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I. INTRODUCTION

Here we collect all responses received by computa-
tional physicists, chemists and biologists, answering
the following question (received from March-October
2020):

Dear colleagues,

This is a short/quick request!

My colleague Mario Krenn and I are carry-
ing out a short survey of the actual scien-
tific discovery process for a perspective pa-
per we are writing. I am writing to you be-
cause I consider you one of the leaders and/or
pioneers of computational science and/or big
data/AI/high throughput insight.

In particular, we are interested in the chrono-
logical aspects of your discovery/ies with re-
gards to computer-driven insight.

The question is: What is your own best ex-
ample of the following:

* You look at the output of a computational
science simulation or big data / AI / high-
throughput simulation exercise and you see an
outlier, extremal point, or interesting trend
and then it suggests to you a new physi-
cal phenomenon which you then actually ac-
tively investigate and *understand*. This

∗ mario.krenn@mpl.mpg.de
† alan@aspuru.com

then leads hopefully to a high-quality result.
You could potentially use this understand-
ing now as a *tool without the computation*,
ie. you learned a design principle or scientific
”law”. We are looking for the most ”general”
outcomes, ie. after you understand your re-
sults, you found a generalizable idea.

You could send us more than one example if
you want. Please send the reference to the
discovery too if you don’t mind.

Finally,

* Are you OK with quoting your email and
listing your correspondence with us in the pa-
per? We may not select all your responses
depending on what we are looking for.

If you could send us by October 10, this would
be very useful. Any examples sent to us after
that, may not be considered for the paper.

Thank you for your time. We are asking be-
cause it is often not clear in papers how you
came across the discovery, so the narrative is
crucial to our argument.

Alan and Mario

The full responses helped us understand a compre-
hensive picture of how scientists get a new understand-
ing from computers. The answers contain many excel-
lent accounts which go far beyond what we were able
to present directly in the main text. We thank all
participants for their time and their significant con-
tributions. Below we ex
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II. INSIGHTS BY ANASTASSIA
ALEXANDROVA

My insight started not form an outlier in a simula-
tion, but from the fact I came to the field of hetero-
geneous catalysis from the field of chemical physics of
small clusters, which gave me a clear idea of what can
happen if an ultracold cluster beam gets a few Kelvin
too warm: the spectrum would become essentially a
mess. Small metal clusters supported on surfaces of
semiconductors are used as catalysts, which can be su-
perb, and their properties are very sensitive to atoms
count, the nature of the support, and the conditions at
which they are used. Modeling in the field of catalysis
was always done on a single cluster shape, the global
minimum in the best-case scenario. Basically, I could
not believe my eyes, because temperatures of 700 K
for a small cluster mean thermal access to very many
minima on the free energy surfaces, not one. So the
catalyst has to contain tens or hundreds of distinct
structures, forming a dynamic ensemble in reaction
conditions. From there, as any chemist would, I be-
gan suspecting that less stable structures (metastable
states) of the catalyst could be more reactive, and
maybe even responsible for the entire catalysis. So
we developed efficient sampling techniques,[1] got in
close collaboration with several experimentalists, and
started collecting the evidence. We soon found that all
observable properties of dynamic catalytic interfaces
(activity,[2] selectivity,[3–8] stability,[9, 10] operando
spectra[11]) are best described as ensemble-averages,
and that the ensemble of catalyst states constantly
reorganizes as part of the reaction coordinate. We
are still in the process of finding out all of what that
means for the theory of catalysis. We see some old
things holding true, such as the linearity of the Arrhe-
nius plot.[12] We also see several rules breaking down,
such as the scaling relations.[13] We see some new phe-
nomena, such as the impossibility to suppress Ostwald
ripening through size-selection. The most general out-
come for the moment is just that the catalyst is an en-
semble of many states, not one, that the less stable but
still accessible members in this ensemble can be more
catalytically active, and that the reaction mechanism
is not one but a swarm of many.[14] The obvious com-
plication then is finding those true active sites that
constantly come and go in reaction conditions. By
the way, these sites are not easily pinned down by ex-
periment, because even operando measurements give
an ensemble-averaged signal, which is overwhelmed by
majority species. Hence, theory is the only player in
town that can do it.

III. INSIGHTS BY ROMMIE AMARO

Well, this is the case for quite a few application-
oriented studies coming out of the group.

For example, the case with the SARS-CoV-2 spike,
which was just published today [15].

We noticed in the simulation of the open structure,
that a couple of glycans had some different behaviors
in the open/closed conformation of the spike.

We then explored the basis for this unexpected find-
ing and (after a lot of work) learned (predicated first,
then confirmed through experiment) that some gly-
cans on the spike do more than just shield it, but they
actually act in a coordinated way with the spike pro-
tein to participate in the opening mechanism. From
this we know now to look for glycans to participate
in such phenomena. Opens the door to a lot of new
studies / understandings, regarding exploring the role
of glycans in biological systems.

Then there was the older example with p53 [16]
where we found a pocket in simulations that had not
been seen in experiment, saw it could accommodate
small molecules, identified molecules that would bind
into that site and control the activity of the protein.
This is now a quite well-trodden framework for the
discovery of cryptic pockets from molecular simula-
tion. Lots of folks trying to figure out what is the
‘magic sauce’ for elucidation of such sites. Lots and
lots of folks. Less clear in this area, what makes a
druggable pocket, and what does not.

IV. INSIGHTS BY CURTIS BERLINGUETTE

We sought to optimize the hole mobility of a doped
and annealed organic semiconductor using our self-
driving laboratory, Ada. We configured Ada to au-
tonomously explore a wider range of doping levels
than we would typically study with manual experi-
ments. This autonomous search led to an unexpected
scientific finding: Ada’s ML-driven optimization re-
vealed a region of enhanced thermal stability at high
doping levels.[17] This result was surprising because
high dopant levels typically reduce the thermal sta-
bility of these types of films.[18–20] With these new
results, we have drawn the conclusion that dopants
with a higher intrinsic thermal stability can govern
the thermal stability of glassy, organic semiconduc-
tors. Leveraging dopants to stabilize organic semi-
conductors is a compelling concept that we continue
to explore. The use of machine vision, in tandem with
autonomous experiments, played a key role in leading
us to this finding (see recent preprint entitled Quan-
tifying defects in thin films using machine vision[21]).

V. INSIGHTS BY LILLIAN CHONG

My story is about how my lab got into force field
development as a result of a ”failed” simulation that
we ran on the Anton special-purpose supercomputer
in 2011. Instead of abandoning this failure, a closer
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examination of the results led to an entire PhD the-
sis for my graduate student, Karl Debiec, with three
publications. This work has also opened up a new
NSF-funded research direction in my lab.
The failed simulation involved the sticking together

of the domains in a two-domain protein after run-
ning for 1 microsecond and therefore would not
have been detected by simulations on typical com-
puting resources. This result contradicted NMR ex-
periments, which revealed that the domains tumble
independently of each other in solution. Upon fur-
ther analysis, we discovered that the reason why the
domains were sticking together was because the do-
mains were interacting via salt bridges (or pairs of
hydrogen bonded, oppositely charged amino acids)
and these salt bridges were being overstabilized by
the simulation model (force field). In fact, as we
demonstrated in the attached paper, nearly all of the
force fields at the time shared this same issue of over-
stabilizing salt bridges. Interestingly, the force fields
that yielded more reasonable salt bridge propensities
involved atomic charges with implicit solvent polar-
ization and one of these force fields was the Amber
ff14ipq force field developed by David Case [22].

We proceeded to collaborate with David to de-
velop an entirely new force field (Amber ff15ipq)
that addresses the salt bridge issue. This force field
demonstrates the power of using first principles to de-
velop simulation model, exhibiting not only reason-
able salt bridge propensities, but (i) the expected bal-
ance of secondary structures for both globular and
non-globular (“disordered”) peptides/proteins, and
(ii) good agreement with NMR observables, including
J-coupling constants that are just as accurate (if not
more) than force fields that were specifically param-
eterized to reproduce the experimental values. Am-
ber ff15ipq has been available in both the widely-used
Amber and OpenMM software packages.

VI. INSIGHT BY GERARDO CISNEROS

Our example has to do with discovery and charac-
terization of cancer mutations and their impact on the
structure and function of specific proteins. The initial
question arose from computational simulations of the
reaction mechanism of a DNA repair enzyme (DNA
polymerase lambda, PolL). Our calculations yielded
predictions on catalytically important residues that
had not been investigated and are conserved among
many human polymerases. This led to the question:
Are there any DNA mutations related to some can-
cer that can result in changes in these residues? To
answer this question we developed a protocol to ana-
lyze large-scale genomic data from multiple genome-
wide association studies (GWAS) to uncover single
nucleotide polymorphisms (SNPs) associated with a
particular phenotype (disease), statistical analysis to

determine the significance of the SNPs, followed by
computational modeling to determine the effects of
the mutation. The software for genomic data min-
ing is agnostic to phenotype but we have used it for
cancer databases. The original paper is [23]. One
of our first predicted cancer mutations, which asso-
ciates PolL with breast cancer, was subsequently con-
firmed experimentally [24]. Since then, we’ve devel-
oped a database for cancer mutations on DNA repair
and modification proteins [25]. and have used our ap-
proach to investigate several systems [26–28].

In the above cases, we used our method to discover
the cancer mutation and predict the effect of the re-
sulting protein variant with computational analysis,
followed by experimental confirmation by collabora-
tors.

VII. INSIGHT BY ANDY COOPER AND
GRAEME DAY

A. Andy Cooper

I think our strongest example so far is our work on
crystal structure prediction with Graeme Day (cc’d
here; [29] and (particularly) [30] – Energy Structure
Function maps). The primary physical phenomenon
here (so far) has been porosity. The idea behind CSP
and ESF maps is that you can predict the most likely
crystal packing ( and therefore function) of molecules.
By definition, these packings are hard to predict, and
hence doesn’t exactly lead to “a tool without com-
putation” in a general sense. However, by working
with enough of these systems and studying the struc-
ture landscapes in detail (and we’ve now looked at
lots), you can begin to build up some kind of intu-
itive feeling for the likely crystal packing of a new
molecule without doing the computation. (Intuition
in this sense will be less reliable than computational
prediction, but it is faster.)

The reason that this is valuable is that one struc-
ture landscape reveals a wide array of possible crystal
packings with their associated lattice energies – it is a
little bit like looking at the ‘structural DNA’ for the
molecule. By contrast from a practical standpoint,
most molecules have between one and a handful of
polymorphs; as such, you need to work on a lot of
systems over a career to gain similar insights.

In a nutshell, by working with CSP / ESF maps,
there is the possibility to gain insights into structure-
property relationships at a much faster rate than
working with practical systems alone. There are some
interesting questions about how to codify this – to give
one specific example, we just published an example
[31] where it was possible to map out the likelihood of
a candidate molecule exhibiting pi-pi stacking, which
is important in organic electronics and photocatalysis.

In precis: ESF maps can be thought of as a guide
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to intuitive crystal structure design (although philo-
sophically, I lean toward using these things as quan-
titative predictions, rather than a “tool without com-
putation”).
Graeme can probably add to this.

B. Graeme Day

I could add a couple of things to what Andy has
already said.

First is to support the idea that landscapes of pre-
dicted structures help develop our intuition about the
relationships between molecular structure and crystal
packing faster than through studying observed crystal
structures. As Andy already said, we get access to the
structure-stability relationships in large sets of crystal
structures. Through ESF maps, we also learn about
structure-property relationships. In the simplest case,
we are looking at a set of crystal structures all of one
molecule, so structure-stability-property relationships
are unobscured by changes in molecular properties,
which we normally have to deal with when looking to
the crystallographic databases or other collections of
observed crystal structures. Where we have looked
at how changes in molecular structure affect crystal
packing, CSP (and ESF maps) lets us see how the
entire landscape of possible structures is influenced
and, so, how certain intermolecular interactions and
molecular packing motifs can be strongly structure-
directing. This feeds into the design process of what
molecules to look at next. So, there is some element
of developing ”tools without computation”.

An example of where we have learnt from observing
outliers in large structure sets is the area of porous
molecular crystals. In the study described in one
of the papers that Andy mentioned[30] - we (luck-
ily) looked at the crystal energy landscapes over a
very wide energy range. The field of crystal struc-
ture prediction has, up to this point, focussed very
heavily on getting the ranking of crystal structures
correct at and around the global lattice energy min-
imum. Very rarely have people looked further than
10-20 kJ/mol above the global minimum. When look-
ing at the CSP results for these molecules, we visu-
alised the landscapes up to about 100 kJ/mol from
the global minimum. It was this view that showed us
’spikes’ on the energy vs density view of the CSP land-
scapes. The spikes were sets of predicted structures
that dropped down from the main energy/density dis-
tribution: structures that were much more stable than
they should be for their packing density. Although a
plot of energy vs density is a simplified picture of a
high dimensional energy surface, we had the idea that
these spikes correspond to isolated, deep regions of lat-
tice energy - structures that would a high energy bar-
rier hindering conversion to a denser structure. These
would have been missed completely if we had only

looked at the low energy region.
These spikes were outliers in that original study,

but are now a key feature that we look for when test-
ing ideas for formation of porous molecular crystals.
When we see these features on CSP landscapes / ESF
maps, we now have confidence that we can create
the corresponding structures in the lab. Initial re-
ports on CSP results often now start with ”Spikes!” or
”Sadly, no spikes” as a more important outcome than
the structure of the global energy minimum. Predict-
ing these energy landscape features has recently moti-
vated further experimental work on trimesic acid [32]
and the photocatalyst study that Andy has already
mentioned [31].

VIII. INSIGHT BY FRANÇOIS-XAVIER
COUDERT

Although it’s definitely a subjective question, one of
the most useful “general principle” idea derived from
screening large number of materials in my group’s re-
search has been when the findings run contrary to
conventional wisdom. One such example is in the area
of mechanical properties and meta materials: if you
look at the existing literature, there are quite a few
studies were the highlight is the experimental mea-
surement or computational calculation of a negative
Poisson’s ratio in some crystallographic direction or
other. This has been published in a number of zeo-
lites and metal-organic frameworks, usually accompa-
nied by the broad statements that this behaviour is
counter-intuitive (which is subjective, but most peo-
ple would agree) and rare (which is never backed up
by references).

Using computational tools and screening of 13.621
inorganic compounds[33], we wanted actually found
that this behaviour is not rare at all. What is very
rare (0.3% of the crystals studied) is the occurence of
complete auxeticity, i.e. negative Poisson’s ratio in all
directions of space. But the existence of some direc-
tion of negative Poisson’s ratio is actually common,
occurring in 30% of structures. I think this definitely
changed our view (and hopefully our colleagues’ too!)
of that particular property, beyond the method of cal-
culation and the details, to what we expect for this
property.

Another example is to try and use databases and/or
machine learning approaches to learn more about the
“hidden laws” behind certain materials. We’ve been
looking for some time at zeolites, where the question
of experimental feasibility is still not fully answered:
out of so many possible zeolitic frameworks, all rela-
tively low in energy, why is it that only a small number
are experimentally accessible? There again, looking at
mechanical properties hints at a possible component
to that answer[34, 35] where the mechanical proper-
ties of the framework are playing a role, in addition
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to thermodynamic criteria. This is part of an answer
in the formation mechanism of these zeolites, an emi-
nently complex phenomenon (high T, in solution with
a lot of species, etc.) that could not be obtained with-
out systematic analysis of a significant database.

IX. INSIGHT BY LEE CRONIN

Controlling an organic synthesis robot with
machine learning to search for new reactiv-
ity[36] – Outline: The manuscript describes a high-
throughput closed-loop robot searching organic reac-
tivity using on-line analytics such as NMR, IR, and
MS. The feedback loop allowed for efficient searching
through reactivity space of organic molecules. New
discoveries found can be classified as outliers, for ex-
ample, high molecular weight peaks in mass spectra
with m.w. ¿ 500 were indicators of multicomponent
reactions. Hits from the robot were actively identified
and investigated yielding several new transformations.
A curious formulation robot enables the dis-

covery of a novel protocell behaviour[37] – Out-
line: The manuscript describes the exploration of
droplet-based protocells using a closed-loop robotic
platform equipped with Curiosity Algorithm. The Cu-
riosity Algorithm explores self-propelling multicompo-
nent oil formulations and their emerging behaviours
in an open-ended way with no specified target in the
observational space. The paper demonstrated much
faster exploration of droplet behaviours as compared
to random parameter search in the defined observa-
tional phase space. Utilizing this closed-loop system,
we were able to discover extreme response of droplet
behaviours with minute temperature changes. We
selected novel experimental behaviours from the ex-
plored phase space and performed in-depth mechanis-
tic studies to investigate the relationship between dy-
namic behaviour of droplets and input chemical com-
position.
Evolution of oil droplets in a chemorobotic

platform[38] – Outline: In this project we conducted
our research from two different starting points or hy-
potheses: 1) Life is the product of evolution and natu-
ral selection. Therefore our experiments were guided
by a Genetic Algorithm (GA) which mimicked how
natural selection works. GAs have been used success-
fully on many different applications, and therefore and
our research question was: Can a GA be used to evolve
chemistry into life-like behaviours? 2) Droplets have
been widely used to model protocells. We conducted
a exhaustive literature search focusing on droplets of
a few millimeters of size (thus, no microfluidic exper-
iments) that expressed a life-like behaviour, such as
movement, division or chemotaxis. Once we had a few
good candidates, we manually tested them on a Petri
dish, and we selected the droplet recipes that were
more active and the ones that had divergent chemical

properties, such as different densities, solubilities,. . .
Once our ingredients were chosen, the first experimen-
tal step was to generate a high-throughput grid search
across all the ingredients to test that their combina-
tions could produce interesting behaviours. The re-
sults were qualitative assessed, and once we decided
that the recipe-space was interesting, we decided to
run the GA for three different user-defined fitness
functions: movement, division and vibration. In to-
tal, around 20 000 one-minute experiments were gen-
erated. These experiments were analysed using Sup-
port Vector Regression with a Radial Basis Function
Kernel, and we produced a series of fitness landscapes
that directly map from droplet recipes to droplet be-
haviour. With this fitness landscapes we could point
to any point and generate a desired behaviour without
having to go through the GA again.

X. INSIGHT BY ELISA FADDA

As a computational biophysicist specialized in
HPC-based biomolecular simulations, I am quite used
to the analysis of large-sized (from a few Gb to several
Tb) noisy datasets.

More specifically, I study the structure, dynamics
and molecular recognition of complex carbohydrates
(or glycans) and how that relates to their many differ-
ent biological functions. This information is extremely
hard to get experimentally because glycans are among
the most intrinsically disordered biomolecules in life.
HPC has enormous potentials in advancing glyco-
science, yet the molecular dynamics simulations we
run reflect precisely the glycans disordered nature,
which makes the rather chaotic time (or energy)-
evolution data and “ball of yarn”-looking structures,
quite difficult to disentangle.

Despite their ‘structural disorder’ common denom-
inator, glycans sequences are not random, but follow
precise rules. This always suggested to me that not
all glycans may be equally disordered and that their
sequence and branching holds the key to the broad di-
versity of their functional roles. Determining how does
these sequence-to-structure-to-function links work out
is one to the main research topics in my lab.

Our analytical protocol consists in running statisti-
cal analysis (via clustering, KDE, PCA) on the confor-
mational sampling data collected for every single joint
(or glycosidic linkage) that connects the monosaccha-
ride units in the often-large tree-like glycan structures.
This largely reduces the complexity of the data and
indicates us trends and outliers that we usually check
at this point by visually analysing the time-evolution
of the structures we produce, or trajectories.

By analysing the “joints” data in the context
of their immediate environment, i.e. the types of
monosaccharides present and how are they linked,
we have been able to find quite interesting patterns
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repeating[39, 40], i.e. the whole glycan 3D structure
and dynamics can be rationalized in terms of “gly-
coblocks”[1], i.e. groups of 2 to 3 monosaccharides
with precise branching, that differ by shape and flex-
ibility. Different glycan architectures expose different
glycoblocks to receptors for recognition, supporting
many experimental findings that very (deceptively)
similar glycans sequences have very different functions
and can be highly immunogenic[39].
This rather simple glycoblock architecture can be

extremely useful not only to understand sequence-to-
structure-to-function relationships in complex carbo-
hydrates, but also to inform the design of synthetic
carbohydrate sequences with a desired structure to
advance functional and recognition studies. In my lab
we are now developing methods for the automated re-
construction of glycans structures from glycoblocks,
which will bypass the need of computationally expen-
sive simulations and the expert user input.

XI. INSIGHT BY RAFAEL
GOMEZ-BOMBARELLI

In my independent career, the best highlight is the
story in this paper: ML as a tool to gather enough
robust data from experiments, a graph-metric to be
able to measure distances and cluster, and materi-
als chemistry insight arising from the analysis of the
clusters[41].

XII. INSIGHT BY LETICIA GONZALEZ

Photophysics of Thionucleobases – In “The
origin of effcient triplet state population in sulfur-
substituted nucleobases” [42] we discuss the origin
of the very special photophysical behaviour of the
thionucleobase compound class. Thionucleobases are
closely related to the biologically important nucle-
obases that form the genetic code inside DNA. The
only difference between nucleobases and thionucle-
obases is the fact that the latter have at least one
oxygen atom replaced by the homologous sulfur atom.
These two classes of compounds generally behave
very similarly—thionucleobases can even replace nu-
cleobases in DNA and RNA. However, they have very
different photochemistry and photophysics, where nu-
cleobases relax in an ultrafast manner back to the
ground state, whereas thionucleobases form long-lived
triplet states through intersystem crossing very fast
and with almost unit yield.
Our initial observation was based on multiple ex-

perimental papers [43–49] that gave a very consis-
tent picture that all investigated thionucleobases—2-
thiouracil, 2-thiothymine, 2-thiocytosine, 4- thio-
thymine, 2,4-dithiothymine, 6-thioguanine—showed
very consistent photophysical behavior. In all these

Figure 1. Pyrazine

bases, intersystem crossing populates triplet states on
a few-picosecond time scale with very high yield, lead-
ing to long-lived excited states. Another observation
was that all these thionucleobases show a strongly red-
shifted absorption spectrum compared to their par-
ent nucleobases. Stimulated by these findings, sev-
eral computational studies[50–56] strived to explain
the photophysical behavior of the thionucleobases, al-
though each study focused on only a single compound
(chronologically: 6-thioguanine, 4-thiothymine, 2-
thiouracil). In Ref. [42], after studying 2-thiocytosine
and comparing to the other bases, we noticed some
commonality in the potential energy surfaces of the
thionucleobases. Thus, we attempted to find an in-
depth explanation for their photophysics. We opti-
mized the relevant excited-state minima and excited-
state–ground-state crossing points for 6-thioguanine,
2-thiouracil, 2-thiocytosine, and their respective par-
ent nucleobases. The results showed clearly that the
introduction of a sulfur atom into a carbonyl group
leads to strongly stabilized excited-state minima but
does not stabilize the crossing points that enable
the characteristic short excited-state lifetimes of the
canonical nucleobases. Essentially, the photophysics
of the nucleobases that is dominated by the aromatic
ring is overwritten by the photophysics of a thiocar-
bonyl group because the latter gives rise to the lowest-
energy excited states.

XIII. INSIGHT BY JOHANNES HACHMANN

This is not from my own research, but the attached
Guardian clip about the work by Hod Lipson was re-
ally what got me hooked on ML. I came across this
back when I was with Alan at Harvard and it con-
vinced me that ML has tremendous potential in the
physical and chemical sciences. I think this is still one
of the coolest and most impressive uses of machine
learning in our neck of the woods, in particular the
presented analysis of the motion tracking data for the
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double pendulum, which is a prototype of a chaotic
system with exponentially diverging trajectories. This
clip is also one of the first things I show my students
when I introduce the idea of using data science[57].

XIV. INSIGHT BY ROALD HOFFMANN

A story of numbers to ideas – Early on, in
the brief three years when extended Hückel calcu-
lations could be called state-of-the art, I computed
the orbitals of pyridine and the three diazines. You
can tell how early in my career that was – I had no
coworkers [58]. At that time, the delocalization of
the MOs was by itself a publishable result. For the
1,4-diazabenzene, pyrazine [Figure 1], two molecular
orbitals mainly localized on N, were seen. Two strik-
ing things about these N-lone pairs, (for that is what
they roughly looked like – in those days there were
no easy contour-plotting programs; one looked at the
coefficients), emerged: they were split in energy by
several eV, and the antisymmetric combination of the
two was lower in energy.
Both facts provided some numerical satisfaction

in comparison with experimental reality, as they ex-
plained some hitherto known but not understood spec-
troscopy of pyrazine. In time, when those experiments
became available, Edgar Heilbronner’s measurements
of the photoelectron spectra of pyrazine confirmed the
“anomalous” order of the orbitals, antisymmetric be-
low symmetric. The result remained on the face of it
puzzling – if the lone pairs were localized, they should
not overlap much directly (the distance between those
N was 2.7A), and to the extent they did, the sym-
metric combination (the bonding one) should be at
slightly lower energy.

We (now I had some coworkers, both were un-
dergraduates at Cornell) came up with an expla-
nation, involving the symmetry-conditioned over-
lap/interaction of the lone pairs with the uniquely
disposed CC bond (and its * counterpart) between
them, as shown in Figure 2. [59]

The explanation was not only pretty, it could
be extended to other molecules (the benzynes, for
instance; also to other heterocycles, such as 1,4-
diazabicyclo[2.2.2]octane). The tests of the explana-
tion were first numerical – did the effect occur in other
molecules with the same disposition of the bonds?
How did it depend on rotation around intervening
bonds? In time experimental tests, the measurements
I mentioned, came in. And the analysis provided a
way of thinking about orbital interactions in general
– through-space and through-bond.

It was satisfying to have the numbers, to explain
the spectra. It was much more satisfying, a joy in-
deed, to come up with the explanation. And had the
initial computational result (the splitting of the en-
ergies of the lone-pair combinations) been an artifact

of the computational method, then this “explanation”
would have joined the junkpile of wrong theories. The
numbers, and that they were moderately reliable, were
essential. But one did not, must not, stop with the
numbers.

Another time I will tell you how the fact that the
underlying method was not numerically reliable, ac-
tually served to strengthen the qualitative conclusions
drawn from it by a human being.

XV. INSIGHT BY JAN HALBORG JENSEN

My work is generally focussed on maximising som
property, i.e. finding the outliers.

So far we’ve had little luck rationalising what we
found. For example, in this study[60] we looked for
insulating molecules. We were not able to see what
the top 5 candidates (Table 1) had in common.

I think we’ll see more and more of this. Chemistry
is very complex and usually influenced by many com-
peting forces. While each force is understood concep-
tually, what is needed for a prediction for a complex
molecule is a quantitative estimate of each to see what
dominates.

Another example, is the prediction of regioselectiv-
ity of electrophilic aromatic substitution. Heuristic
prediction is trivial for simple molecules (e.g. a single
heteroaromatic ring), but for complex molecules (sev-
eral heteroaromatic rings) there are too many compet-
ing factors to consider. This is why we made regiosqm
[61]

Figure 2. Interaction of two orbitals separated by three
bonds. At left the two orbitals might be interacting via a
direct, “through-space” overlap. S and A stand for sym-
metric or antisymmetric combination of lone pairs with
respect to a mirror plane interchanging the orbitals. At
right the S and A p orbital combinations interact in a
predictable way (the orbitals involved “repel” each other)
with and * orbitals of the localized bond of the central
bond. The net result is an A below S splitting of the mid-
dle orbital set.
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XVI. ADRIAN JINICH

Note from authors: Adrian Jinich is also a
co-author of the manuscript.

Example 1: – In this work we used quantum
chemistry to predict the standard redox potentials of
652 biochemical redox reactions [62].
The resulting dataset led us to a deeper understand-

ing of why the redox cofactor NAD(P), with its reduc-
tion potential ranging between -370 mV and -250 mV,
has the prime role supporting cellular redox reactions
in almost all organisms, participating in most (¿50%)
known redox reactions. By examining trends in the
estimated redox potentials, we showed that NAD(P)
has a reduction potential range that represents a near
optimal adaptation given biochemical constraints and
selection pressures imposed throughout evolution.

We find that NAD(P) can reversibly accommo-
date the reduction of a wide range of carbon func-
tional groups, including activated carboxylic acids,
and carbonyls, and can also support the common ir-
reversible redox transformations of extended central
metabolism–i.e., reduction of hydroxycarbons and ox-
idation of carbonyls to un-activated carboxylic acids.

We also find that the main cellular electron carrier,
NAD(P), is ‘tuned’ to reduce the concentration of re-
active (and potentially damaging) carbonyl functional
groups, thereby keeping the cellular environment more
chemically stable. Importantly, these insights were
obtained thanks to the enhanced resolution provided
by the large quantum chemistry dataset, which un-
covered important patterns not accessible using tradi-
tional analyses.

Example 2: – In this work we analyzed the struc-
ture and thermodynamics of portions of “carbon re-
dox chemical space”: the chemical space of all possible
redox states of linear-chain n-carbon compounds (for
n=2-5) [63].
For every molecule in n-carbon redox chemical

space, each carbon atom can be in one of four different
oxidation levels: carboxylic acid, carbonyl (ketone or
aldehyde), hydroxycarbon (alcohol), or hydrocarbon.
The edges that connect molecules in redox chemical
space represent reductions or oxidations that change
the oxidation level of a single carbon atom.

After generating these redox chemical spaces, we
found an interesting pattern: regardless of the number
of carbon atoms considered, in every such redox chem-
ical space there is always one and only one molecule
with a maximal number of reactions (edges) connect-
ing it to its oxidized or reduced products (i.e. maximal
redox degree). This molecule is always the n-carbon
aldose sugar (e.g. erythrose for n=4, ribose for n=5,
glucose for n=6, etc.).

We then understood that this result can be under-
stood through a simple and generalizable argument.
The n-carbon aldose sugar satisfies the two constraints
required to have the maximal number of redox connec-

tions:

• each atom must be in an ”intermediate” oxida-
tion level that can be both oxidized and reduced.
Therefore all inner carbon atoms (i.e. atoms 2
and 3 in 4-carbon linear-chain molecules) must
be in the hydroxycarbon oxidation level, while
carbon atoms at the edges (i.e. atoms 1 and
4) can be either in the carbonyl (aldehyde) or
hydroxycarbon oxidation level.

• The molecule must not be symmetric under a
180 degree rotation along its center. Thus the
two edge atoms must be in different oxidation
levels.

This leads uniquely to the aldose sugar molecular re-
dox state configuration.

XVII. INSIGHT BY ERIN R. JOHNSON

I can provide two examples for you.
The first is from my graduate studies, when I was

working toward development of our exchange-hole
dipole moment (XDM) dispersion method. In an early
iteration of the method, we only included C6 dis-
persion terms. When testing it on a benchmark set
of molecular-dimer binding energies, we noted that,
while the method worked well for most systems, the
pi-stacked benzene dimers were distinct outliers [64].

After some investigation, this suggested to Axel
Becke and I that we were missing some important
component of dispersion physics, specifically inclusion
of the higher-order C8 dispersion term arising from
dipole-quadrupole interactions. Inclusion of both C8
and C10 in XDM improved performance for pi-stacked
systems, giving a much more balanced treatment
across the full set of intermolecular complexes [65].

We have since shown that inclusion of higher-order
dispersion terms, particularly C8, is essential for ac-
curate modeling of molecular crystals and of layered
materials, such as graphite. This is summarized in my
recent perspective [66].

A second example comes from a collaboration with
Prof. Graeme Day at the University of Southampton.
Graeme’s group had performed DFT calculations on a
set of 350 organic co-crystals to assess their stabilities
[67].

During a seminar visit to Dalhousie, Graeme men-
tioned that 6 of these compounds were outliers, where
DFT optimization lead to organic salts, rather than
the expected co-crystals. This suggested to me that
the density-functional delocalization error might be
responsible and lead to a subsequent publication [68],
which provided a dramatic demonstration that delo-
calization error can affect not only energies, but also
structures, of molecular crystals.
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There are possibly more examples from my re-
search, but these are the two that immediately spring
to mind.

XVIII. INSIGHT BY LYNN KAMERLIN

I see myself primarily as a biochemist/physical or-
ganic chemist, for me the simulations are a hypoth-
esis testing tool, rather than a tool I expect to give
me the answer. So I first sit down and think a lot
about the problem, how to define it, what simula-
tions would you need to test different (bio)chemical
scenarios, and how can you address the problem in
the best way. I also do a lot of validation, because
most simulation approaches in my field have short-
comings, and can sometimes give results that really
defy everything we know about biochemistry, which
is usually a problem with how the problem was de-
fined/simulations were set up, it worries me a lot that
a lot of computational biochemists have absolute trust
in the simulations as truth, and don’t think about the
limitations based on how the problem is set up and
shortcomings in the methods. If there is an outlier,
that deviates from what I would expect based on my
knowledge and intuition as a (bio)chemist this is first
and foremost a cause of serious concern for me, and
a reason to get the students and myself to go back to
the experimental data and look at it very carefully and
start a massive debug process. Sometimes the simula-
tions do really reveal something that would not have
been obvious from the calculations, but I work on the
“extraordinary claims require extraordinary evidence”
premise so it takes a lot to convince me that this is
new (bio)chemistry rather than a problem with the
simulation setup. If we see it frequently enough over
multiple systems in different settings, then I might
believe it’s a trend.

I actually have a nice example of this, although
the revised draft will not be ready in time. We have
been doing additional simulations and analysis on this
preprint to quantify the ground-state destabilization
we claim is really important: [69]

One of the things that was very confusing is that
all our variants / compounds cleave preferentially the
pro-(R) carboxylate group, which is what you would
experimentally expect, except CLG-IPL which sud-
denly cleaves pro-(S). Lots of head scratching but then
we saw it again and again with every compound. The
preprint version has a lot of explanations for why the
simulations may not be adequate, 6 mutations at once,
no crystal structure etc. In the interim we have done
a ton more simulations, looking at other things than
just what we are looking at in the first round of the
preprint. We have actually found out something cool
they did during the experimental evolution, that they
are not aware of, that caused this flip, and that is
something that can actually be used for rational engi-

neering (confidential right now, making final revisions
to the revised manuscript). I think that’s pretty neat
in terms of a situation where everything points to the
simulations being wrong or problematic, but actually
it was something they had totally missed from their
experimental setup and actually the outlier from the
simulations was real, and not just real but something
that can be manipulated on purpose for rational de-
sign once you know this is what the system is doing.

XIX. INSIGHT BY HEATHER J. KULIK

This is the closest anecdote I could think of from
our own work:

Early on, we developed graph-based representa-
tions intended to systematically incorporate atom-by-
atom contributions to property predictions in tran-
sition metal chemistry [70]. These feature sets were
quite large and high-dimensional relative to our data
set sizes. We were at first just interested to under-
stand if we carried out feature selection if that im-
proved model performance. We also wanted to iden-
tify best practices if we were interested in selecting
features for multiple properties. Although it may be
simple and intuitive in retrospect, what we observed
strongly influenced the direction and focus of our re-
search in accelerating chemical discovery in inorganic
chemistry from that point on. Specifically, we no-
ticed that interpreting selected features, while not
truly unique, could help us to rationalize when our
models performed well. For instance, the features se-
lected to predict the spin of a molecule focused heavily
on ligand-field-dependent aspects of the direct coor-
dination environment, where ligand field theory is a
well known phenomenological model to predict spin
states that our feature selection had essentially re-
vealed to us. But what was more interesting were
cases where we had extremely limited prior experi-
ence and expectation about what features should be
selected. We found that things like redox potential
depended on completely different length-scales and
properties (i.e., more size and coordination based than
electronic/ligand field based), giving us a map and
a path forward to carrying out orthogonal design of
those two properties (expanded upon in [71]). Essen-
tially, the maps of features allowed us to map and
predict when properties should change in transition
metal chemical space without requiring us to run the
ML model we had trained or carry out the compu-
tation. Since then, we have used this approach to
develop structure-property relationships and under-
standing across a range of challenges in energy stor-
age (e.g., [72]) and catalysis (e.g., [73]), and the same
design principles generally hold - for instance, redox-
related properties are often used to rank expected per-
formance of catalysts, but we know that when the
catalytic property of interest is highly metal-directed,
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that our feature maps will tell us that the relationship
should not hold past the typical set of catalysts people
traditionally include in a smaller scale study. We’ve
used these guiding principles and representations to go
back and interpret broader properties (e.g., gas sepa-
rations in metal-organic frameworks) and shown how
these features can be sensitive reporters of when re-
searchers’ lack of data set diversity can limit their con-
clusions [74]. Overall, we consistently find the extent
to which selected features vary tells us how indepen-
dently these properties can be tuned, giving us a path
for when multi-objective design is most likely to be
fruitful. Excitingly and very recently, we’ve also been
able to show (work in preparation) that these selected
feature maps are largely invariant to the electronic
structure method chosen, suggesting they also have
the promise of introducing an error cancellation that
gives us robust design principles, even when the un-
derlying physics-based model (for us, DFT) may not
be expected to perform well.
For us, at least, Figure 11 in [70] was the jumping

off point for everything I described.

XX. INSIGHT BY JEAN-PAUL MALRIEU

Tiny discoveries – Quantum Chemistry is a rather
modest and applied discipline, at the border between
physics and chemistry. It applies the basic equa-
tions of Quantum Physics, without questioning them
(no epistemological revolution is to be expected from
that practice), and since the objects it considers are
molecules, in their infinite diversity, it concentrates
on rather specific architectures and their properties.
Chemistry is a science of differences and perturba-
tions, often small ones; reaching new laws is difficult
in this field.
“Discovery” is an intimidating word. Conti-

nents have been discovered, structures and laws too.
And sometimes quite general and novel phenomena
emerge, which deserve to be called discoveries, such
as superconductivity. Aromaticity was proposed be-
fore its theoretical justification, and so it happened
for Lewis electron pairing.

Looking at the story of quantum chemistry, I es-
sentially see the Woodward and Hoffmann rules as a
“discovery”. Their work simultaneously builds con-
cepts regarding the stereo-specificity of a wide class of
reactions, formulates a law and provides an interpre-
tation. The very interesting story of this discovery has
been told in great detail by Seeman (J. Org. Chem.,
80, 11632 (2015)), and it is clear that this work con-
sisted first of the identification of a problem and then
its rationalization. The computations (at this time
very primitive) did not play a central role. Quantum
Chemistry fills three roles:

• It solves specific problems, provides more and
more precise values of given properties of given

molecules or super-molecular architectures, it
answers quantitative demands raised by experi-
mentalists. It also becomes a tool for imagina-
tion of new, as yet unsynthetized frames possess-
ing original properties, a tool for exploring the
possible. But if we show the stability of a yet
non-existing molecule, suggesting new horizons
of the vast world of chemistry, might we speak
of discoveries? Maybe, but we rarely are fortu-
nate enough to play this game, and again, the
forces at work would be imagination and logic,
before a confirmation of our intuition by heavy
computations.

• Quantum Chemistry provides accurate ap-
proximations to approach the solutions of
Schrödinger’s equations – this is the task of
methodologists, a very satisfying activity (to
which I dedicated most of my efforts). But
the formulation of fundamental structures of the
quantum Many-Body problem, the Linked Clus-
ter theorem for instance, is due to physicists and
is essentially logical. The elegant Coupled Clus-
ter formalism comes from nuclear physics, and
again is a logical proposal. Then come technical-
ities to transcribe these formal tools into efficient
codes, a domain which our discipline definitely
performs with impressive success.

• Quantum Chemistry provides interpretations,
explanations through concepts and models,
identification of effects and frames of under-
standing how these various effects combine,
often competitively, sometimes cooperatively.
This is our major task, indeed. It becomes in-
teresting when the effects involved and the way
they combine have some generality.

I perhaps may give an example of interpretation
from my own practice, namely the rationalization (and
prediction) of the structure of ionized rare-gas clus-
ters. Ar2+ is spectroscopically well-studied, the de-
localization of the hole between the two atoms ex-
plaining the bonding phenomenon. What about heav-
ier clusters, the existence of which was attested by
mass spectrometry? What are their structures? Does
the hole delocalization, which is directional, explain
their existence? We performed ab-initio computa-
tions, came up with reliable results, Ar3+ is linear,
with a delocalization of the hole, consistent with a
mono-electronic picture. In principle, the delocaliza-
tion of the hole could go on along the same axis, but
the most stable Ar4+ is not linear, it only exhibits a
plane of symmetry; it looks like a flag, and the larger
clusters exhibited at first glance strange geometries.
Everything could be rationalized: the polarization of
a neutral atom by the positive charge of Ar3+ is ener-
getically more favorable than delocalizing the charge
over 4 atoms. Polarization prevails over delocalization
of the charge. And in Ar5+, two neutral atoms stand
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at the same distance from the linear Ar3+, but are
kept together, of course by dispersion forces. Adding
other atoms one builds a crown of 5 atoms centered
between two of the atoms of the Ar3+ stick, around
the axis. Then a second crown is constructed, cen-
tered on the midpoint of the line joining the other
couple of charged atoms, according to the hierarchy
of effects: delocalization¿ polarization¿dispersion.
This a case where computation came first, deliv-

ering a priori bizarre geometries, provoking thinking.
The pleasure, and the possibility to send a message, to
tell a story, is in the second step, in the emergence of a
simple and physically grounded rationalization. The
understanding there has some generality, it is valid for
all rare gases, but it remains confined to a very tiny
land of molecular science. It would be indecent to
call that a discovery! And notice that the theoretical
knowledge of the physical effects at work in the prob-
lem was a prerequisite for understanding, the logic of
constructing a hierarchy of physical effects could not
emerge from only numbers provided by a sophisticated
codes. Human intelligence, i.e. curiosity plus knowl-
edge, remain crucial, even in these days, where AI is
(appropriately) praised .

References: [75, 76]

XXI. INSIGHT BY ANAT MILO

We were working on predicting aldehyde deutera-
tion ratios using different NHC organocatalysts. Ini-
tially, the features used to identify linear regression
models were taken from the pre-activation catalysts’
ground state structures, but we were getting overfit-
ted models with multiple parameters and cross terms.
The reaction pathway is presumed to pass through
a Breslow intermediate, where the aldehyde is con-
nected to the catalyst. So we extracted features from
the intermediate and since it had two possible confor-
mations we added to the dataset features from both
the E and the Z conformer. We ended up finding a
predictive model with one parameter from the catalyst
structure and another from the E conformer. Inter-
estingly, features from the Z conformer didn’t provide
a good model. Later and in the context of another
project, we found that the reaction profile with the Z
configuration had high-lying intermediates and tran-
sition states compared to the E. So here, the linear
regression model pointed to the correct conformation
without the need for an elaborate computation of the
full reaction mechanism.

On a more anecdotal note regarding the same
model, we were looking at a small dataset of only
14 catalysts (mind you, we have to prepare and test
all the catalysts experimentally, so not entirely small
from that perspective). Our aim was not to provide a
predictive extrapolative model, but rather identify the
mechanistic features that make for an effective cata-

lyst. So we deemed it unwise to have a training and
test set and just performed a 3-fold cross validation
(repeated randomly over 500 trials). Then reality pre-
sented us with an opportunity to test how predictive
this model was. The model gave a goodness-of-fit R2
value of around 0.8 with one catalyst that was a clear
outlier without which the model gave an R2 value of
around 0.95. So I asked the postdoc who ran the cat-
alytic experiments whether there was something odd
about that particular reaction. He said something in
the lines of “now that you mention it, that reaction
formed a precipitate once it was set up, which was
not the case for other reactions”. We asked the post-
doc who had prepared all of the catalysts when this
particular catalyst was synthesized and it turned out
that it was a two year old batch that had somewhat
decomposed. Once the catalyst was prepared again
the resulting deuteration ratio actually fit the linear
regression plot and we got a 0.94 R2 value. So even
though this was not our goal, we ended up demon-
strating to ourselves the power of mathematical mod-
els in identifying problematic reactions, but also, that
our specific model was rather predictive.

The paper was recently uploaded as a preprint and
is now under review: [77]

XXII. INSIGHT BY FRANK NOE

I am not sure if I have the kind of answers you are
looking for, we are mostly developing methods. But
here’s two that I am particularly proud of and that
also rely on generalizing ideas that have popped up
by anecdotal observations:

1. Boltzmann Generators [78] – We work a lot
on the sampling problem in many-body statistics. I
had this idea that if we could find a clever variable
transformation of state space, perhaps we could sam-
ple much more efficiently. That led me to invert-
ible neural networks, where complex variable trans-
formations could be mathematically represented and
machine-learned. I got down and formulated this
problem for statistical mechanics, where we often have
an energy function or path action given with respect
to which we want to sample, and it turns out this is in
principle possible by just generating from the neural
network and evaluating the energy-function pointwise.
So the idea of the Boltzmann Generator was born and
6 months later we had a completely new approach to
sample many-body systems in a principled way with-
out relying on making tiny steps in state space.

2. PauliNet [79] – We had this vague idea of solv-
ing the electronic Schrödinger equation with a deep
learning representation of wavefunctions. It became
clear early that this would lead to a Quantum Monte
Carlo method, but it wasn’t clear how to best repre-
sent fermionic wavefunctions, and whether we could
even reach a high enough accuracy to justify the com-
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putational cost. The first approach to use deep learn-
ing for the Jastrow function worked in principle, but
seemed just as an expensive way of what diffusion
Monte Carlo already did. The key idea came when
we found the backflow method - an approach intro-
duced in the QMC literature, to transform orbitals to
many-electron functions such that the Slater determi-
nants built from them become more expressive. But
backflow hasn’t had much success in quantum chem-
istry so far. It struck us that this limited success what
just because the functions used were not expressive
enough, but this would be an ideal approach for op-
timizing them with Machine Learning. The idea for
PauliNet was born. Now we can solve system really
tricky quantum chemistry systems with 30 electrons
to extremely high accuracy, at a cost of order (N4).
We hope to get in the regime of 100-200 electrons with
this black-box method, and at that point there would
be nothing on the market that can compete.

XXIII. INSIGHT BY JENS K. NØRSKOV

Discovery of scaling relations as a basis for a
theory of transition metal heterogeneous catal-
ysis –

Studying trends in adsorption energies and transi-
tion state energies for surface reactions made us realize
that energy differences from one metal surface to the
next scale with each other[80, 81]. The adsorption en-
ergy of OH scales with the adsorption energy of O and
the adsorption energy of CH2CH3 scales with the ad-
sorption energy of C (or CH2), for instance. Similarly,
the transition state energy for N2 dissociation scales
with the N adsorption energy and that of CO with the
C and O adsorption energy. In fact, the interaction
of a given molecule with a transition metal surface
scales with the adsorption energy of whichever atoms
form bonds to the surface. A subset of such correla-
tions, known as Brønsted-Evans-Polayni (BEP) rela-
tions have been observed in many branches of chem-
istry. They typically relate an activation energy to a
reaction energy (or, equivalently, the rate to the equi-
librium constant) of an elementary reaction step. Yet,
the generality was not discovered until we had reliable
computational results that could span a large enough
range of energies to reveal the trends.

It typically takes many (hundreds or thousands)
of different intermediate and transition state ener-
gies to define the kinetics of a full catalytic reaction.
This has made it extremely difficult to define some
simple rules in this field, let alone design new cata-
lysts on a scientific basis. The discovery of scaling
relations has changed this drastically by projecting
this extremely-multi-dimensional problem onto a few-
dimensional one, allowing the kinetics of a full cat-
alytic reaction to be expressed as a function of a few
bond energies or descriptors in what is known as vol-

cano plots. This has provided rationalization of a con-
siderable part of heterogeneous catalysis[82]. It has
also defined a set of catalyst design rules[83, 84].

XXIV. INSIGHT BY ARTEM R. OGANOV

Here is what fits closest:
Story 1 – Physicists know well that as you com-

press solids, they eventually transform into free-
electron metals. Sodium, however, is already a
nearly free-electron metal at normal conditions, and
one might expect it to get only closer to the free-
electron regime upon compression. We, however, pre-
dicted that at pressures of less than 2 million atmo-
spheres sodium becomes... a transparent semicon-
ductor. This was also confirmed by experiment, and
a joint theoretical-experimental paper was published
[85]. (Note from authors: Ref. [85] is also discussed
by Chris Pickard)

We found this transparent sodium to be an elec-
tride. Many more pressure-induced electrides fol-
lowed. And band gap opening under pressure was
found in lithium (and its new phases are also elec-
trides). The explanation of these phenomena is based
on the important role of core electrons under pressure.

Story 2 – Solid metallic hydrogen, recently synthe-
sized at the very high pressure of 4.25 million atmo-
spheres, was long believed to be a room-temperature
superconductor. It was hypothesized by Ashcroft,
and later confirmed by theoretical and experimental
works, that one can obtain high-Tc superconductors
at lower pressures by alloying/reacting hydrogen with
small amounts of other element(s). Indeed, the cur-
rent record of superconductivity is LaH10, which has
Tc = 250 K at the pressure of 1.7 million atmospheres.
Many viewed this as electron-doped metallic hydro-
gen. However, we have found[86] that superconduc-
tivity of such hydrogen-rich hydrides very strongly de-
pends on the electronic structure of the metal atom
- so much so that even within otherwise very similar
lanthanoids one observes huge differences in the su-
perconductivity of hydrides. For example, LaH10 and
CeH9 are high-Tc superconductors, but PrH9 is a low-
Tc superconductor[87], and NdH9 is not a supercon-
ductor at all[88]. This means that these polyhydrides
cannot be considered as forms of metallic hydrogen
and gives a principle for designing new high-Tc su-
perconductors. We have used this design principle to
predict a number of hydride superconductors with Tc
¿ 200 K.

XXV. INSIGHT BY JUAN
PEREZ-MERCADER

My work in science has always been driven by the
mathematical/logical consistency underlying the phe-
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nomenology and (since the beginning of the 1980s)
the algorithmic representation of the observations
and their computer representation. These have led
me to be a “reductionist” with the soul of a “non-
reductionist” by consistently relying on first principles,
their mathematical expression and the ensuing tension
between experiment and computer simulation. Using
the latter as a means to complement actual experimen-
tation.

In a way, I look at “physical laws” as an idealized
human representation of reality which is valid up to
a certain degree of fine-graining (outside-in), when
new phenomena that were integrated in the preceding
coarse grained (inside-out) description. Physical laws
as represented by mathematical equations are what
guides my discovery. Then I use computer solutions
to inform experiment and when I can, do the experi-
ments to check the validity of the laws.

I have applied the above thinking in Grand Unified
Theories to study proton decay. The current data
is compatible with my predictions of 1980, but not
enough data yet.

Also in supersymmetry/supergravity extensions of
the Standard Model of Matter, where our mathemati-
cal calculations were used to pin down parameter val-
ues to hunt for the Higgs particle. The big data from
the CERN experiments where analyzed in the light of
what the extensions of the mathematical/theoretical
Standard Model suggested. And . . . bingo, they dis-
covered the Higgs particle and bound their fundamen-
tal values.

In studying galaxies at large scales, I used another
very important principle: universality (cf. Wilson,
Gell-Mann and Kadanoff). By establshing analogies
between analogies (cf. Stephan Banach) and using
universality, together with lots of astrophysical data
which constrained the galaxy-to-galaxy correlation to
a power law, we were able to predict the value of the
exponent.

In the study of the Lense-Thirring effect, we were
looking for an “outlier” in the computer simulations
of the Earth-LAGEOS satellites System and/or in the
data. If there was an outlier it would represent a de-
parture from Einstein General Theory of Relativity.
We not only find any outliers, we found that Ein-
stein’s theory was “Queen” and that its prediction
of the Lense-Thirring parameters was perfect. This
has been vindicated in recent orservations/computer
simulations of binary stars and pulsars.

Relying on ideas from universality and first-
principles, in the early 2000s I began to look for a
compact and simple representation of the properties
common to all living systems. Using computer gen-
erated solutions we saw that certain “simple” sets
of stochastic reaction-diffusion equations represented
them. The amounts of data generated were very large
(we had to build a beowulf cluster to do this) and the
analysis required insightful (i.e., guided by their rep-

resentation of underlying principles, such as “handling
of information”) studies of the parameters. There
were segregated regions of parameter space which con-
tained the interesting phenomenologies. The study of
the numerical data and its correspondence with first
principles, led me to conceive (a) that there would
exist a representation of life which did not use bio-
chemistry if (b) non-biochemical chemistry computed.
The form of the equations led me, after a considerable
effort searching in databases for standard chemical ki-
netics, that the Belousov-Zhabotinsky (BZ) reaction
played a fundamental role in these mimics. Therefore
I began to think (around 2005-6) that one should build
an advanced chemical automaton using BZ. Based on
this “knowledge” we built a chemical Turing machine
(patent 2017, papers in 2019) and are now able to
build in-vitro totally non-biochemical life mimics, and
are also on our way to build an “Avogadrian” com-
puter.

To summarize, in my research I combine first prin-
ciples, logical consistency (as represented by math-
ematical expression of the first first principles) and
computer simulations to inform experiments which are
then fed back to the theoretical description. So, if I
wanted to build a plane I would not imitate a bird or
a flying insect. Instead I would understand the prin-
ciples involved in flying and implement them ex-novo.
Just like the Wright brothers did!

XXVI. INSIGHT BY CHRIS PICKARD

This is a great question, and one close to my heart.
Ab Initio Random Structure Searching (AIRSS)

[89, 90] involves the high throughput first principles
relaxation of diverse stochastically generated struc-
tures (crystals, clusters, surfaces, interfaces). The em-
phasis is very much on ’exploration’, and hunting for
these outliers, or surprises. I try to highlight the new
phenomena uncovered in the searches, rather than the
details of the crystal structure. But, of course, you
have to get those right to make meaningful predic-
tions. When I find a surprising result, I put a lot of
effort in trying to get it to go away (most do). I think
this has lead to a very high success rate, where the
predictions have found to be good.

Many of the early applications were to the high
pressure sciences, starting out looking for supercon-
ductivity and metallicity in the hydrides.[89] This
has grown to be a very active area with well known
successes.[91]

I think the best examples of what you are looking
for are the following:

Mixed phases in hydrogen [92] – In the course
of trying to understand Phase III of dense hydrogen
(our prediction of C2c-24 appears to be standing the
test of time [93]) I was confronted by a stunning (I had
to go and sit on the beach in St Andrews for a while
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to recover - it was a good summer) metastable struc-
ture of a type not previously suggested for an element.
It consisted of layers, alternating between graphene-
like and molecular. I felt these structures must be
important for dynamically stabilised phases (ZPE, or
T), but the techniques were not then ready to permit
a full phase diagram to be computed. Nevertheless,
we published the structures as part of our study, and
emphasised them in presentations to experimentalists.
Interestingly, at the time it was as if they couldn’t
see them - they didn’t answer any questions they had
and ”muddied an already murky field”. This changed
when Goncharov and Gregoryanz contacted me with
a puzzle - they were seeing a surprising softening in a
Raman peak in warm (room temperature) hydrogen.
I suggested that they were likely seeing these mixed
phases, and this indeed was the case.[94] The mixed
phases are now an established feature of the hydrogen
phase diagram. I think it is fair to say that, given the
experimental challenges in determining the positions
of protons, our current understanding of dense hydro-
gen is to a large extent due to first principles structure
searches, with much having been mapped out in Ref.
[92].

A question could be asked - why were we so success-
ful. Of course, high throughput searches made a big
difference, but these structures could probably have
been found using MD. I think the reason that they
were not is because MD is often conducted in cubic
unit cells, and fixed numbers of atoms. Typically mul-
tiples of 8. But my candidates for dense hydrogen all
required multiples of 12. I had been in the habit of
not assuming the number of atoms in the unit cell,
and choosing them randomly as part of the structure
generation. This was also very important in the alu-
minium case below, and highlights the importance of
unbiased random searches.

Ionic ammonia [95] – In searching for molecu-
lar crystal structures a well established protocol is
to stochastically pack the molecular units. This will
shrink the search space, and dramatically increase the
odds of finding low energy configurations. But this
might be at the cost of missing the most stable! Fol-
lowing my habit of assuming as little as is computa-
tionally feasibly, I had been searching for dense phases
of NH3 by individually throwing the N and H atoms
into randomly shaped unit cells. It was a fairly rou-
tine project, but I was jolted awake one early morning
on checking the most recent results. I was convinced
something was broken - the most stable units (by some
margin) where NH2 and NH4, not NH3. This possi-
bility has not been discussed previously, and it was
not something we were looking for. After careful test-
ing, the result held, and the spontaneous ionisation of
NH3 is now an established experimental fact,[96] and
spontaneous ionisation more generally is considered as
a possibility where it might not have been previously.

Complex phases of aluminium at terapascal

pressures [97] – We (and others, in particular Yan-
ming Ma) had starting to find a great number of elec-
tride type structures in the dense elements. [85, 98]
(Note from authors: Ref. [85] is also discussed by
Artem R. Oganov) One striking feature of these were
the localisation of states under increasing pressure,
and band narrowing. I wondered whether I could find
a non-magnetic element that under the right condi-
tions would exhibit magnetism. So, I begin the hunt,
systematically working my way through the periodic
table. Importantly, it turned out, I was randomly
choosing the number of atoms in the unit cell. When
it came to aluminium I was shocked (again) to find
the most stable structure at 3 TPa (it was trying a
wide range of pressures, and my expertise in gener-
ating pseudopotentials meant I could reach pressures
those those dependent on supplied potentials could
not) contained 11 atoms in the unit cell. Few groups
would even consider odd numbers of atoms as a pos-
sibility. It was a lot more stable that the other can-
didates, and initially, when I visualised it, it made
no sense. It looked to be amorphous, or still random
somehow. But I kept spinning the structure around,
making supercells, in the visualiser, and eventually
all became clear. The structure consisted of tubes
and chains of atoms. I was well aware of the work
of Nelmes and McMahon on host guest phases in the
alkali metals - Volker Heine had publicised it in Cam-
bridge. And this was exactly what I was seeing - an
approximant of a kind of 1D quasicrystal. Once I had
seen that, it was straightforward to construct other,
larger, approximants, and estimate the ideal lattice
parameters for the host and guest phases. I was also
able to determine that the structure was of the elec-
tride type, and construct a simple model for it.

This result has not been confirmed experimentally
- yet. But it has had a large impact on the field -
it showed that materials under extreme compression
might be complex, and not just simply close packed in
some way. This has inspired the high pressure com-
munity, in particular the shock physicists, for exam-
ple being used as part of the justification for using
the NIF to perform exploratory science. Continuing
my sweep through the periodic table, I did eventually
manage to find magnetism in an electride phase, in
potassium.[99]

XXVII. INSIGHT BY MARKUS REIHER

1) In this work [100] we combined our fast interac-
tive quantum mechanics engine (reported here [101])
with the VR framework Narupa of Dave Glowacki
and his group which enabled interactive exploration of
chemical reaction space (by virtue of high-throughput
computation in real time) up to the point where we
could use the data flow to train a neural network that
learns the potential energy surface. This new setting
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that combines ultrafast quantum methods for high-
throughput calculations with virtual reality and ma-
chine learning defines a conceptually new approach
toward the exploration of the molecular world. Inter-
estingly, the result for human perception of the (quan-
tum) molecular world is not easy to describe in sen-
tences due to a lack of standard concepts to report
such immersive experiences. Instead, it requires one
to try it out in order to understand its potential.
2) Our work on automated screening of reaction

mechanisms demonstrated that a full predictive un-
derstanding of chemical reactions can only be achieved
if all relevant species and connecting transition states
are explicitly evaluated. This high-throughput quan-
tum approach turns the study of basically all chem-
ical reactions into a big data problem. The wealth
of data, automatically processed by evaluation algo-
rithms has allowed us to show that there exist nu-
merous side pathways in a catalytic process that need
to be taken into account. This general insight was
gained for a typical homogeneous catalyst, the nitro-
gen fixation catalyst by Yandoulov and Schrock re-
ported here[102].

Or in another example (the formose reaction) we
understood that an exploration in full conformational
depth is necessary to uncover all relevant reaction
pathways,[103] Those do not necessarily need to start
from the lowest-energy conformers as other conform-
ers, higher in energy, may actually feature lower bar-
riers, an insight of far-reaching consequences; see Fig.
4 of that paper. Interestingly, this problem appears to
be not of the kind that one can extract a new concep-
tual general idea from, but all our calculations point
to an understanding of a necessity of explicit calcula-
tion of the full many-particle wealth of chemistry in
order to figure out what is going on in a quantitative
sense. Of course, this is intimitaley connected to the
peculiarities of chemical reaction mechanisms and not
related to physical properties in general.

XXVIII. INSIGHT BY JEAN-LOUIS
REYMOND

Thanks for your mail, this is an interesting inquiry!
To your questions:

on our side our big data project has been to un-
derstand chemical space by enumerating all possible
molecules from first principles. This generated billions
of molecules, and we quickly came to the limits of what
computer allow to do. The next question was to do
something useful with these billions of molecules - we
had to look into them in a clever way, and we turned
to mapping chemical space to understand the content
of chemical space and search for bioactive compounds.
Like everyone else, we were a bit scared of big num-
bers - combinatorial chemistry is dominated by the
fear of missing something. What’s come out of visual-

izing chemical space was unexpected: we can actually
get an overview and proceed with insights. In fact,
we use the computer not only to generate the data,
but also to help us see the data, because we cannot
leave it to the machine to solve the problem entirely.
Also I find that bench chemists only commit to a diffi-
cult project if they can decide, so they need to choose,
not the computer. At present we are implementing AI
in that game at all levels: enumeration, visualization,
activity prediciton and retrosynthesis. Whether this
will change everything is open - it’s exciting to ask
because things a possible with AI that were simply
not even imaginable previously.

we’ve done some small molecule drug discovery with
our GDB, there is some ongoing unpublished, a pre-
vious study with a lot of details [104]. On the side of
application, we have used our chemical space approach
recently to discover antimicrobial peptides [105]

XXIX. INSIGHT BY STEFANO SANVITO

Let me give you two examples from my group. I am
not sure they will match in full the brief ... I’ll let you
decide.

1) Discovery of new magnets – We have carried
out a massive high-throughput search (DFT - PBE)
for novel magnets, crystallising in the Heusler alloys
structure (about 500,000 prototypes calculated). For
all of them we have assessed the thermodynamical
stability (convex hull) and their basic magnetic prop-
erties. We have evaluated their possible Curie tem-
perature via a machine-learning model trained on ex-
perimental data. With this we have identified a new
(never made before) magnet with extremely high TC

(predicted 938K), Co2MnTi. This has then be made
in the lab (successfully) and the TC was measured at
940 K. In my opinion it is a kind of big deal since: 1) it
is one of the few example of computer-to-lab pipeline,
2) only 5% of the magnets have TC larger then 600 K,
3) it is the only example I know of the computer ”de-
sign” of a material with macroscopic magnetic order
(magnetism). All this has been published here: [106]

2) Designing rule for magnetic anisotropy in
molecular magnet – We have constructed a SNAP
force field (similar to GAP, but with linear regres-
sion) for Co-based single molecule magnets. With
the same structural descriptor we have constructed a
”force field” for the magnetic anisotropy tensor. Then
we have defined a ”functional” containing the energy
and the magnetic anisotropy. This has been min-
imised over the entire configuration space ( 30 atoms -
90 degrees of freedom) in order to find the main struc-
tural parameters of the molecule driving the magnetic
anisotropy. In particular we find that the alteration
of a bond angle and one bond length determine the
anisotropy and changes by less than 5% produces a
change in anisotropy of more than 50%. All this is



16

published here: [107]

XXX. INSIGHT BY FRANZISKA
SCHOENEBECK

we have several such examples where a computa-
tional discovery/unusual result led us to dig deeper
and eventually we proved the new phenomenon exper-
imentally. The following three especially stand out in
this context:[108–110]

XXXI. INSIGHT BY ILJA SIEPMANN

Here is another computation-led work that via val-
idation led to a patent[111]. We also tried to get
a patent for the hydrocarbon isomerization, but it
turned out that Chevron had patents for these ma-
terials but had given them different names.

XXXII. INSIGHT BY ALEX SODT

This is from our paper ”The molecular structure of
the liquid ordered phase of lipid bilayers” [112]

Experimentally, three-component mixtures of
cholesterol, an unsaturated lipid, and a saturated
lipid form phase-separated two dimensional liquids.
We used the ”Anton” special purpose molecular
dynamics computer to run a simulation of a mixture
predicted to phase separate. We applied hidden
Markov modeling to assign the state to one of the
two co-existing phases (this was the hidden state).
Our HMM observable was the local lipid composition
(one phase is highly enriched in the saturated lipid
and so lipids in this phase will be near other satu-
rated lipids). This allowed us to compare to NMR
order parameters (critically, without using the order
parameter information to assign phase).

The assignment let us quantitatively analyze the
properties of the phase under co-existence conditions.
We verified the structure using a simulation of the
pure liquid ordered phase (not coexisting conditions).
The method has been implemented by a number of
other groups looking for similar information.

It’s clear that this doesn’t strictly qualify under the
request you made since the main consequence of the
tool was the assignment of lipid phase (ordered or dis-
ordered) and the most important thing we learned
could have been learned from the simulation of the
pure ordered phase without the HMM. However, it
was critical to observe the same structure under co-
existing liquid conditions.

XXXIII. INSIGHT BY ISAAC TAMBLYN

To be honest, I’m not sure I’ve actually done what
you described in any AI / ML paper so far. We’ve
certainly developed tools which are faster, and I’ve
seen some AI produce results which were not obvious
before hand, but I’m not sure I got a general under-
standing from it.

The closest example I can think of is in this paper,
where the neural network learned how to produce to
different structures in self assembly [113] I would have
had no idea how to even attempt this before hand.

XXXIV. INSIGHT BY DONALD TRUHLAR

An important problem in electron transfer and in
fact in photochemistry in general is diabatization, i.e.,
calculating diabatic states. We have worked on this
for many years, and the best methods are orbital-
based and based on configurational uniformity. One
needs localized orbitals or diabatic molecular orbitals,
and one needs to identify diabatic prototype state
functions.

This year, we showed that we can get diabatic states
by a deep neural network. We do not need to find
diabatic molecular orbitals; we do not need to iden-
tify diabatic prototype configuration state functions.
The deep neural network finds the diabatic states with
minimal help from humans.

We have one completed paper on this [114]. We
also have more good results that will be written up
in a second paper and we are starting to apply it to
harder problems. We are enthusiastic about the new
method.

XXXV. INSIGHT BY ALEXANDRE
TKATCHENKO

Thanks for asking. I have a counterexample to your
question :). This concerns the usage of data analy-
sis / ML for breaking established textbook ”laws”.
Namely, in chemistry there are many established
quasi-linear relations. For example, molecular polar-
izability is supposed to be inversely proportional to
the HOMO-LUMO gap among many other examples.
When you generate enough data in chemical space
with the purpose of constructing ML models you real-
ize that all those ”textbook rules” do not hold in large
enough chemical spaces.

This paper provides an initial indication of such lack
of simple ”chemical correlations”, [115].

Our recent review provides a more detailed analysis
of this situation [116].
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XXXVI. INSIGHT BY KOJI TSUDA

Molecular design is best done when humans collab-
orate with AI. But finding a narrative for such a paper
is hard, because it is difficult to show that AI was nec-
essary in developing the molecule. There are several
on-going projects that humans select good molecules
from a large number of ChemTS-generated molecules,
and try to generate their modified versions. We still
do not have published results.

We found that n-pi* excitation is used by AI to
achieve desired absorption wavelength on our ACS
central science paper [117], when humans mainly look
at HOMO-LUMO excitation. It is an example that
AI took a fundamentally different path, but it may
not be something you wanted to hear.

XXXVII. INSIGHT BY ALEXANDRE
VARNEK

Several years ago, we’ve published a paper [118] in
which the outliers analysis was used to assess a qual-
ity of compounds studied experimentally by our part-
ners. In particular, we’ve discovered that almost all
detected ouliers correspond to hydrolysed or degraded
compounds. This didn’t lead to discovery of a new
physical phenomena which you were looking for but,
up to me, useful practical observation.

XXXVIII. INSIGHT BY TEJS VEGGE

1) Using an in house high-throughput genetic
algorithm-DFT approach we analyzed ¿100.000 mixed
metal halides for ammonia storage. This study out-
lined two new types ternary metal halide outliers
which followed a different ab/desorption profile [119].
This insight let to a simple design rule that was used
to design new and improved ammonia storage mate-
rials for industrial applications.

2) We performed a large DFT-level screening study
of doped 2D and 3D layered oxyhydroxide catalysts
for the oxygen evolution reduction reaction, finding
that some of these dopants could induce a shift in the
mechanism for the rate limiting step and lead to a
reduction in the overpotential[120]. This insight was
later applied by an experimental group to make and
confirm that Zn-CoOOH followed a different mecha-
nism with a lower overpotential than CoOOH [121].

XXXIX. INSIGHT BY ANATOLE VON
LILIENFELD

1) Understanding of representations through
experimentation – When looking at learning curves
of energy ML models throughout compound space

(test error vs training set size) we realized that we
could raise the off-set by making our representation
less physical. More specifically, using interatomic
functions which grow linearly with distance (rather
than decrease as energetic interaction do) the off-set
of the learning curve increases. Using functions which
grow quadratically, the off-set increases even more!
From that we concluded that using a representation
based on functional forms similar to interatomic force
fields should yield the most data-efficient ML models.
This ”discovery” was published in ”Understanding
molecular representations in machine learning: The
role of uniqueness and target similarity” [122] and
the insight led to the subsequent development of the
FCHL representation [123], currently one of the (if not
the) most data-efficient representations for QML mod-
els applicable throughout chemical compound space.

2) Discoveries from outliers –We used ML mod-
els to predict formation energies of all the 2 M crystals
one could generate using main group elements and the
elpasolite crystal structure. We realized that there
are many crystals with relatively low formation en-
ergy which would have non-zero lowest possible to-
tal oxidation numbers (when you add those oxida-
tion numbers from all the possible ones tabulated in
text-books which result in the smallest total value).
This suggested that hitherto unknown oxidation num-
bers should exist! In particular, using this criterion,
and based on a convex hull analysis, we could iden-
tify the NFAl2Ca6 crystal (out of the 2m) which was
(a) expected to be stable and (b) contained an Al
atom with a negative oxidation number (absent from
all text book entries), which we validated using DFT
(Voronoi, Bader, and Hirshfeld charge analysis). The
insight from that is that there might be many more
possible oxidation states which have not yet been con-
sidered. This was published in ”Machine Learning En-
ergies of 2 M Elpasolite (ABC2D6) Crystals” [124].

XL. INSIGHT BY EVA ZUREK

I will discuss the search for high-temperature super-
conductivity in hydrogen rich materials under pres-
sure. I attach a couple of review articles I wrote on
this topic [125–127].

After various groups had used crystal structure pre-
diction to find the most stable structures of binary hy-
drides and calculate their properties it became pretty
evident that the highest Tc binary materials would
contain hydrogen and either an alkaline/rare earth
metal, or a main group element. This inspired my
group to carry out calculations on ScHn and PHn
phases under pressure.

Regarding the alkaline/rare earths, it also became
evident that various hydrogenic motifs (H-, H3-, H2,
1D chains, 3D clathrate cages) can be found in the
lattices. Phases that contain H- or H3- become metal-
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lic b/c of pressure-induced band overlap so they are
not good metals and will not be good superconduc-
tors. Systems with quasi-molecular H2 units or other
odd molecular motifs have a higher DOS at the Fermi
level and are therefore better superconductors. But
the highest Tc materials have ”clathrate-like” hydro-
genic cages. The computational predictions of high-
Tc superconductivity in LaH10 (by Pickard/Ma and
Hemley) were confirmed by two experimental groups.
Bummer- my group chose to study ScHn instead of
LaHn. Our predictions for Sc are yet to be experi-
mentally confirmed.
We are currently trying to predict the structures of

ternary hydrides that could be high Tc superconduc-

tors. By now I can look at a predicted structure and
guess what its Tc is likely to be simply by looking at
the structural motifs present in its hydrogenic lattice.
The goal is to find a ternary that can be quenched to
lower pressures (metastable) with an appreciable Tc.

Another system that was found to be a high tem-
perature superconductor is H3S, which is made up of
two interpenetrating sublattices. It has been realized
that one can remove one of these lattices and stuff
the cubes with other molecules. We have looked at
methane (see attached manuscript on CSH7). The su-
perconductivity is derived from the H3S lattice. We
are looking for other molecules that could be inter-
calants.
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