70.59, 70.54, 70.51, 70.48, 70.45, 70.16, 69.30, 68.66,
61.67, 21.69. MS-ESI: calculated for [M+H]* (C21H37010S): m/z 481.21, found: m/z 481.36.

1507 O N O SO O
Ts-OEG-7

Dimethyl 5-hydroxyisophthalate

OH 5-hydroxyisophthalic acid (3.64 g, 20.0 mmol) was dissolved in methanol (50
mL) to which concentrated H>SO4 (6.0 mL) was added. The mixture was
COOCH; coocH, heated under relux for 48 h. After removing most of organic solvent in vacuo,
the wet residue was transferred into water (1.0 L) to yield a white precipitate, which was filtered and
washed with water (3 x 300 mL) to afford pure product dimethyl 5-hydroxyisophthalate as a white solid.
Yield: 3.84 g, 92%. 'H NMR (400 MHz, DMSO-ds) & 10.32 (s, 1H), 7.92 (t, ] = 1.6 Hz, 1H), 7.57 (d, J
= 1.6 Hz, 2H), 3.89 (s, 6H). 3C NMR (100 MHz, DMSO-dg) 5 165.80 , 158.29 , 131.69 , 120.72 ,

120.53, 52.77 . MS-ESI: calculated for [M+H]" (C10H1:0s): m/z 211.06, found: m/z 211.20.

Dimethyl 5-hydroxyisophthalate (42 mg, 0.2

Yﬁjﬁf I y mmol) was dissolved in hot methanol (6 mL) to

which hydrated hydrazine (0.2 mL) was added.

Ch-H
The reaction mixture was heated under reflux for 8 h. Solvent was removed in vacuo to give the crude

product 5-hydroxyisophthalohydrazide, which was directly used without further purification. 5-
hydroxyisophthalohydrazide (0.4 mmol), cholic acid (327 mg, 0.8 mmol) and BOP (389 mg, 0.88 mmol)
were dissolved in DMF (10.0 mL) to which DIEA (1.52 mL, 0.88 mmol) was added. The reaction was
allowed to stir at room temperature for 14 h. After removing organic solvent in vacuo, acetonitrile (60
mL) was added to precipitate out the crude product, which was further purified by preparative HPLC
to give pure product Ch-H as a white solid. Yield: 19.8 mg, 10.0%. *H NMR (400 MHz, DMSO-ds) & 10.29
(s, 2H), 10.14 (s, 1H), 9.88 (s, 2H), 7.79 (s, 1H), 7.41 (d, J = 1.3 Hz, 2H), 4.06 (s, 6H), 3.82 (s, 2H), 3.63 (s, 2H),
3.20 (dd, J=8.2, 3.8 Hz, 2H), 2.23 — 1.96 (m, 12H), 1.74 (ddd, J = 29.8, 15.6, 9.5 Hz, 12H), 1.48 — 1.17 (m, 21H),
1.00 — 0.80 (m, 15H), 0.65 — 0.53 (m, 6H). *3C NMR (100 MHz, DMSO-dg) 5 172.42, 165.56, 157.84, 134.75,
117.83, 71.49, 70.90, 66.71, 46.62, 46.23, 41.98, 41.87, 35.78, 35.61, 35.36, 34.87, 31.97, 30.86, 29.03, 27.81,

26.68, 23.31, 23.12, 17.56, 12.87, 12.81. MS-ESI: calculated for [M+H]" (CssHg7011Na): m/z 991.64,
found: m/z 991.86.
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Dimethyl 5-(2-hydroxyethoxy)isophthalate (al)

o A suspension of dimethyl 5-hydroxyisophthalate (312 mg, 2.00 mmol), Ts-OEG-1
1o (649 mg, 3.00 mmol) and potassium carbonate (415 mg, 3.00 mmol) in DMF (20 mL)
HBCOY@\’(OCHJ was heated at 85 °C for 12 h. Romoval of the solvent in vacuo gave the crude product,
° ° which was dissolved in dichloromethane (50 mL), washed with water (3 x 50 mL)

a1l

and purified by flash column chromatography (methanol : dichloromethane = 1 : 50)
to afford pure product al as a colorless liquid. Yield: 356 mg, 70%. 'H NMR (400 MHz, CDCls) & 8.25
(t, J=1.4Hz, 1H), 7.73(d, J = 1.4 Hz, 2H), 4.17 — 4.12 (m, 2H), 3.99 — 3.96 (m, 2H), 3.91 (s, 6H). 13C
NMR (100 MHz, CDCls) 6 166.09, 158.76, 131.77, 123.27, 119.85, 69.86, 61.13, 52.50. MS-ESI:
calculated for [M+H]* (C12H150¢): m/z 255.09, found: m/z 255.21.

Dimethyl 5-(2-(2-(2-hydroxyethoxy)ethoxy)ethoxy)isophthalate (a3)
o 'H NMR (400 MHz, CDCls) 6 8.31 (t, J = 1.4 Hz, 1H), 7.80 (d, J = 1.4 Hz, 2H), 4.25
oL (dd, J =5.3, 4.0 Hz, 2H), 3.96 —3.89 (m, 8H), 3.77 — 3.72 (M, 6H), 3.66 - 3.62 (M, 2H).
o o *C NMR (100 MHz, CDCls) & 166.15, 158.81, 131.76, 123.25, 119.98, 72.52, 70.93,
a3 70.38, 69.55, 68.01, 61.78, 52.49. MS-ESI: calculated for [M+H]* (C16H230g): m/z
343.14, found: m/z 343.26.

Ch-P1
§ al (127 mg, 0.50 mmol) was dissolved in hot
oj PN methanol (15 mL) to which hydrated hydrazine (0.50
g Y@f mL) was added. The reaction mixture was heated
Ch-P1 ) under reflux for 8 h. Solvent was removed in vacuo

to give the crude product b1, which was directly used without further purification. b1 (0.50 mmol),
cholic acid (409 mg, 1.00 mmol) and BOP (487 mg, 1.1 mmol) were dissolved in DMF (10 mL) to
which DIEA (0.38 mL, 2.2 mmol) was added. The reaction was allowed to stir at room temperature for
14 h. After removing organic solvent in vacuo, acetonitrile (100 mL) was added to precipitate out the
crude product, which was further purified by preparative HPLC to give pure product Ch-P1 as a white
solid. Yield: 42 mg, 8.1%. *H NMR (400 MHz, DMSO-ds) & 10.41 (s, 2H), 9.92 (s, 2H), 7.96 (s, 1H),
7.59 (d, J = 1.2 Hz, 2H), 4.11 (t, J = 4.8 Hz, 2H), 3.81 (s, 2H), 3.78 — 3.75 (m, 2H), 3.62 (s, 4H), 3.48
(s, 4H), 3.23 — 3.15 (m, 2H), 2.24 — 1.95 (m, 10H), 1.83 — 1.62 (m, 12H), 1.46 — 1.15 (m, 24H), 0.99 -
0.93 (m, 7H), 0.86 — 0.80 (m, 8H), 0.62 (s, 6H). *C NMR (100 MHz, DMSO-dg) & 172.45, 165.12,
159.04, 134.62, 119.70, 116.84, 71.48, 70.90, 66.70, 59.89, 46.62, 46.23, 41.97, 41.86, 35.78, 35.61,
35.35, 34.86, 31.98, 30.86, 29.03, 27.80, 26.67, 23.30, 23.11, 17.55, 12.87. MS-ESI: calculated for
[M+H]* (CsgHg1012N4): m/z 1035.66, found: m/z 1035.89.
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The synthesis of Ch-P3 and Ch-P7 follows the similar protocol as Ch-P1
Ch-P3
o 'H NMR (400 MHz, DMSO-dg) 8 10.40 (s, 2H), 9.92 (s,
i e, 2H), 7.97 (s, 1H), 7.60 (d, J = 1.1 Hz, 2H), 4.23 (d, J =
Yij\f 3.5 Hz, 2H), 3.81 (s, 4H), 3.62 (dd, J = 5.5, 3.0 Hz, 4H),
Ch-P3 3.57 —3.54 (m, 4H), 3.48 (s, 4H), 3.43 (s, 4H), 3.19 (dd,
J=8.1,3.7 Hz, 2H), 2.25 - 1.96 (m, 10H), 1.83 — 1.63 (m, 12H), 1.50 — 1.16 (m, 24H), 0.98 (d, J = 6.4
Hz, 7H), 0.87 — 0.77 (m, 8H), 0.60 (s, 6H). **C NMR (100 MHz, DMSO-dg) 5 172.45, 165.08, 158.78,
134.64, 119.85, 116.78, 72.84, 71.48, 70.90, 70.44, 70.27, 69.23, 68.18, 66.71, 60.66, 46.62, 46.23,
41.98, 41.87, 35.78, 35.61, 35.36, 34.87, 31.98, 30.86, 29.03, 27.80, 26.68, 23.31, 23.12, 17.55, 12.87.
MS-ESI: calculated for [M+H]* (Ce2HesO14N4): m/z 1123.72, found: m/z 1123.91.

Ch-P7
8 'H NMR (400 MHz, DMSO-ds) & 10.40 (s, 2H), 9.92
(s, 2H), 7.97 (s, 1H), 7.60 (d, J = 1.1 Hz, 2H), 4.36 (d,
Yﬁjﬁ( o J=4.3 Hz, 2H), 4.22 (s, 2H), 4.16 (d, J = 3.4 Hz, 2H),
Ch-P7 4.05 (d, J = 3.3 Hz, 2H), 3.80 (d, J = 2.9 Hz, 4H), 3.62
(dd, J=5.7, 3.1 Hz, 4H), 3.57 — 3.44 (m, 20H), 3.40 (dd, J = 7.8, 3.0 Hz, 2H), 3.18 (dd, J = 8.7, 6.1 Hz,
2H), 2.25 — 1.97 (m, 10H), 1.85 — 1.59 (m, 12H), 1.54 — 1.10 (m, 24H), 0.97 (s, 7H), 0.86 — 0.79 (m,
8H), 0.61 (s, 6H). *C NMR (100 MHz, DMSO-dg) 6 170.29, 162.91, 156.64, 132.48, 117.70, 114.64,
70.66, 69.33, 68.75, 68.26, 68.12, 68.09, 67.07, 66.03, 64.56, 58.51, 44.48, 44.08, 39.83, 39.71, 33.63,
33.46, 33.21, 32.72, 29.83, 28.71, 26.88, 25.66, 24.53, 21.16, 20.97, 15.40, 10.72. MS-ESI: calculated
for [M+H]* (C7H115018N4): m/z 1299.82, found: m/z 1300.44.

Ch-P5
Ch-H (198 mg, 0.2 mmol) and Ts-OEG-5 (174 mg,
Ho, 0.4 mmol) were dissolved in DMF (10 mL) to which

K2COs (56 mg, 0.4 mmol) was added. The mixture

was heated at 85 °C for 24 h. The reaction mixture

Ch-P5
was then filtered and the solvent was removed in vacuo. The reaction mixture was re-dissolved in

methanol (15 mL), to which trifluoroacetic acid (0.3 mL) was added. Removal of the solvent afforded
the crude product which was further purified by preparative HPLC to give pure product Ch-P5 as a
white solid. Yield: 44 mg, 18%. *H NMR (400 MHz, DMSO-dg) 6 10.40 (s, 2H), 9.92 (s, 2H), 7.97 (s,
1H), 7.60 (d, J = 1.1 Hz, 2H), 4.23 (s, 2H), 3.81 (s, 4H), 3.63 — 3.61 (m, 4H), 3.58 — 3.55 (m, 3H), 3.51
(d, J = 4.4 Hz, 9H), 3.48 (d, J = 5.1 Hz, 4H), 3.43 — 3.40 (m, 4H), 3.22 — 3.16 (m, 2H), 2.27 - 1.97 (m,
12H), 1.75 (ddd, J = 39.3, 25.8, 10.8 Hz, 12H), 1.50 — 1.15 (m, 22H), 0.96 (t, J = 10.4 Hz, 7H), 0.89 —
0.76 (m, 8H), 0.65 — 0.52 (m, 6H). *C NMR (100 MHz, DMSO-ds) 6 170.30, 162.92, 156.64, 132.48,
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117.70, 114.64, 70.65, 69.33, 68.75, 68.26, 68.13, 68.10, 68.08, 67.07, 66.03, 64.56, 58.51, 44.48, 44.09,
39.83, 39.72, 33.46, 33.21, 32.72, 28.71, 26.88, 25.66, 24.53, 21.16, 20.97, 15.40, 10.72. MS-ESI:
calculated for [M+H]" (CesH107016N4): m/z 1211.77, found: m/z 1212.02.

Dimethyl 5-methoxyisophthalate (c1)

~o A suspension of dimethyl 5-hydroxyisophthalate (420 mg, 2.00 mmol),
CO)\/@\(OCH iodomethane (0.25 mL, 4.00 mmol), and potassium carbonate (415 mg, 3.00 mmol)
3 o o 3 in DMF (20 mL) was heated at 85 °C for 12 h. Romoval of the solvent in vacuo gave
cl the crude product, which was dissolved in dichloromethane (50 mL), washed with

water (3 x 50 mL) and purified by flash column chromatography (ethyl acetate : n-hexane = 1 : 8) to
afford pure product c1 as a white solid. Yield: 381 mg, 85%. 'H NMR (400 MHz, CDCls) § 8.26 (t, J =
1.4 Hz, 1H), 7.74 (d, J = 1.3 Hz, 2H), 3.93 (s, 6H), 3.88 (s, 3H). 3C NMR (100 MHz, CDCls) & 166.19,
159.67, 131.75, 122.96, 119.29, 55.81, 52.47. MS-ESI: calculated for [M+H]* (C11H130s): m/z 225.08,
found: m/z 225.22.

Dimethyl 5-ethoxyisophthalate (c2)

L A suspension of dimethyl 5-hydroxyisophthalate (420 mg, 2.00 mmol), bromoethane
Y@r (0.22 mL, 3.00 mmol) and potassium carbonate (415 mg, 3.00 mmol) in DMF (20 mL)
SCO I I - was heated at 85 °C for 12 h. Romoval of the solvent in vacuo gave the crude product,
c2 which was dissolved in dichloromethane (50 mL), washed with water (3 x 50 mL) and

purified by flash column chromatography (ethyl acetate : n-hexane = 1 : 8) to afford pure product c2 as
a white solid. Yield: 367 mg, 77%. *H NMR (400 MHz, CDCls;) § 8.25 (t, J = 1.4 Hz, 1H), 7.73 (d, J =
1.4 Hz, 2H), 4.11 (g, J=7.0 Hz, 2H), 3.93 (s, 6H), 1.44 (t, J = 7.0 Hz, 3H). **C NMR (100 MHz, CDCls)
d 166.25, 159.03, 131.69, 122.81, 119.82, 64.14, 52.44, 14.69. MS-ESI: calculated for [M+H]*
(C12H150s): m/z 239.09, found: m/z 239.17.

The synthesis of ¢4, ¢6 and ¢8 follow the similar protocol as c2
Dimethyl 5-butoxyisophthalate (c4)
Cibang 'H NMR (400 MHz, CDCls) 8 8.25 (t, J = 1.5 Hz, 1H), 7.74 (d, J = 1.5 Hz, 2H),
Y@\m 4.04 (t,J = 6.5 Hz, 2H), 3.93 (s, 6H), 1.83 — 1.73 (m, 2H), 1.55 — 1.43 (m, 2H), 0.98
YT (1,32 7.4 Hz, 3H). °C NMR (100 MHz, CDCly) 5 166.28, 159.25, 13168, 122.76,
c4 119.84, 68.31, 52.45, 31.14, 19.20, 13.85. MS-ESI: calculated for [M+H]*
(C14H190s5): m/z 267.12, found: m/z 267.28.
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Dimethyl 5-(hexyloxy)isophthalate (c6)
'H NMR (400 MHz, CDCls) § 8.25 (t, J = 1.4 Hz, 1H), 7.74 (d, J = 1.4 Hz, 2H),
Y@ﬁ( 4.03 (t, J = 6.5 Hz, 2H), 3.93 (s, 6H), 1.80 (dg, J = 13.0, 6.5 Hz, 2H), 1.46 (dd, J =
“ " 10.3,4.7 Hz, 2H), 1.34 (dg, = 7.0, 3.5 Hz, 4H), 0.91 (t, J = 7.4 Hz, 3H). C NMR
c6 (100 MHz, CDCly) § 166.30, 159.24, 131.65, 122.75, 119.83, 68.62, 52.48, 31.55,
20.07, 25.68, 22.64, 14.09. MS-ES|: calculated for [M+H]* (C1sHzs0s): m/z 295.15, found: m/z 295.36.

o

Dimethyl 5-(octyloxy)isophthalate (c8)
IH NMR (400 MHz, CDCl3) & 8.25 (t, J = 1.4 Hz, 1H), 7.74 (d, J = 1.5 Hz, 2H),
Y@( 4.03 (t, J = 6.5 Hz, 2H), 3.93 (s, 6H), 1.80 (dq, J = 13.1, 6.6 Hz, 2H), 1.52 — 1.40
" (m, 2H), 1.35— 1.25 (m, 8H), 0.89 (t, J = 7.4 Hz, 3H). °C NMR (100 MHz, CDCly)
c8 0 166.30, 159.24, 131.65, 122.75, 119.84, 68.62, 52.48, 31.84, 29.34,29.27, 29.11,
26.00, 22.71, 14.17. MS-ESI: calculated for [M+H]* (C1sH2705): m/z 323.19, found: m/z 323.36.

(0]

Ch-C1
Dimethyl 5-methoxyisophthalate (c1, 90 mg, 0.40

WK©Y .“9' mmol) was dissolved in hot methanol (15 mL) to

which hydrated hydrazine (0.40 mL) was added.

The reaction mixture was heated under reflux for 8

Ch-C1

h. Solvent was removed in vacuo to give the crude product d1, which was directly used without further
purification. d1 (0.40 mmol), cholic acid (327 mg, 0.80 mmol) and BOP (389 mg, 0.88 mmol) were
dissolved in DMF (10 mL) to which DIEA (0.31 mL, 1.80 mmol) was added. The reaction was allowed
to stir at room temperature for 14 h. After removing organic solvent in vacuo, acetonitrile (100 mL)
was added to precipitate out the crude product, which was further purified by preparative HPLC to give
pure product Ch-C1 as a white solid. Yield: 26 mg, 6.2%. 'H NMR (400 MHz, DMSO-dg) & 10.41 (s,
2H), 9.92 (s, 2H), 7.97 (s, 1H), 7.59 (d, J = 1.3 Hz, 2H), 4.36 (d, J = 4.3 Hz, 2H), 4.16 (d, J = 3.4 Hz,
2H), 4.05 (d, J = 3.3 Hz, 2H), 3.88 (s, 3H), 3.81 (d, J = 2.7 Hz, 2H), 3.63 (s, 2H), 3.19 (dd, J = 15.2,
10.7 Hz, 2H), 2.28 — 1.94 (m, 10H), 1.86 — 1.59 (m, 12H), 1.52 — 1.17 (m, 23H), 0.98 (d, J = 6.4 Hz,
7H), 0.86 — 0.76 (m, 8H), 0.62 (s, 6H). *C NMR (100 MHz, DMSO-ds) & 172.46, 165.11, 159.58,
134.64, 119.70, 116.28, 71.48, 70.90, 66.70, 56.18, 46.62, 46.23, 41.97, 41.86, 35.78, 35.61, 35.35,
34.86, 31.98, 30.86, 29.03, 27.80, 26.67, 23.31, 23.11, 17.55, 12.87. MS-ESI: calculated for [M+H]*
(Cs7Hg9011N4): m/z 1005.65, found: m/z 1005.85.
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The synthesis of Ch-C2, Ch-C4, Ch-C6 and Ch-C8 follows the similar protocol as Ch-C1
Ch-C2
'H NMR (400 MHz, DMSO-ds) & 10.40 (s, 2H),

wr@ﬁr 9.92 (s, 2H), 7.96 (s, 1H), 7.57 (d, J = 1.2 Hz, 2H),

cnca 418 — 4.12 (m, 2H), 3.81 (s, 4H), 3.61 (t, J = 9.4
Hz, 8H), 2.29 — 1.97 (m, 10H), 1.86 — 1.62 (m, 12H), 1.46 — 1.19 (m, 26H), 1.04 — 0.91 (m, 7H), 0.87
—0.78 (m, 8H), 0.62 (s, 6H). 3C NMR (100 MHz, DMSO-ds) 5 170.30, 162.98, 156.70, 132.48, 117.47,
114.57,69.33, 68.75, 64.56, 62.07, 46.93, 44.48, 44.08, 39.83, 39.72, 33.63, 33.46, 33.21, 32.72, 29.84,
28.71, 26.88, 25.65, 24.53, 21.16, 20.97, 15.40, 12.88, 10.72. MS-ESI: calculated for [M+H]*
(CsgHo1011N4): m/z 1019.67, found: m/z 1019.87.

Ch-C4
IH NMR (400 MHz, DMSO-ds) 5 10.40 (s, 2H),
Yijw 9.92 (s, 2H), 7.96 (s, 1H), 7.58 (s, 2H), 4.09 (t, J =
cnica 6.1 Hz, 2H), 3.82 (s, 4H), 3.63 (s, 8H), 2.21 — 1.97
(M, 10H), 1.81 — 1.65 (m, 12H), 1.49 — 1.22 (m, 26H), 0.97 (dd, J = 9.4, 6.8 Hz, 11H), 0.84 (d, = 10.7
Hz, 8H), 0.62 (s, 6H). *C NMR (100 MHz, DMSO-ds) § 172.45, 165.12, 159.01, 134.61, 119.65,
116.74, 71.48, 70.90, 68.25, 66.71, 49.07, 46.62, 46.23, 41.98, 41.86, 35.78, 35.61, 35.35, 34.86, 3198,
31.07, 30.86, 29.03, 27.80, 26.67, 23.31, 23.11, 19.17, 17.55, 14.17, 12.87. MS-ESI: calculated for

[M+H]* (CeoHgs011N4): m/z 1047.70, found: m/z 1047.96.

Ch-C6
'H NMR (400 MHz, DMSO-ds) 5 10.41 (s, 2H), 9.93
Yﬁjﬁ( (s, 2H), 7.97 (s, 1H), 7.59 (d, J = 1.2 Hz, 2H), 4.09
Chace (d, J = 6.4 Hz, 2H), 3.83 (s, 2H), 3.64 (s, 2H), 3.49
(br, 6H), 3.25 — 3.19 (m, 2H), 2.26 — 1.97 (m, 10H), 1.85 - 1.65 (m, 14H), 1.45 - 1.20 (m, 27H), 1.01 —
0.80 (m, 20H), 0.62 (s, 6H). *C NMR (100 MHz, DMSO-ds) 5 172.45, 165.11, 159.01, 134.60, 119.64,
116.73,71.48,70.90, 68.53, 66.71, 46.62, 46.23, 41.98, 41.86, 35.78, 35.61, 35.36, 34.86, 31.98, 31.43,
30.86, 29.03, 28.98, 27.80, 26.67, 25.61, 23.31, 23.11, 22.58, 17.55, 14.41, 12.87. MS-ESI: calculated
for [M+H]* (Ce2H99011N4): m/z 1075.73, found: m/z 1075.98.

ch-C8
IH NMR (400 MHz, DMSO-dg) & 10.41 (s, 2H), 9.93
Y@ (s, 2H), 7.97 (s, 1H), 7.59 (s, 2H), 4.10 (t, J = 6.2 Hz,
encs 2H), 3.83 (s, 2H), 3.64 (s, 2H), 3.52 (br, 6H), 3.26 —
3.16 (m, 2H), 2.26-2.01 (M, 10H), 1.85 - 1.66 (m, 14H), 1.45 — 1.23 (m, 31H), 1.03 — 0.81 (M, 20H),
0.63 (s, 6H). *°C NMR (100 MHz, DMSO-dg)  172.45, 165.11, 159.01, 134.60, 119.64, 116.73, 71.48,
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70.90, 68.53, 66.71, 46.63, 46.23, 41.98, 41.86, 35.78, 35.60, 35.35, 34.86, 31.98, 31.72, 30.86, 29.19,
29.17, 29.02, 27.80, 26.67, 25.94, 23.31, 23.11, 22.58, 17.55, 14.46, 12.87. MS-ESI: calculated for
[M+H]* (Cs4H103011N4): m/z 1103.76, found: m/z 1104.07.
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6-Methoxy-1-(3-sulfonatopropyl) quinolinium (SPQ) Assay

EYPC (0.6 ml, 25 mg/mL in CHCIs, Avanti Polar Lipids, USA) and cholesterol (3.8 mg) were dissolved
in CHCIs (10 mL). CHCI3; was removed under reduced pressure at 35 °C. After drying the resulting film
under high vacuum overnight at room temperature, the film was hydrated NaNOs solution (1.5 mL, 200
mM) containing Cl-sensitive dye 6-methoxy-N-(3-sulfopropyl)quinolinium (SPQ) (0.5 mM) in
thermostatic shaker-incubator at 37 °C for 2 h to give a milky suspension. The mixture was then
subjected to 8 freeze-thaw cycles: freezing in liquid N, for 30 s and heating at 37 °C for 1.5 mins. The
vesicle suspension was extruded through polycarbonate membrane (0.1 um) to produce a homogeneous
suspension of large unilamellar vesicles (LUVs) of about 140 nm in diameter with SPQ encapsulated
inside. The suspension of LUVs was dialyzed for 16 h with gentle stirring (300 r/min, 4 °C) using
membrane tube (MWCO = 10,000) against the same NaNOj3 buffer solution (200 mM, without SPQ)

for 6 times to remove the unencapsulated SPQ to yield LUVs with lipids at concentration of 13 mM.

The SPQ-containing LUV suspension (30 pL, 13 mM in 200 mM NaNOs) was added to a NaCl solution
(1.75 mL, 200 mM) to create an extravesicular chloride gradient. A solution of Ch-C1 in DMSO at
different concentrations was then injected into the suspension under gentle stirring. Upon the addition
of channels, the emission of SPQ was immediately monitored at 430 nm with excitations at 360 nm for
300 seconds using fluorescence spectrophotometer (Hitachi, Model F-7100, Japan) after which time an
aqueous solution of Triton X-100 (20 pL, 20% v/v) was immediately added to completely destruct the
chloride gradient. The final transport trace was obtained by normalizing the fluorescence intensity using

the following Supplementary Equation (1).

Ifz(lt'll)/(IO‘Il) (1)

where Is = Fractional emission intensity, I; = Fluorescence intensity at time t, I, = Fluorescence intensity

after addition of Triton X-100 and lo = Initial fluorescence intensity .
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Cation Selectivity Study using HPTS Assay

The HPTS-containing LUV suspension (30 uL, 13 mM in 10 mM HEPES buffer containing 100 mM
NaCl at pH = 7.0) was added to a HEPES buffer solution (1.75 mL, 10 mM HEPES, 100 mM MCI at
pH = 8.0, where M* = Li*, Na*, K*, Rb* and Cs*) to create a pH gradient for ion transport study. A
solution of Ch-C1 at concentration of 5 uM in DMSO was then injected into the suspension under
gentle stirring. Upon the addition of Ch-C1, the emission of HPTS was immediately monitored at 510
nm with excitations at both 460 and 403 nm recorded simultaneously for 300 seconds using fluorescence
spectrophotometer (Hitachi, Model F-7100, Japan) after which time an agueous solution of Triton X-
100 (20 pL, 20% v/v) was immediately added to achieve the maximum change in dye fluorescence
emission. The final transport trace was obtained as a ratiometric value of lss0/l403 and normalized based

on the ratiometric value of l460/1403 after addition of triton.

512



Dynamic Light Scattering Assay

Dynamic light scattering (DLS) experiments were perfomed on a NanoBrook Omni Particle Size
Analyzer (Brookhaven Instrumennts Corporation, Holtsville, NY). In a typical experiment, the
cholesterol-containing LUVs suspension (30 puL, 13 mM in 10 mM HEPES buffer containing 100 mM
NaCl at pH = 7.5) was diluted to a HEPES buffer solution (1.75 mL, 10 mM HEPES, 100 mM NacCl at
pH = 7.5). A solution of channels in DMSO was then added into the solution, which was equilibrated
with gentle shaking at 25 °C for 5 minutes before measurement. The hydrodynamic sizes of LUVs were
recoreded as intensity mean from the average of three DLS experiments at 25 °C.
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Molecular Dynamics Simulations

The structural models were built using Gaussian 09, and then optimized using the generalized
amber force field (GAFF).! The partial charges were fitted based on Restrained Electrostatic
Potential (RESP) method in which the electric potential was calculated with Gaussian 09 at the
level of HF/6-31G*. All MD simulations were performed with GROMACS package (version
4.6.3)? for 200 ns at 300 K. A leap-frog algorithm was used to integrate Newton’s equation of
motion, and the time step was set to 2 fs along with the application of LINCS algorithm? by
which all the covalent bonds between hydrogen atoms and heavy atoms were constrained.
Simulation systems were solvated in TIP3P water model.* Sodium and chloride ions,
characterized by Joung et al.,> were used as the counter ions and added to reach a concentration
of 0.17 M. A cutoff of 1.2 nm was used for both van der Waals interaction calculation and
short-range electrostatic interaction calculation, and correspondingly Particle mesh Ewald
(PME)9°® method was employed to deal with the long-range electrostatic interaction. All the
visualization work was done by PyMol, version 1.5.0.3. The POPC lipid bilayer was modeled
by all atom amber lipid14 force field.’
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In vitro Hemolytic Activity Assessment

Mice blood was isolated in a sterile environment and diluted to a 4% concentration with HEPES
buffer as RBCs solution. Ch-C1 was mixed with diluted RBCs into different concentrations of
drug/erythrocyte mixture and transferred to a 96-well plate, with the HEPES-free buffer and
0.5% Triton-X (Adamas) set as negative and positive controls, respectively. After 24 h culturing
at 37°C, the 96-well plate was placed in a centrifuge at 448 x g for 5 min. The supernatant was
transferred to a new 96-well plate, and the OD value at 576 nm was measured by a microplate

reader. The hemolytic activity was calculated following Supplementary Equation (2).

ODs76(Ch-C1)-ODs76(HEPES)

o ) o
YoHemolytic Activity ODs=c (Triton-30-OD 37 (FIEFES)

x100% (2)
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Supplementary Fig. 1 Synthesis of channels. Synthetic route that affords channel molecules.
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Supplementary Fig. 2 Background of HPTS assay. Background signals for the LUVs containing
different contents of cholesterol (0, 25, 50, 75, 100 mol% relative to lipid) in the HPTS assay. HPTS =
8-hydroxy-1,3,6-pyrenetrisulfonate; LUV = large unilamellar vesicles. Source data are provided as a

Source Data file.

Q
O

T T T T
100 150 200 250

T
300

> >
% 1.0 — % 1.0
2 1°1 Ch-P1 r 2 1% Ch-P3
e —— 0 mol % }S —— 0 mol %
0.8 1 0.8
3 —— 25 mol % 3 —— 25 mol %
g —— 50 mol % OC) —— 50 mol %
3 0.6+ —— 75 mol % 3 0.6+ —— 75 mol %
[ 100 mol % [ 100 mol %
) \ S
2 044 2 044
° o
] @
N N
T 0.2 T 0.24 |
£ £
5 | S /’___’,.___——«———'—'/_’-‘_—
Z 0.04= Z 0.0~
T

T T T
100 150 200

T
250

T
300

0 50 0
Time (s Time (s
c © d ©
2 1.0 - 2 1.0 -
2 10 Ch-P5 r 2 11 Ch-P7
£ &l | —O0mol% E ——0mol %
o —— 25 mol % o —— 25 mol %
(] o
8 —— 50 mol % 8 —— 50 mol %
3 0.6 —— 75 mol % 2 —— 75 mol %
[ 100 mol % [ 100 mol %
S S
2 044 =
° °
] )
N N
T 0.2 5
£ \ £
2 00 2
' T T T T T T T T T T T
0 50 100 150 200 250 300 0 100 150 200 250 300

Time (s)

Time (s)

Supplementary Fig. 3 HPTS assay for transmembrane transport activity study of nanopores. lon
transport curves of a Ch-P1, b Ch-P3, ¢ Ch-P5 and d Ch-P7 at concentration of 8 uM using LUVs
containing different contents of cholesterol (0, 25, 50, 75, 100 mol% relative to lipid) in the HPTS assay.
HPTS = 8-hydroxy-1,3,6-pyrenetrisulfonate; LUV = large unilamellar vesicles. The ratiometric values
of leo/ 1403 Were normalized based on the value of lsso/l403 at t = 300 s right after addition of triton. Source

data are provided as a Source Data file.
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Supplementary Fig. 4 HPTS assay for transmembrane transport activity study of nanopores. lon
transport curves of a Ch-P1, b Ch-P3, ¢ Ch-P5, d Ch-P7 and e Ch-C1 at concentration of 8 uM using
LUVs containing different contents of cholesterol (0, 25, 50, 75, 100 mol% relative to lipid) in a

repeated HPTS assay. HPTS = 8-hydroxy-1,3,6-pyrenetrisulfonate; LUV = large unilamellar vesicles.

The ratiometric values of lsso/l40z Were normalized based on the value of lseo/la0s at t = 300 s right after

addition of triton. Source data are provided as a Source Data file.
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Supplementary Fig. 5 HPTS assay for transmembrane transport activity study of nanopores. lon
transport curves of a Ch-C1, b Ch-C2, ¢ Ch-C4, d Ch-C6, e Ch-C8 and f Ch-H at concentration of 8
uM using LUVs containing different contents of cholesterol (0, 25, 50, 75, 100 mol% relative to lipid)

in the HPTS assay. HPTS = 8-hydroxy-1,3,6-pyrenetrisulfonate; LUV = large unilamellar vesicles. The

ratiometric values of lgo/la0s Were normalized based on the value of lgof/laoz at t = 300 s right after

addition of triton. Source data are provided as a Source Data file.
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Structure of CF dye comprising
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Supplementary Fig. 6 Molecular structure of CF dye. Chemical structures and CPK models of 5(6)-
Carboxyfluorescein isomers among which the smaller dimensions are 10 A x 10 A rather than 9 Ax 11
A in order to pass the pores. CPK = Corey-Pauling-Koltun.
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CF Dye Leakage Assay using Cholesterol-Containing LUVs
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Supplementary Fig. 7 CF dye leakage assay for transmembrane transport activity study of

nanopore. Fluorescence intensity changes of CF dye (Aex=492 nm, Aem=517 nm) after additions of a, b

Ch-C1, ¢, d Ch-C2 and e, f Ch-C4 at different concentrations and the corresponding ECso values for
efflux of CF dye. CF = 5(6)-carboxyfluorescein. Inside LUV: 10 mM HEPES, 500 mM CF, pH = 7.5;
outside LUV: 10 mM HEPES, pH = 7.5. LUV = large unilamellar vesicles. Source data are provided as

a Sou

rce Data file.
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Supplementary Fig. 8 CF dye leakage assay for transmembrane transport activity study of
nanopore. Fluorescence intensity changes of CF dye (Aex=492 nm, Aem=517 nm) after additions of a, b
Ch-C6, c, d Ch-C8, e, f Ch-H and g, h Melittin at different concentrations and determination of
corresponding ECso values for efflux of CF dye. CF = 5(6)-carboxyfluorescein. Inside LUV: 10 mM
HEPES, 500 mM CF, pH = 7.5; outside LUV: 10 mM HEPES, pH = 7.5. LUV = large unilamellar
vesicles. Source data are provided as a Source Data file.
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CF Dye Leakage Assay using Cholesterol-Free LUVs
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Supplementary Fig. 9 CF dye leakage assay for transmembrane transport activity study of
nanopores in the absence of cholesterol. Fluorescence intensity changes of CF dye (Aex= 492 nm, Aem=
517 nm) after additions of a Ch-C1, b Ch-C2, ¢ Ch-C4, d Ch-C6, e Ch-C8 and f Ch-H at different
concentrations in the absence of cholesterol. CF = 5(6)-carboxyfluorescein. These experiments
demonstrate an important role played by cholesterol in the membrane to aid the channel formation.
Inside LUV: 10 mM HEPES, 500 mM CF, pH = 7.5; outside LUV: 10 mM HEPES, pH = 7.5. LUV =

large unilamellar vesicles. Source data are provided as a Source Data file.
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Supplementary Fig. 10 SPQ assay for anion transport activity study of nanopores. Normalized
fluorescence intensity changes of the chloride-sensitive SPQ dye (excitation wavelength: 360 nm;
emission wavelength: 430 nm) after the addition of Ch-C1 at different concentrations in the presence
of cholesterol (50 mol% relative to lipid). Inside LUV: 200 mM NaNO3 and 0.5 mM SPQ. SPQ = 6-
methoxy-N-(3-sulfopropyl) quinolinium. Outside LUV: 200 mM NaCl. LUV = large unilamellar
vesicles. Source data are provided as a Source Data file.
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Supplementary Fig. 11 HPTS assay for cation transport activity study of nanopore. Transport
selectivity of alkali metal ions by Ch-C1 (5 uM) in the presence of cholesterol (50 mol% relative to
lipid) obtained from the HPTS assay by varying the extravesicular MCI (M* = Li*, Na*, K, Rb* and
Cs*). HPTS = 8-hydroxy-1,3,6-pyrenetrisulfonate. Source data are provided as a Source Data file.
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Supplementary Fig. 12 Membrane integrity study. The hydrodynamic size distributions of
cholesterol-containing LUVs before and after the incorporation of 8 or 12 M of Ch-C1 (3.7 and 5.6
mol% relative to lipids, respectively). The marginable changes in the hydrodynamic size of LUVS upon
the incorporation of different concentration of Ch-C1 rule out the possible re-assembly of LUVs to

yield LUVs of significantly smaller or larger sizes. LUV = large unilamellar vesicles. Source data are
provided as a Source Data file.
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Supplementary Fig. 13 Single channel study of nanopores. Histograms of single channel currents of
Ch-C1 recorded in symmetric baths (cis chamber = trans chamber = 1 M KCI) at transmembrane
potentials of a 100, b 60, ¢ 40 and d 20 mv. Relative errors were obtained by dividing the width between
the two half height points by 2. Source data are provided as a Source Data file.
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Supplementary Fig. 14 Single channel study of nanopores. Histograms of single channel currents of
Ch-C1 recorded in symmetric baths (cis chamber = trans chamber = 1 M KCI) at transmembrane
potentials of a -20, b -60 and ¢ -100 mv. Relative errors were obtained by dividing the width between

the two half height points by 2. Source data are provided as a Source Data file.
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Supplementary Fig. 15 Single channel study of nanopores. a Single channel current traces of Ch-
C1 recorded at various voltages in symmetric baths (cis chamber = trans chamber = 1 M KCI). Dotted
red lines refer to the mean current values that were obtained from histograms and used to obtain the
conductance value. b Current-voltage (I-V) curve for obtaining the ion conductance (y) for Ch-C1.

The pore size was estimated to be 1.67 nm. Data are represented as mean current values + half width

at half maximum. n= 3 independent experiments. Source data are provided as a Source Data file.
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Supplementary Fig. 16 Single channel study of nanopores. Histograms of single channel currents of
Ch-C1 recorded in symmetric baths (cis chamber = trans chamber = 1 M KCI) at transmembrane
potentials of a 100, b 80 and ¢ 60 mv in a repeated assay. Relative errors were obtained by dividing the

width between the two half height points by 2. Source data are provided as a Source Data file.
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Supplementary Fig. 17 Single channel study of nanopores. Histograms of single channel currents of
Ch-C1 recorded in symmetric baths (cis chamber = trans chamber = 1 M KCI) at transmembrane
potentials of a -20, b -40, ¢ -80 and d -100 mv in a repeated assay. Relative errors were obtained by

dividing the width between the two half height points by 2. Source data are provided as a Source Data
file.
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Supplementary Fig. 18 Single channel study of nanopores. a Single channel current traces of Ch-
C1 recorded at various voltages in symmetric baths (cis chamber = trans chamber =1 M KCI) in a
repeated assay. Dotted red lines refer to the mean current values that were obtained from histograms
and used to obtain the conductance value. b Current-voltage (I-V) curve for obtaining the ion
conductance (y) for Ch-C1. The pore size was estimated to be 1.48 nm. Data are represented as
mean current values =+ half width at half maximum. n=3 independent experiments. Source data are
provided as a Source Data file.
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Supplementary Fig. 19 Single channel study of nanopores. Histograms of single channel currents
of Ch-C1 recorded in symmetric baths (cis chamber = trans chamber = 1 M KCI) at transmembrane
potentials of a 100, b 60, ¢ 20, d -20, e -40 and f -100 mv in a repeated assay. Relative errors were

obtained by dividing the width between the two half height points by 2. Source data are provided as a
Source Data file.
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and used to obtain the conductance value.
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Supplementary Fig. 20 Single channel study of nanopores. a Single channel current traces of Ch-
C1 recorded at various voltages in symmetric baths (cis chamber = trans chamber =1 M KCI) in a

repeated assay. Dotted red lines refer to the mean current values that were obtained from histograms

conductance (y) for Ch-C1. The pore size was estimated to be 1.65 nm. Data are represented as

mean current values xhalf width at half maximum. n= 3 independent experiments. Source data are

provided as a Source Data file.
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Supplementary Fig. 21 Single channel study of nanopores. Histograms of single channel currents of

Ch-C4 recorded in symmetric baths (cis chamber = trans chamber = 1 M KCI) at transmembrane

potentials of a 100, b 80, ¢ 60 and d 20 mv. Relative errors were obtained by dividing the width between

the two half height points by 2. Source data are provided as a Source Data file.
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Supplementary Fig. 22 Single channel study of nanopores. Histograms of single channel currents of
Ch-C4 recorded in symmetric baths (cis chamber = trans chamber = 1 M KCI) at transmembrane
potentials of a -20, b -40, ¢ -60, d -80 and e -100 mv. Relative errors were obtained by dividing the

width between the two half height points by 2. Source data are provided as a Source Data file.
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Supplementary Fig. 23 Single channel study of nanopores. a Single channel current traces of Ch-
C4 recorded at various voltages in symmetric baths (cis chamber = trans chamber = 1 M KCI). Dotted
red lines refer to the mean current values that were obtained from histograms and used to obtain the
conductance value. b Current-voltage (I-V) curve for obtaining the ion conductance (y) for Ch-C4.
The pore size was estimated to be 0.90 nm. Data are represented as mean current values +=half width

at half maximum. n=3 independent experiments. Source data are provided as a Source Data file.
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Supplementary Fig. 24 Single channel study of nanopores. Histograms of single channel currents of
Ch-C4 recorded in symmetric baths (cis chamber = trans chamber = 1 M KCI) at transmembrane
potentials of a 100, b 80, ¢ 60 and d 20 mv in a repeated assay. Relative errors were obtained by dividing
the width between the two half height points by 2. Source data are provided as a Source Data file.
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Supplementary Fig. 25 Single channel study of nanopores. Histograms of single channel currents of

Ch-C4 recorded in symmetric baths (cis chamber = trans chamber = 1 M KCI) at transmembrane

potentials of a -20, b -40, ¢ -60, d -80 and e -100 mv in a repeated assay. Relative errors were obtained
by dividing the width between the two half height points by 2. Source data are provided as a Source

Data file.



and used to obtain the conductance value.
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Supplementary Fig. 26 Single channel study of nanopores. a Single channel current traces of Ch-
C4 recorded at various voltages in symmetric baths (cis chamber = trans chamber = 1 M KCI) in a
repeated assay. Dotted red lines refer to the mean current values that were obtained from histograms
b Current-voltage (I-V) curve for obtaining the ion
conductance (y) for Ch-C4. The pore size was estimated to be 0.94 nm. Data are represented as
mean current values £ half width at half maximum. n= 3 independent experiments. Source data are

provided as a Source Data file.
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Supplementary Fig. 27 Single channel study of nanopores. Histograms of single channel currents of
Ch-C4 recorded in symmetric baths (cis chamber = trans chamber = 1 M KCI) at transmembrane
potentials of a 100, b 80, ¢ 60, d -20, e -60 and f -100 mv in a repeated assay. Relative errors were
obtained by dividing the width between the two half height points by 2. Source data are provided as a

Source Data file.
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Supplementary Fig. 28 Single channel study of nanopores. a Single channel current traces of Ch-
C4 recorded in symmetric baths (cis chamber = trans chamber = 1 M KCI) in a repeated assay. Dotted
red lines refer to the mean current values that were obtained from histograms and used to obtain the
conductance value. b Current-voltage (I-V) curve for obtaining the ion conductance (y) for Ch-C4. The
pore size was estimated to be 0.98 nm. Data are represented as mean current values + half width at half

maximum. n =3 independent experiments. Source data are provided as a Source Data file.
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Supplementary Fig. 29 'H NMR spectra characterization of channel molecules upon addition of

Ha Hy [cholesterol]/[Ch-C2]
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cholesterol. *H NMR titration experiments involving titrating 0 - 100 equivalents of cholesterol into

THF-ds containing Ch-C2 at 5 mM. The overall changes of 0.08 ppm and 0.16 ppm for Ha. and H, were
observed, respectively.
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Supplementary Fig. 30 UV-vis spectra characterization of channel molecules. UV-vis absorption
spectra of Ch-C2 in THF at various concentrations at 20 °C. Increasing the concentration of Ch-C2
from 5 M to 80 M resulted in overall red shifts of 2.5 and 21 nm for maximum and minor absorption
peaks, respectively. Source data are provided as a Source Data file.
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Supplementary Fig. 31 UV-vis spectra characterization of channel molecules upon addition of
cholesterol. UV-vis absorption spectra of Ch-C2 (80 M) in THF in the presence of 0 - 400 equivalents
of cholesterol at 20 °C. An overall red shift in maximum absorption wavelength (Aass) by 2.5 nm and a
24% decrease in maximum absorption intensity were observed. The background signals of the THF
solutions containing the same concentration of cholesterol have been subtracted. Source data are

provided as a Source Data file.
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Supplementary Fig. 32 HRMS spectra characterization of channel self-assembly. High-

resolution mass spectrum of a blank solution containing no channel molecules.
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Supplementary Fig. 33 HRMS spectra characterization of channel self-assembly. High-resolution
mass spectrum of Ch-C2 (10 M) in the presence of 100 equivalents of cholesterol (1 mM). ([(Ch-
C2)20H]"ca. = 2039.3324, [(Ch-C2)20H]*tound = 2039.3368; [(Ch-C2)se(Ch),eMeOHe THFeKeoH,]**ca
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Supplementary Fig. 34 HRMS spectra characterization of channel self-assembly. High-resolution
mass spectrum of Ch-C2 (10 pM) in the presence of 100 equivalents of cholesterol (1 mM). ([2Ch-
CZ.Na]+ca|cu|ated = 20613143, [2Ch‘C2.Na]+found = 20613164)
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Supplementary Fig. 35 HRMS spectra characterization of channel self-assembly. The identified

high-resolution mass spectrum of [2Ch-C2eCheH]*. ([2Ch-C2eCheH]"ca. = 2425.6873, [2Ch-
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Supplementary Fig. 36 HRMS spectra characterization of channel self-assembly. The identified
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Supplementary Fig. 37 Molecular Dynamic Simulation-derived structures and relative energies.
a Square- or hexagon-shaped ensembles give a pore size that is either too small or too large with respect
to the experimentally determined pore sizes. b Ensembles with all side chains pointing inward are

energetically more stable than those with half of side chains pointing outward.
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Supplementary Fig. 38 In vitro anticancer of nanopores. Viabilities of human hepatocellular
carcinomas (HepG2) cells in the presence of various concentrations of a Ch-C1, b Ch-C2, ¢ Ch-C4,
d Ch-C6, e Ch-C8, f Cisplatin, g Paclitaxel and h Doxorubicin. Data are represented as mean values
+ SD. n=4 biologically independent experiments. Source data are provided as a Source Data file.

S51



i )
. 100,
g Ch-C1
= 504 ICs0 = 50.7 uM
O
<
0 1 1 1
-2 1 0 1 3
Conc. (LogguM)
100
2
%
s Ch-C4
g 504 1Cso > 500 uM
X
0 T T T 1
-2 -1 0 1 3
Conc. (LogouM)
100 .
2
E
©
> Ch-C8
8 %7 ICso>500 pM
X
0 1 1 1
-2 -1 0 1 3
Conc. (LogyouM)
100
2
E
8
Z Paclitaxel
g ICs0 > 500 UM
X
0 T T T
-2 -1 0 1

Conc. (LogouM)

100- s ¢
2
E
-‘;” Ch-C2
% 504 |Cso=186.7 uM
O
X .
0 1 1 1 1 1
-2 1 0 1 2 3
Conc. (LogguM)
100
2
E
-‘g Ch-C6
T 50 1Cs0 > 500 |JM
O
X
0 I 1 1 I 1
-2 -1 0 1 2 3
Conc. (LogguM)
100
2
E
@© . .
> Cisplatin
8 50 ICs0 > 500 uM
X
0 T T T T 1
-2 -1 0 1 2 3
Conc. (LogqouM)
=
z
o I
> Doxorubicin
8 07  ICso>500 pM
$
0 I 1 1 I 1
-2 -1 0 1 2 3

Conc. (LogyguM)

Supplementary Fig. 39 In vitro anticancer of nanopores. Viabilities of human primary
glioblastoma (U87-MG) cells in the presence of various concentrations of a Ch-C1, b Ch-C2, ¢
Ch-C4, d Ch-C6, e Ch-C8, f Cisplatin, g Paclitaxel and h Doxorubicin. Data are represented as
mean Values = SD. n = 4 biologically independent experiments. Source data are provided as a Source

Data file.
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Supplementary Fig. 40 In vitro cytotoxicity of against normal cells. Viabilities of a human renal
proximal tubular epithelial cells (HK-2) and b human normal liver cells (THLE-2) in the presence
of various concentrations of Ch-C1. Data are represented as mean values = SD. n =4 biologically

independent experiments. Source data are provided as a Source Data file.
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Supplementary Fig. 41 In vitro hemolytic activity of nanopores. Hemolysis of red blood cells in
the presence of Ch-C1 at various concentrations. Data are represented as mean values + SD. n=4
biologically independent experiments. Source data are provided as a Source Data file.
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Supplementary Fig. 42 Example of gating strategy for apoptotic cell analysis performed on
HepG2 cells. a Target cells were selected from a forward scatter-height vs side scatter-height dot
plot, and amounts of cell debris were removed. b Single cells were subsequently selected in a forward
scatter-area vs forward scatter height dot plot to eliminate the interference of adherent cells. ¢ A quad
gate is defined with a negative confidence zone based on the control group. According to the trend
of cell population, the demarcation line of the tetrad can be set at the colony of negative and positive
cells. As normal cultured cells also undergo natural apoptosis, this serves as a negative control of
non-specific fluorescence signal (false positive), which is generally less than 3%.
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'H NMR and *C NMR Spectra
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