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Supplementary Note 1 

Evaluation of proportion of labels for model training 

stMVC is robust to the proportion of labels for the training, which was evaluated based on 12 

slices of the human DLPFC dataset with annotations from the previous study 1. Specifically, 

for each slice, we (i) randomly selected the spots with labels, with the proportion ranging from 

0.1 to 0.9 by 0.1, thus generating nine label datasets; (ii) randomly selected 70% of spots as the 

training set, the labels of which from one of nine datasets were used to supervise the training 

of stMVC, stMVC-M, semi-AE, and the three SGATE-based single-view models; and (iii) for 

each model, predicted the cell clusters by the Louvain algorithm, and assessed the influence of 

the proportion of labels on the model training via clustering accuracy in terms of average 

silhouette width (ASW) by calculating the closeness of low-dimensional joint-features between 

spots within each predicted cell cluster (see Evaluation of clustering). Overall, we observed 

that the clustering accuracy of all models slightly increases with the proportion of labels for 

the training, and almost all models have a higher accuracy at the training with 70% labels. 

Hence, we treated 70% as a cutoff to select labels for model training. Additionally, we found 

that (i) stMVC achieves higher and comparable performance than stMVC-M and SGATE-SLG; 

(ii) stMVC, stMVC-M, and SGATE-SLG perform better than that by two HSG-based models; 

(iii) SGATE-HSG performs better than SGATE-HSG-N; and (iv) SGATE-SLG performs 

better than semi-AE, showing that graph attention mechanism is responsible for capturing data 

structure (Supplementary Fig.1). Overall, these results indicate the efficiency of stMVC. 
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Supplementary Methods 

Modeling gene expression data by autoencoder-based framework 

Regarding gene expression data, we adopting our previous study modeled it as drawn from 

negative binomial (NB) distribution by an autoencoder-based framework 2. Specifically, we 

learned it’s 𝑑-dimensional features 𝑧 through an encoder 𝐸, and then transformed 𝑧 into the 

parameters of NB distribution by corresponding decoder (𝐷% and 𝐷&): 

𝑝(𝑥|𝑧) = NB(𝑥; 𝑢/, 𝜃/) = NB(𝑥, 𝑙/; 𝐷%(𝑧), 𝐷&(𝑧)) (1) 

NB(𝑥; 𝑢/, 𝜃/) =
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where each dimension of 𝑢/ and 𝜃/ indicates the mean and dispersion of NB distribution for 

each gene, and which is simultaneously inferred by 𝐷% by using ‘softmax’ activation function 

at the last layer and 𝐷&, respectively. One-dimensional constant variable 𝑙/ calculated by the 

sum of read counts of all selected genes for each cell, serves as the cell-specific normalized 

factors.  

The training objective of the model is to maximize the marginal likelihood of observed gene 

expression data, and the loss function is summarized as follows: 

log𝑝(𝑥|𝑧) = 𝐸:~<=𝑧>𝑥, 𝐸?(log𝑝(𝑥|𝑧; 𝐷%, 𝐷&)) (3) 

In this work, each neural network uses batch normalization, ‘relu’ is regarded as the activation 

function between two hidden layers, and the Adam optimizer with both a 1𝑒AB weight decay 

and 8𝑒AD	learning rate is used to minimize the above loss function. In addition, we utilized the 

autoencoder structure (i.e., [N, 1000, 50, 1000, N]) to capture the inner structure of gene 

expression data. Here, for the data from Visium and STARmap, N is 2,000 and 1,020, 

respectively. 

Learning representations from RNA-seq data by semi-AE model 

To clarify if or not the graph attention mechanism is responsible for capturing the complex data 

structure, we further extended the usage of AE model described by Modeling gene expression 

data by autoencoder-based framework to do spot class prediction 𝑌G = softmax((𝑊(I)𝑧)) in a 

semi-supervised manner from region segmentation, and the loss function of which is 

summarized as follows:  
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where 𝑆 is the number of labeled spots, 𝐾 is the number of classes, and 𝑦N and 𝑦NG are the label 

vector of spot 𝑣N from the region segmentation and the prediction, respectively.  

Taken together, the loss function of semi-AE model is summarized as: 

𝐿P = log𝑝(𝑥|𝑧) + 𝛽𝐿<<KLMNOPNQR (5) 

where 𝛽 is a parameter used to control the weight of two loss functions, and the default value 

is 90, at which semi-AE model achieves a better performance in our large-scale experiments.  

Statistical model for testing genes enriched in different cell populations 

We designed a Fisher’s exact test-based measure to check whether or not two genes (or two 

gene sets) are enriched in different cell populations. Note that the average expression of all 

genes within a gene set is considered the expression level of the gene set. Specifically, we 

created the contingency table based on the following two metrics: classification of each cell 

based on whether or not it expresses gene (set) A or gene (set) B. Fisher’s exact test was used 

to check whether or not cells expressing gene (set) A and cells expressing gene (set) B are 

correlated. The two genes (or gene sets) are considered from different cell populations if the 

corresponding 𝑝 − 𝑣𝑎𝑙𝑢𝑒 > 0.05.  

Estimation of cell populations for each spot by SpatialDecon 

To verify whether or not different cancer cell states (distributed in different spatial locations) 

are influenced by the infiltrating stromal and immune cells, we adopted a recent deconvolution 

method SpatialDecon 3 for SRT data to estimate the cell populations of each spot in ovarian 

and breast cancers. Specifically, for ovarian cancer, we directly utilized the deconvolution 

result predicted by the developers of SpatialDecon 4, and for each spot where the proportion of 

tumor cells was less than 95%, treated the predicted two cell types with the highest proportions 

as its infiltrating stromal and immune cells, otherwise, considered it as pure tumor cells. In 

addition, we followed the tutorial for processing breast cancer to estimate the cell populations 

of different stromal and immune cells in breast cancer 5, and for each spot, considered the two 

cell types with the highest proportions as its infiltrating stromal and immune cells. 
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Supplementary Figures 

 

Supplementary Figure 1. Evaluation of the proportion of labels used to train the stMVC, 

stMVC-M, semi-AE, and the three SGATE-based single-view models by clustering accuracy 

in terms of ASW on the 12 slices of human DLPFC dataset. Each color indicates one method. 

The X-axis indicates the proportion of labels for the training of the model. Source data are 

provided as a Source Data file. 

 

 

 

 

 

 

 

 



 6 

  

Supplementary Figure 2. Boxplot of ROGUE to assess the transcriptome similarity between 

spots within each predicted cluster for 𝑛 = 12 slices of the DLPFC dataset. For each slice, the 

mean of ROGUE values of all predicted clusters indicates its ROGUE value. For each boxplot, 

the center line, box limits and whiskers separately indicate the median, upper and lower 

quartiles and 1.5 × interquartile range. Source data are provided as a Source Data file. 
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Supplementary Figure 3. Spatial domains were detected by AE, semi-AE, the three SGATE-

based single-view models, DR-SC, Squidpy, stLearn, BayesSpace, STAGATE, stMVC-M, and 

stMVC, where we also provide manual annotation as a comparison, on 11 slices of the DLPFC 

dataset. Source data are provided as a Source Data file.  
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Supplementary Figure 4. Scatter plot of the two-dimensional UMAP extracted from the latent 

features by AE, semi-AE, the three SGATE-based single-view models, DR-SC, Squidpy, 

stLearn, STAGATE, stMVC-M, and stMVC, on 11 slices of the human DLPFC dataset. For 

each method on each slice, the predicted clusters and their colors are the same as 

Supplementary Fig.3. The inferred trajectory between different clusters is consistent with 

Fig.2d. Source data are provided as a Source Data file. 
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Supplementary Figure 5. Spatial expression of layer-specific genes 1: SNAP25, MOBP, PCP4, 

FABP7, PVALB, FREM3, CCK, ENC1, AQP4, TRABD2A, HPCA1, and KRT17 for slice 

151673 data denoised by stLearn, BayesSpace, STAGATE, the three SGATE-based single-

view models, and stMVC-M, respectively, where we also provide raw data as a comparison. 

Source data are provided as a Source Data file. 
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Supplementary Figure 6. Method comparisons on the ovarian cancer sample. a Manual 

segmentation with 18 distinct regions. Each region is indicated by one color. b Spatial 

clustering by the three SGATE-based single-view models, Giotto, and stMVC-M, respectively. 

Each domain is indicated by one color. c UMAP visualization of the latent features by the three 

SGATE-based single-view models, Giotto, DR-SC, stLearn, Squidpy, STAGATE, and 

stMVC-M, respectively. For each method, the predicted clusters and their colors are the same 

as b and Fig.3b. d Spatial expression of genes for immune-related markers: PTPRC, IGKC, 

IGHG1, IGLC1 for the data denoised by the three SGATE-based single-view models, 

BayesSpace, stLearn, STAGATE, stMVC-M, and stMVC, respectively, where we also provide 

raw data as a comparison. Source data are provided as a Source Data file. 
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Supplementary Figure 7. Comparison of spatial clustering of human ovarian cancer sample 

by BayesSpace, Squidpy, Giotto, stLearn, DR-SC, STAGATE, and stMVC, where the number 

of clusters ranges from 10 to 17. Source data are provided as a Source Data file. 
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Supplementary Figure 8. Method comparisons on the breast cancer sample. a Manual 

segmentation with 16 distinct regions. Each color indicates one region. b Spatial clustering by 

the three SGATE-based single-view models, Giotto, and stMVC-M, respectively. Each domain 

is indicated by one color. c UMAP visualization of the latent features by the three SGATE-

based single-view models, Giotto, DR-SC, stLearn, Squidpy, STAGATE, and stMVC-M, 

respectively. For each method, the predicted clusters and their colors are the same as b and 

Fig.3i. d Abundance estimate of 14 cell types in the microenvironment segments of the breast 

cancer by SpatialDecon. Wedge size is proportional to estimated cell counts. NK: natural killer 

cell. pDC: plasmacytoid dendritic cell. mDC: myeloid dendritic cell. e The enrichment of six 

distinct cell types in each domain compared to the total distribution of six cell types in five 

domains. The ratio is calculated by the chi-square test, which is the same with Fig.3f. The 

larger the ratio, the more cells are enriched in the domain. The proportion patterns of infiltrating 

stromal and immune cells between domains 13 and 14, and between domains 15 and 16 are 

more similar than those with other domains. Source data are provided as a Source Data file. 
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Supplementary Figure 9. Comparison of spatial clustering of human breast cancer sample by 

BayesSpace, Squidpy, Giotto, stLearn, DR-SC, STAGATE, and stMVC, where the number of 

clusters ranges from 10 to 17. Source data are provided as a Source Data file. 
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Supplementary Figure 10. Annotation of cancer regions in the ovarian cancer sample by 

stMVC. a Gene function enrichment analysis of SVGs in each of four domains by R package 

clusterProfiler 6. The functional gene sets were downloaded from MSigDB database 

(https://www.gsea-msigdb.org/gsea/msigdb/) 7. The enrichment test was conducted by GSEA 

with Kolmogorov-Smirnov statistics. The 𝑝 − 𝑣𝑎𝑙𝑢𝑒 is estimated by one-sided tests without 

adjustment for multiple comparisons. The dot size and color indicate the count and 𝑝 − 𝑣𝑎𝑙𝑢𝑒 

of each function in each domain, respectively. b Annotation of four interested cancer regions 

by infiltrating stromal and immune cells. The cell populations for each spot were estimated by 

SpatialDecon (see Estimation of cell populations for each spot by SpatialDecon). Note that 

pure tumor cells and the tumor cells with infiltrating stromal and immune cells are indicated 

by different colors. c Spatial expression of tumor suppressor genes (i.e., TP53 and BRCA2) and 

oncogenes (i.e., MYC and NME1) in ovarian cancer sample. d The UMAP plot of the 

expression levels of TP53, BRCA2, MYC, and NME1 in ovarian cancer sample. e Correlation 

test for the expression levels of tumor suppressor genes (TP53 and BRCA2) and oncogenes 

(MYC and NME1) by Fisher’s exact test with the two-sided. Here, the value and color indicate 

𝑝 − 𝑣𝑎𝑙𝑢𝑒. Source data are provided as a Source Data file. 
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Supplementary Figure 11. Spatial expression of genes for indicative markers: ERBB2, ESR1, 

PGR, immune genes: PTPRC, and tumor progression genes: MUC1, MKI67, BAMBI, ZNF703, 

and GRB2 for the data denoised by BayesSpace, stLearn, STAGATE, stMVC-M, and stMVC, 

respectively, where we also provide raw data as a comparison. Source data are provided as a 

Source Data file. 
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Supplementary Figure 12. Data analysis in breast cancer sample. a Heatmap of the gene 

expression of signature genes for four domains enriched in the ER+ invasive carcinoma region 

by stMVC. Rows and columns indicate signature genes and different domains, respectively. b 

UMAP visualization of independent scRNA-seq data of 24,489 epithelial cells from 20 breast 

cancer patients, as well as the expression levels of ARMT1 and RMND1. Each color indicates 

one subtype of breast cancer determined by the status of ER, PR, and HER2 (up panel). Source 

data are provided as a Source Data file. 
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Supplementary Figure 13. Gene function enrichment analysis of SVGs in four domains 

enriched in the ER+ invasive carcinoma region from stMVC by DAVID with the 

hypergeometric test (one-sided) 8. No adjustment for multiple comparisons was made. Dot size 

and color indicate the percentage and 𝑝 − 𝑣𝑎𝑙𝑢𝑒 of each function in each domain, respectively. 

Source data are provided as a Source Data file. 

 

 

 

 

 



 18 

 
Supplementary Figure 14. Dot plot showing the expression levels of marker genes for 

different cell clusters predicted by stMVC and ClusterMap, respectively. Note that Slc17a7, 

Nov, and Cux2 for excitatory neuron, Gad1, Vip, Sst, Npy, Pvalb, Reln, and Lhx6 for inhibitory 

neuron, and Aqp4, Enpp2, and Cldn5 for non-neuronal cell from the previous study 9. Source 

data are provided as a Source Data file. 
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Supplementary Figure 15. Comparison of running time for the training of stMVC model on 

the different number of spots by subsampling from the human DLPFC datasets. The 

experiments were tested on a GPU server with two NVIDIA Tesla V100 GPU addressing 64GB. 

Source data are provided as a Source Data file. 
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Supplementary Figure 16. Boxplot of the tumor purity of 21 cancer types from TCGA 

database. The tumor purity predicted by the computational methods (i.e., ESTIMATE and IHC) 

was downloaded from the previous research 10. The average tumor purities estimated by 

ESTIMATE (across 7,737 samples) and IHC (across 9,327 samples) are 81 ± 14% and 80 ±

11%, respectively. The average tumor purity is larger than 80%, and the tumor purity of more 

than 80% of samples is greater than 70%. For each boxplot, the center line, box limits and 

whiskers separately indicate the median, upper and lower quartiles and 1.5 × interquartile 

range. Source data are provided as a Source Data file. 
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Supplementary Tables 

Supplementary Table 1. The signature genes used for defining four different domains in 

ovarian cancer sample.  

Domains Signature genes 

Domain 10 S100A9, SERPINA3, PDZK1IP1, PNOC, PTX3, CXCL8, DEFB1, DDIT4, 

CCL20, PI3, LAMA3 

Domain 11 SPP1, VEGFA, SLC2A1, DDIT4, PGK1, ENO2, PI3, SLC2A3, MT2A, 

ADM, HSPA6 

Domain 12 IGFBP5, MMP10, GPRC5A, GJB2, IGFL2, OAS2, LAMA3, COL10A1, 

TIMP3, COMP, LAMC2 

Domain 13 MMP10, NEDD9, EMP1, S100A4, BCAT1, TRIB2, PTX3, LRIG1, 

DPYSL2, SLC27A6, BMP8A 

 

Supplementary Table 2. The layer-specific genes for human DLPFC dataset.  

Genes SNAP25, MOBP, PCP4, FABP7, PVALB, CCK, ENC1, AQP4, TRABD2A, 

HPCAL1, FREM3, KRT17 
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