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S1 Limitations of the original PEER simulation study

The simulation study in the original PEER publication [1] is limited. We categorize its limitations
into three categories: (1) data analysis limitations, (2) overall design limitations, and (3) data
simulation limitations.

The data analysis limitations include:

(a) The study only compares PEER against the other methods in terms of power, not in terms of
false positive rate or false discovery rate (see Methods for our evaluation metrics).

(b) The study does not use PCA or SVA properly (we do; Section S4).
(c) The study does not evaluate the different ways of using PEER (we do; Section S4).
(d) The study uses ad hoc priors for PEER that are different from the default priors (we use the

default priors; Section S4).

The overall design limitations include:

(a) The study only simulates one replicate of one experiment. That is, the entire simulation
study is based on one simulated data set (we simulate 10 replicates in our first simulation
study; Section S2).

The data simulation limitations include (see Table S1 for our solutions):

(a) The data dimensions are minimal, with q = 100 SNPs in the entire genome.
(b) The SNP genotypes are simulated independently and identically with a target minor allele

frequency (MAF) of 0.4, so there is no linkage disequilibrium (LD) and a higher average
MAF than in real data (the average MAF in GTEx data [2], after SNPs with MAF under
0.01 are filtered out, is about 0.15; Section S3.1).

(c) The gene expression levels are primarily driven by trans-regulatory effects rather than cis-
regulatory effects or covariate effects (Table S2), inconsistent with the common belief that
trans-regulatory effects are generally weaker than cis-regulatory effects.
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In addition, the simulation study in the original PEER publication [1] is imperfect in that the
description of the data simulation and analysis is vague and inconsistent, and there is no
reproducible code. In contrast, we describe our data simulation and analysis in detail (Sections S2
to S4) and provide the code we use to generate the results (see Availability of data and materials).

S2 Simulation Design 1

S2.1 Data simulation

In Simulation Design 1, we perform 10 replicates of the same experiment, where in each replicate,
we follow the data simulation in Stegle et al. [1] as closely as possible.

In each replicate, we simulate a data set with n = 80 individuals, p = 400 genes, q = 100 SNPs in
the entire genome, K1 = 3 known covariates, and K2 = 7 hidden covariates. Let i, j, l, and k be the
indices of individuals, genes, SNPs, and covariates, respectively. That is, i = 1, · · · ,n; j = 1, · · · , p;
l = 1, · · · ,q; and k = 1, · · · ,(K1 +K2). The data simulation consists of three steps.

In the first step, we simulate YbeforeDSE, the gene expression matrix before downstream effect, based
on

YbeforeDSE
n×p

= S
n×q

(
I1

q×p
⊙ B1

q×p

)
+ X

n×(K1+K2)
B2

(K1+K2)×p
+ E

n×p
, (S1)

where ⊙ denotes element-wise multiplication. Specifically, in the genotype component, we have

• S: genotype matrix. Each entry is drawn independently from Binom(2,prob = 0.4). That is,
the target MAF is 0.4. In this work, all random sampling is independent unless otherwise
specified.

• I1: effect indicator matrix. Each entry is drawn from Ber (0.01).
• B1: effect size matrix. Each entry is drawn from N(0,var = 4).

In the covariate component, we have

• X : covariate matrix. Each entry is drawn from N(0,var = 0.6). The first K1 columns are
designated as the known covariates (X1 , n×K1), and the last K2 columns are designated as
the hidden covariates (X2 , n×K2).

• B2: effect size matrix. First, we draw σ2
k ∼ 0.8(Γ(shape = 2.5, rate = 0.6))2, the covariate-

specific effect size variance. Then, we draw (B2)k j ∼ N
(
0,var = σ2

k

)
.

Lastly, in the noise component, we have

• E: noise matrix. First, we draw τ j ∼ Γ(shape = 3, rate = 1), the gene-specific noise
precision. Then, we draw (E)i j ∼ N

(
0,var = 1/τ j

)
.

In the second step, we simulate YDSE, the gene expression matrix due to the downstream effect of
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genes, based on

YDSE
n×p

= YbeforeDSE
n×p

(
I3

p×p
⊙ B3

p×p

)
, (S2)

where we have

• I3: effect indicator matrix. To simulate I3, we start with a zero matrix. Then, we randomly
choose three rows corresponding to genes with at least one cis-QTL (Section S2.2). For
each of these three rows, we randomly assign 30 entries corresponding to genes other than
the current gene in consideration (avoiding self-loops) to be one.

• B3: effect size matrix. Each entry is drawn from N(8,var = 0.8) for “strong downstream
effects” [1].

As we see in Section S2.2, the downstream effect of genes induces trans-QTL relations.

In the third and last step, we define Y , the final, observed gene expression matrix, as

Y
n×p

= YbeforeDSE
n×p

+YDSE
n×p

. (S3)

S2.2 Definition of truth

In a simulated data set, the cis-QTL relations are encoded in the q× p binary matrix I1. The l j-th
entry being one means that SNP l and gene j form a cis-QTL pair (i.e., SNP l is a cis-QTL for
gene j).

The trans-QTL relations are encoded in J, also a q× p binary matrix. J is defined based on I1 and
I3. Specifically, SNP l and gene j form a trans-QTL pair if and only if SNP l is a cis-QTL for
gene j′ and gene j′ has downstream effect on gene j, j′ ̸= j.

The overall truth is encoded in 1
(
(I1 + J)≥ 1

)
, again a q× p binary matrix. We use this matrix as

the truth when calculating AUPRCs. The l j-th entry being one means that SNP l and gene j form
a cis-QTL or trans-QTL pair (or both).
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Simulation Design 1 Simulation Design 2

Data simulation Follows Stegle et al. [1] Loosely based on Wang et al. [3]

# of experiments 1 176

# of replicates per experiment 10 2

# of simulated data sets 10 352

Genotype data Simulated (no LD, high MAF) Real genotype data from GTEx [2]

Cis-QTL relations present ✓ ✓

Trans-QTL relations present ✓ ✗

Source(s) of expression variation Primarily trans-regulatory effects Carefully controlled genotype effects and covariate effects

# of individuals n = 80 n = 838

# of genes p = 400 p = 1,000

# of SNPs q = 100 SNPs in the entire genome q = 1,000 local common SNPs per gene

# of known covariates K1 = 3 K1 = 2, 3, 5, or 8 depending on the experiment

# of hidden covariates K2 = 7 K2 = 3, 7, 15, or 22 depending on the experiment

Table S1: Summary of the main differences between Simulation Design 1 and Simulation Design 2.
Highlighted in blue are the major data simulation limitations (Section S1) of Simulation Design 1,
all of which we address in Simulation Design 2.

Replicate Var(YbeforeDSE) Var(YDSE) Var(Y ) Var(YbeforeDSE)/Var(Y ) Var(YDSE)/Var(Y )

1 124.34 1757.07 1889.57 6.58% 92.99%

2 140.92 1505.17 1677.64 8.40% 89.72%

3 213.56 929.96 1169.18 18.27% 79.54%

4 71.85 761.01 855.39 8.40% 88.97%

5 123.07 2434.45 2574.51 4.78% 94.56%

6 74.94 1029.29 1092.65 6.86% 94.20%

7 148.61 2490.72 2628.93 5.65% 94.74%

8 79.36 796.55 868.05 9.14% 91.76%

9 54.62 1340.10 1390.72 3.93% 96.36%

10 65.64 831.89 895.90 7.33% 92.86%

Average 7.93% 91.57%

Table S2: In Simulation Design 1, which follows the data simulation in Stegle et al. [1] as closely
as possible, the gene expression levels are primarily driven by trans-regulatory effects rather than
cis-regulatory effects or covariate effects. Var(YbeforeDSE) is defined as the variance of the n×
p entries of YbeforeDSE, and the other variances in the table are defined similarly. We find that
Var(YDSE)/Var(Y ) is above 90% on average.
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Figure S1: Comparison of all 15 methods (Table 1) in terms of power and adjusted R2 measures
in Simulation Design 1 (the height of each bar represents the average across simulated data sets)
and an example scree plot. a, b PCA is more powerful than SVA, PEER, and HCP both when we
consider all QTL relations (a) and when we focus on trans-QTL relations (b). Binary decisions are
made based on p-values using the Benjamini-Hochberg (BH) procedure and a target false discovery
rate of 0.05. c, d, e PCA performs the best in terms of concordance score. PEER with a large K
(dark orange bars) performs well in terms of adjusted R2 but less well in terms of reverse adjusted
R2. f An example scree plot that unambiguously suggests the true number of hidden covariates,
seven in this case, as the reasonable number of PCs to choose (the y-axis represents the proportion
of variance explained).

S3 Simulation Design 2

S3.1 Data simulation

In Simulation Design 2, we use real genotype data from GTEx [2], focus on cis-QTL detection, and
carefully control the genotype effects and covariate effects in 176 experiments with two replicates
per experiment. This simulation design takes inspiration from and is loosely based on Wang et al.
[3].
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In each experiment-replicate combination, we simulate a data set with n = 838 individuals,
p = 1,000 genes, q = 1,000 local common SNPs per gene, K1 known covariates, and K2 hidden
covariates (the values of K1 and K2 depend on the experiment; see below). Again, let i, j, l, and k
be the indices of individuals, genes, SNPs, and covariates, respectively. That is, i = 1, · · · ,n;
j = 1, · · · , p; l = 1, · · · ,q; and k = 1, · · · ,(K1 +K2).

We begin by obtaining SArray, the n× q× p genotype array that remains constant throughout
Simulation Design 2. SArray[ , , j], an n×q matrix, is the genotype matrix for the q local common
SNPs for gene j. We obtain SArray with the following steps:

(a) Download the whole genome sequencing (WGS) phased genotype data for n = 838
individuals from GTEx V8 [2].

(b) Randomly select p = 1,000 genes from the more than 20,000 genes on Chromosomes 1 to
22.

(c) For each gene, obtain the genotype data for the q = 1,000 SNPs with MAF≥ 0.01 that are
the closest to the gene’s transcription start site (TSS); we find that these SNPs are almost
always within 1 Mb of the TSS. The average MAF of SArray, calculated as SArray/2, the
average of all entries of SArray divided by 2, is 0.1474385≈ 0.15.

Each experiment is characterized by four attributes:

(a) Number of effect SNPs per gene (numOfEffectSNPs): 1 or random.
(b) Number of covariates (numOfCovariates): 5, 10, 20, or 30.

• Number of known covariates (K1): 2, 3, 5, 8, respectively.
• Number of hidden covariates (K2): 3, 7, 15, 22, respectively.

(c) Proportion of variance explained by genotype (PVEGenotype): 0.05, 0.1, 0.2, or 0.3.
(d) Proportion of variance explained by covariates (PVECovariates): minimum 0.3, maximum

1− 0.05− PVEGenotype, in increments of 0.1. For example, when PVEGenotype = 0.05,
PVECovariates takes seven possible values: 0.3, 0.4, 0.5, · · · , 0.9.

Therefore, we have a total of 2×4× (7+6+5+4) = 8×22 = 176 experiments covering typical
scenarios in QTL studies [3]. Following Wang et al. [3], we use the term “effect SNPs” to refer to
SNPs that have a nonzero cis effect on a given gene.

Given numOfEffectSNPs, numOfCovariates, PVEGenotype, and PVECovariates, we simulate
each data set based on

Y
n×p

= SArray
n×q×p

⊗
(

I
q×p
⊙ B1

q×p

)
+ X

n×(K1+K2)
B2

(K1+K2)×p
+ E

n×p
, (S4)

where Y is the gene expression matrix, and ⊗ is defined as

C
n×p

= A
n×q×p

⊗ B
q×p

⇔ C[ , j]
n×1

= A[ , , j]
n×q

×B[ , j]
q×1

, j = 1, · · · , p . (S5)
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Specifically, in the genotype component, we have

• SArray: genotype array. SArray[ , , j], an n×q matrix, is the genotype matrix for the q local
common SNPs for gene j (see above).

• I: effect indicator matrix.
– If numOfEffectSNPs = 1, then for each column, we randomly assign one entry to be

one while keeping the other entries zero.
– If numOfEffectSNPs = random, then each entry of I is drawn from Ber (1/q). This

means that for each gene, the number of effect SNPs is drawn from
Binom(q, prob = 1/q). This binomial distribution approximates the empirical
distribution of the number of independent cis-eQTLs per gene in GTEx data [2] well
(Figure S2).

• B1: effect size matrix. Each entry is drawn from N(0,1).

In the covariate component, we have

• X : covariate matrix. Each entry is drawn from N(0,1). As in Simulation Design 1, the first
K1 columns are designated as the known covariates (X1 , n×K1), and the last K2 columns are
designated as the hidden covariates (X2 , n×K2).

• B2: effect size matrix. Each entry is drawn from N(0,1) and scaled (see below).

Lastly, in the noise component, we have

• E: noise matrix. Each entry is drawn from N(0,1) and scaled (see below).

Alternatively, (S4) can be written as

(Y ) j
n×1

= S j
n×q

(IB1) j
q×1

+ X
n×(K1+K2)

(B2) j
(K1+K2)×1

+(E) j
n×1

, j = 1, · · · , p , (S6)

where (Y ) j , (IB1) j , (B2) j , and (E) j denote the jth column of Y , I⊙B1 , B2 , and E, respectively,
and S j denotes SArray[ , , j].

The scaling for B2 and E is to ensure that PVEGenotype and PVECovariates are as desired.
Specifically, for gene j, if Var

(
S j (IB1) j

)
̸= 0, then we scale (B2) j so that

Var
(
X (B2) j

)
Var

(
S j (IB1) j

) =
PVECovariates

PVEGenotype
(S7)

and separately scale (E) j so that

Var
(
(E) j

)
Var

(
S j (IB1) j

) =
1−PVEGenotype−PVECovariates

PVEGenotype
. (S8)
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If Var
(
S j (IB1) j

)
= 0 (which is the case when (IB1) j is a zero vector, i.e., when gene j has zero

effect SNPs), then we only scale (E) j so that

Var
(
(E) j

)
Var

(
X (B2) j

) =
1−PVECovariates

PVECovariates
. (S9)

S3.2 Definition of truth

In a simulated data set, I is a q× p binary matrix. The l j-th entry being one means that the lth local
common SNP for gene j is an effect SNP for gene j. However, due to LD, the expression level of
a gene may be strongly associated with SNPs other than its effect SNPs.

Therefore, we define Icor, also a q× p binary matrix, based on SArray and I and use it as the truth
when calculating AUPRCs. The l j-th entry of Icor is defined as one if and only if the lth local
common SNP for gene j is highly correlated with any of gene j’s effect SNPs (correlation ≥ 0.9
in absolute value).
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Figure S2: In Simulation Design 2, we find that Binom(1000, prob = 1/1000) approximates the
empirical distribution of the number of independent cis-eQTLs per gene in GTEx data [2] well. a
Given a tissue type, which corresponds to a sample size, we plot the proportion of genes with 0,
1, 2, 3, 4, or 5 or more independent cis-eQTLs (the proportions add up to one; data from GTEx
[2]). We find that the proportions stabilize once the sample size reaches about 517 (dashed line).
b For the eight tissue types with sample size ≥ 517, we take the average proportion of genes
with 0 independent cis-eQTLs, 1 independent cis-eQTL, etc. and plot them in the blue bars. The
green bars represent the probability mass function of Binom(1000, prob = 1/1000) (with the tail
probabilities combined together).
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Figure S3: This figure shows how we select a few representative methods from the 15 methods
for detailed comparison in Simulation Design 2 (a, b, c) and a dataset-by-dataset comparison
of the selected representative methods (d). The x-axis and y-axis both represent AUPRCs of
different methods. Each scatter plot contains 352 points, each of which corresponds to a simulated
data set in Simulation Design 2. The number on the upper-left corner of each scatter plot
represents the proportion of points that satisfy y > 1.02 x, and the number on the lower-right
corner represents the proportion of points that satisfy x > 1.02 y, where x and y denote the
coordinates of each point. a The two PCA methods perform almost identically, so for simplicity,
we select PCA direct screeK. The two SVA methods perform almost identically as well, so we
select SVA BE. b Whether the known covariates are inputted when PEER is run has little effect
on the AUPRC. c When we use the true K, the factor approach outperforms the residual approach,
but when we use a large K, the residual approach outperforms the factor approach. Therefore,
we select PEER withCov trueK factors and PEER withCov largeK residuals as the representative
PEER methods. d Among the selected representative methods, PCA outperforms SVA, PEER, and
HCP in terms of AUPRC in 11% to 88% of the simulated data sets and underperforms them in
close to 0% of the simulated data sets.
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Figure S4: Detailed adjusted R2, reverse adjusted R2, and concordance score comparison of the
selected representative methods (Table 1) in Simulation Design 2. Each point represents the
average across simulated data sets. PCA performs the best in all three regards. PEER with a
large K (dark orange line) performs well in terms of adjusted R2 but falls short in terms of reverse
adjusted R2.

S4 Compared methods

We compare the runtime and performance of 15 methods based on simulation studies, including
Ideal, Unadjusted, and 13 variants of PCA, SVA, PEER, and HCP (Table 1). The details of
Simulation Design 1 and Simulation Design 2 are described in Sections S2 and S3, respectively.
Recall that in each simulated data set, Y denotes the gene expression matrix (n× p , sample by
gene), X1 denotes the known covariate matrix (n×K1 , sample by covariate), and X2 denotes the
hidden covariate matrix (n×K2 , sample by covariate). The genotype information is stored in S in
Simulation Design 1 and SArray in Simulation Design 2. In this work, we use K to denote the
number of inferred covariates, which are called PCs, SVs, PEER factors, and HCPs in PCA, SVA,
PEER, and HCP, respectively.

Given a simulated data set, each of the 15 methods consists of two steps: hidden variable
inference step (not applicable for Ideal and Unadjusted) and QTL step. In the hidden variable
inference step, we run PCA, SVA, PEER, or HCP to obtain the inferred covariates (and the
expression residuals in the case of PEER; Figure 1). In the QTL step, given a gene-SNP pair, we
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run a linear regression with the gene expression vector (or the residual vector from PEER) as the
response and the genotype vector and covariates as predictors, where the choice of the response
and covariates depends on the method (Table 1); thus we obtain the p-value for the null
hypothesis that the coefficient corresponding to the genotype vector is zero given the covariates.
In Simulation Design 1, we investigate the association between each gene’s expression level and
each SNP in the entire genome for a simultaneous detection of cis-QTL and trans-QTL relations.
In Simulation Design 2, we investigate the association between each gene’s expression level and
each of the gene’s local common SNPs for a cis-QTL analysis.

For Ideal, we assume that X2 is known. Therefore, we use X1 and X2 as covariates in the QTL step.
For Unadjusted, we use X1 as the covariates.

We devise two ways to use PCA to account for the hidden covariates. For PCA direct screeK,
we run PCA on Y directly. For PCA resid screeK, we first residualize Y against X1 and then run
PCA on the residual matrix. In this work, PCA is run with centering and scaling unless otherwise
specified; given A, an n× p1 matrix, and B, an n× p2 matrix, both observation by feature, to
residualize A against B means to take each column of A, regress it against B, and replace the
original column of A with the residuals from the linear regression. For both methods, since the
scree plots always suggest the true “number of hidden covariates” (K1+K2 for PCA direct screeK,
K2 for PCA resid screeK) as the reasonable number of PCs to choose within plus or minus one
(usually exactly; Figure S1), we set the number of PCs to be the true “number of hidden covariates”.
For PCA direct screeK, we filter out the known covariates that are captured well by the top PCs
(unadjusted R2≥ 0.9) and use the remaining known covariates along with the top PCs as covariates
in the QTL step. For PCA resid screeK, no filtering is needed.

Here we describe the two hidden variable inference methods for SVA: SVA trueK and SVA BE.
Since the SVA package [4] requires the user to input at least one variable of interest (Figure 1)
and using too many variables of interest causes the package to fail, when running SVA, we input
the top PC of the genotype matrix (S in Simulation Design 1, collapsed version of SArray in
Simulation Design 2) as the variable of interest. We also input X1 as the known covariates because
the package documentation indicates that the known covariates should be provided if available.
The SVA package allows the user to specify K. Alternatively, it can automatically choose K using
a slightly modified version of the Buja and Eyuboglu (BE) algorithm [5, 6]. Therefore, in
SVA trueK, we set K = K2, and in SVA BE, we let the package choose K automatically. In both
cases, we use X1 and the surrogate variables (SVs) as covariates in the QTL step.

There are several different ways to use PEER [7] but no consensus in the literature on which one
is the best. In the hidden variable inference step, PEER can be run with or without the known
covariates when there are known covariates available (Stegle et al. [7] do not give an explicit
recommendation as to which approach should be used, and both approaches are used in practice
[2, 8–10]), and K has to be specified by the user (Stegle et al. [1, 7] claim that the performance of
PEER does not deteriorate as K increases). In the QTL step, one can include the PEER factors as
covariates (we call this the “factor approach”) or use the expression residuals outputted by PEER as
the response (and not use any known or inferred covariates; we call this the “residual approach”).
For completeness, we compare 23 = 8 ways of using PEER (the default priors are always used):
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PEER is run with or without the known covariates; PEER is run using the true “number of hidden
covariates” (K1 +K2 when PEER is run without the known covariates, K2 when PEER is run with
the known covariates) or using a large K (K=50); and either the factor approach or the residual
approach is used in the QTL step.

The HCP package requires the user to specify K and three tuning parameters: λ1, λ2, and λ3
(Section S5.2). The package documentation suggests choosing K and the tuning parameters via a
grid search. However, no specific recommendations are given regarding the choice of the score
function. In practice, users of HCP often choose K and the tuning parameters by maximizing the
number of discoveries [11, 12]. For our simulation studies, such an approach would be
computationally prohibitive. Therefore, for simplicity, we set K = K2 and λ1 = λ2 = λ3 = 1; the
latter is because we do not want to give more weight to the penalty terms than the main term in
the objective function (Section S5.2).

Reference

GTEx

data

version

QTL analysis Data transformation

Known

covariates

inputted

# of PEER factors

Factor or

residual

approach

(A) (B) (C) (D) (E) (F) (G)

GTEx Consortium [8] V6p eQTL (cis and trans) INT within feature No Maximizes cis-eGenes Factor

GTEx Consortium [2] V8
eQTL (cis and trans) INT within feature No Maximizes cis-eGenes Factor

sQTL (cis and trans) INT within sample No 15 Factor

Li et al. [9] V7 3′aQTL (cis) No transformation Yes Follows GTEx [8] Factor

Table S3: Summary of QTL analyses performed by GTEx [2, 8] and Li et al. [9]. “INT” in
(D) stands for “inverse normal transform” [13]. (E), (F), and (G) summarize how PEER is used
(Section S4) in each study. GTEx [2, 8] chooses the number of PEER factors for its eQTL analyses
(including cis and trans) by maximizing the number of discovered cis-eGenes for each pre-defined
sample size bin. The number of PEER factors selected is 15 for n < 150, 30 for n∈ [150,250), and
35 for n≥ 250 for GTEx V6p eQTL analyses [8] and 15 for n < 150, 30 for n ∈ [150,250), 45 for
n ∈ [250,350), and 60 for n ≥ 350 for GTEx V8 eQTL analyses [2], where n denotes the sample
size. Li et al. [9] use the numbers of PEER factors chosen by GTEx [8].
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Figure S5: In the 3′aQTL data prepared by Li et al. [9] from GTEx RNA-seq reads [8], PEER
factors fail to capture important variance components of the molecular phenotype data when the
data transformation method is “No transformation” or “INT within sample” (a; the numbers of
PCs are chosen via BE (Algorithm S3)). On the other hand, PEER factors span roughly the same
linear subspace as the top PCs when the data transformation method is “Center and scale” or “INT
within feature”, but the top PCs can almost always capture the PEER factors better than the PEER
factors can capture the top PCs (b; the numbers of PCs are equal to the numbers of PEER factors).
Given m PEER factors and n PCs from the same post-transformation molecular phenotype matrix
(m≥ n in a, m = n in b), we calculate m adjusted R2’s by regressing each PEER factor against the
PCs and plot the average in blue. Similarly, we calculate n adjusted R2’s by regressing each PC
against the PEER factors and plot the average in orange.

Algorithm S1: Reordering of PEER factors based on PCs (Figure 5).

Inputs:
• K PEER factors.
• K PCs.

Output: K PEER factors (reordered).
1 for k← 1 to K do
2 Select the PEER factor that is the most highly correlated with the kth PC from the PEER

factors that have not been selected yet.
3 end
4 return the PEER factors in the order that they were selected in.
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Figure S6: In GTEx eQTL data [2], PEER is at least three orders of magnitude slower than PCA
(a), and replacing the PEER factors with PCs in GTEx’s FastQTL pipeline [2, 14] does not change
the cis-eQTL results much (b, c, d). The x-axis shows 10 randomly selected tissue types with
increasing sample sizes. a For a given gene expression matrix, running PEER without the known
covariates (GTEx’s approach) takes up to about 1,900 minutes (equivalent to about 32 hours;
Whole Blood), while running PCA (with centering and scaling; our approach) takes no more than a
minute. For comparison, we also run PEER with the known covariates using the numbers of PEER
factors selected by GTEx. This approach takes even longer (up to about 4,600 minutes, equivalent
to about 77 hours; Esophagus - Mucosa). b The p-values produced by GTEx’s approach and our
approach are highly correlated (correlations between the negative common logarithms are shown).
c, d The overlap of the identified eGenes and eQTL pairs between the two approaches is generally
around 90% (see Figure S7 for more detail).
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Figure S7: Following the analysis in Figure S6, we find that the eGenes uniquely identified by PCs
or PEER factors have marginal p-values compared to those identified by both methods.
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Figure S8: Joint analysis of results from Simulation Design 1, Simulation Design 2, and GTEx
eQTL data [2]. The x-axes of a, c, and e show the concordance between PEER factors
and top PCs (defined analogously as the concordance score; Methods). The x-axes of b, d,
and f show the percentage of QTL discoveries shared between PEER and PCA (in b and d,
for each method, binary decisions are made based on p-values using the Benjamini-Hochberg
(BH) procedure and a target false discovery rate of 0.05). In a through d, the y-axes show
(AUPRCPEER−AUPRCPCA)/AUPRCPCA, the blue lines are the simple linear regression lines,
and the Pearson correlation coefficients are shown on the bottom right. a and b each contains 10
data points, corresponding to the 10 simulated data sets in Simulation Design 1. c and d each
contains 352 data points, corresponding to the 352 simulated data sets in Simulation Design 2.
The methods compared in a through d are PCA direct screeK and PEER noCov trueK factors. e
presents similar information as Figure 5; the total count is 49, which is the number of tissue types
with GTEx eQTL analyses. f is based on Figure S6(d); the total count is 10, which is the number
of tissue types randomly selected for analysis in Figure S6. We find that the percentage of QTL
discoveries shared is a good predictor of the relative performance of PEER versus PCA and is a
better predictor than concordance. This plot is also evidence that Simulation Design 2 is more
realistic than Simulation Design 1 because the ranges that concordance and percentage of QTL
discoveries shared fall in in e and f agree better with those in c and d than those in a and b.
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S5 Theory of PCA and HCP

S5.1 Principal component analysis (PCA)

Principal component analysis (PCA) [15, 16] is a well-established dimension reduction method
with many applications. Here we aim to provide a brief summary of its algorithm, derivation, and
interpretation.

Let X denote the n× p observed data matrix that is observation by feature, e.g., a molecular
phenotype matrix. We use X instead of Y here to be consistent with standard PCA notations. We
assume that the columns of X have been centered and scaled. That is, X satisfies

1
n

n

∑
i=1

xi j = 0 , j = 1, · · · , p (S10)

and

1
n−1

n

∑
i=1

x2
i j = 1 , j = 1, · · · , p , (S11)

where xi j denotes the i j-th entry of X .

The PCA algorithm consists of two steps. In the first step, we calculate the sample covariance
matrix Σ̂ and perform eigendecomposition on it:

Σ̂ =
1
n

X⊤X definition of sample covariance matrix (S12)

:= QΛQ⊤ , eigendecomposition (S13)

where

Q
p×p

=

 | |
q1 · · · qp
| |

 (S14)

is an orthogonal matrix whose columns are eigenvectors of Σ̂, and

Λ
p×p

=

λ1
. . .

λp

 , λ1 ≥ ·· · ≥ λp ≥ 0 , (S15)
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is a diagonal matrix whose diagonal entries are the corresponding eigenvalues of Σ̂. We know that
Σ̂ is orthogonally diagonalizable because it is a symmetric matrix (recall the spectral theorem for
real matrices [17]: a real matrix is orthogonally diagonalizable if and only if it is symmetric). The
eigenvalues are all non-negative because Σ̂ is positive semidefinite.

In the second step, we calculate Z as

Z = XQ , (S16)

where the columns of Z are called the principal components (PCs) or scores, and Q is called the
loading matrix or rotation matrix. It is worth noting that some authors may refer to q1, · · · ,qp as
the PCs. This use of terminology is confusing and should be avoided [18].

The above two steps conclude the PCA algorithm. In practice, however, singular value
decomposition (SVD) of the data matrix is often used as a more computationally efficient way of
finding the loading matrix and the PCs [15].

The most common derivation of PCA is based on maximum variance [19]. First, we define
α∗1 , · · · ,α∗p ∈ Rp sequentially as

α
∗
1 = argmax

α1∈Rp
Var(Xα1) subject to ∥α1∥2 = 1 , (S17)

α
∗
2 = argmax

α2∈Rp
Var(Xα2) subject to ∥α2∥2 = 1 , α

⊤
2 α
∗
1 = 0 , (S18)

...

α
∗
p = argmax

αp∈Rp
Var(Xαp) subject to ∥αp∥2 = 1 , α

⊤
p α
∗
j = 0 ∀ j < p . (S19)

Then, we define the PCs of X as Xα∗1 , · · · ,Xα∗p. That is, the PCs are defined sequentially as the
linear combinations of the columns of X with maximum variances, subject to certain constraints.
It can then be shown that α∗1 , · · · ,α∗p are given by q1, · · · ,qp respectively, where q1, · · · ,qp are
eigenvectors of Σ̂ as defined in (S14).

A complementary property of PCA, which is closely related to the original discussion of Pearson
[20], is the minimum reconstruction error property. Given K < p, we define QK as the matrix that
contains the first K columns of Q. That is,

QK
p×K

:=

 | |
q1 · · · qK
| |

 . (S20)

The minimum reconstruction error property of PCA states that QK is a global minimizer of the loss
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function

J
(

Q̃K

)
:=

∣∣∣∣∣∣∣∣∣X−XQ̃KQ̃⊤K
∣∣∣∣∣∣∣∣∣2

F
(S21)

=
n

∑
i=1

∥∥∥x⊤i − x⊤i Q̃KQ̃⊤K
∥∥∥2

2
=

n

∑
i=1

∥∥∥xi− Q̃KQ̃⊤K xi

∥∥∥2

2
, (S22)

where Q̃K denotes an arbitrary p×K matrix whose columns are orthonormal, |||·|||F denotes the
Frobenius norm of a matrix, and x⊤i denotes the ith row of X . Since Q̃KQ̃⊤K xi represents the
(orthogonal) projection of xi onto the subspace spanned by the columns of Q̃K , (S22) measures
the total squared ℓ2 error when approximating each xi with its projection onto the subspace
spanned by the columns of Q̃K .

A central idea of PCA is the proportion of variance explained by each PC. To establish this concept,
we claim that

p

∑
j=1

Var
(
X j
)
=

p

∑
j=1

Var
(
Z j
)
, (S23)

Var
(
Z j
)
= λ j , j = 1, · · · , p , (S24)

and

Cov
(
Z j , Z j′

)
= 0 , j, j′ = 1, · · · , p , j ̸= j′ , (S25)

where X j denotes the jth column of X (the jth original variable) and Z j denotes the jth column of
Z (the jth PC). (S25) means that the PCs are uncorrelated with each other.

We prove (S24) and (S25) by calculating Σ̂Z , the sample covariance matrix of Z (we know that the
columns of Z are centered by (S10) and (S16)):

Σ̂Z =
1
n

Z⊤Z definition of sample covariance matrix (S26)

=
1
n
(XQ)⊤XQ plugging in (S16) (S27)

= Q⊤
(

1
n

X⊤X
)

Q (S28)

= Q⊤
(

QΛQ⊤
)

Q plugging in (S13) (S29)

= Λ . (S30)
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(S23) can be proven by the following:

p

∑
j=1

Var
(
X j
)
= Tr

(
Σ̂

)
definition of trace and Σ̂ (S31)

= Tr
(

QΛQ⊤
)

plugging in (S13) (S32)

= Tr
(

ΛQ⊤Q
)

cyclic property of trace (S33)

= Tr(Λ) (S34)

=
p

∑
j=1

Var
(
Z j
)
. by (S24) (S35)

Because of (S23) and (S24), we may define the proportion of variance in the original data explained
by the jth PC as

λ j

∑
p
j′=1 Var

(
X j′

) =
λ j

∑
p
j′=1 Var

(
Z j′

) =
λ j

∑
p
j′=1 λ j′

, (S36)

which provides a basis for deciding the number of PCs to keep (e.g., Algorithms S2 and S3).

S5.2 Hidden covariates with prior (HCP) and its connection to PCA

Hidden covariates with prior (HCP) [21] is a popular hidden variable inference method for QTL
mapping defined by minimizing a loss function. Neither Mostafavi et al. [21] nor the HCP package
documents the HCP method well. For example, the squares in the loss function (S37) are missing
in both Mostafavi et al. [21] and the package documentation, but one can deduce that the squares
are there by inspecting the coordinate descent steps in the source code of the R package. Here
we aim to provide a better, more accurate documentation of the HCP method and point out its
connection to PCA.

Given Y , the molecular phenotype matrix (n× p, sample by feature), X1, the known covariate
matrix (n × K1, sample by covariate), K, the number of inferred covariates (HCPs), and
λ1, λ2, λ3 > 0, the tuning parameters, HCP looks for

argmin
X2, W1, W2

{∣∣∣∣∣∣∣∣∣∣∣∣ Y
n×p
− X2

n×K
W2
K×p

∣∣∣∣∣∣∣∣∣∣∣∣2
F
+ λ1

∣∣∣∣∣∣∣∣∣∣∣∣X2
n×K
− X1

n×K1

W1
K1×K

∣∣∣∣∣∣∣∣∣∣∣∣2
F
+ λ2|||W1|||2F + λ3|||W2|||2F

}
, (S37)

where |||·|||F denotes the Frobenius norm of a matrix, X2 is the hidden covariate matrix, and W1
and W2 are weight matrices of the appropriate dimensions. The name of the method, “hidden
covariates with prior”, comes from the second term in (S37), where the method informs the hidden
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covariates with the known covariates. The optimization is done through coordinate descent with
one deterministic initialization (see source code of the HCP R package [21]). The columns of the
obtained X2 are reported as the HCPs.

From (S37), we see that the HCP method is closely related to PCA. The first term in (S37) is
very similar to (S21), the only difference being that the rows of W2 in (S37) are not required to be
orthonormal and X2 is not required to be equal to YW⊤2 .

Algorithm S2: The elbow method for choosing K in PCA (based on distance to diagonal line).

Input: X , n× p observed data matrix, observation by feature.
Output: K, the number of PCs selected.

1 Define d = min(n, p). This is the total number of PCs.
2 Run PCA on X with centering and scaling.
3 Obtain the proportion of variance explained by each PC, t1, · · · , td . // ∑

d
j=1 t j = 1.

4 Consider (1, t1), · · · ,(d, td) ∈ R2. // d points in R2.

5 Select K by choosing the point that is the farthest from the diagonal line, i.e., the line that
passes through the first point, (1, t1), and the last point, (d, td). Specifically, the distance from
(x0,y0) to the line that passes through (x1,y1) and (x2,y2) is given by
| (x2− x1)(y1− y0)− (x1− x0)(y2− y1) | /((x2− x1)

2 +(y2− y1)
2)1/2.

6 return K.
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Algorithm S3: The Buja and Eyuboglu (BE) algorithm [5] for choosing K in PCA.

Inputs:
• X , n× p observed data matrix, observation by feature.
• B, number of permutations (default is 20).
• α , significance level (default is 0.05).

Output: K, the number of PCs selected.
1 Define d = min(n, p). This is the total number of PCs.
2 Run PCA on X with centering and scaling.
3 Obtain the proportion of variance explained (PVE) by each PC, t1, · · · , td . // ∑

d
j=1 t j = 1.

Observed test statistics.

4 for b← 1 to B do
5 Obtain X (b) by permuting each column of X . // Permute the observations in each

feature.

6 Run PCA on X (b) with centering and scaling.

7 Obtain the PVE of each PC, t(b)1 , · · · , t(b)d . // ∑
d
j=1 t(b)j = 1.

8 end
9 The p-value for the jth PC is calculated as

p j =
(

∑
B
b=11{t

(b)
j ≥ t j}+1

)
/(B+1) , j = 1, · · · ,d . // p j is calculated as, roughly

speaking, the proportion of permutations where the PVE of the jth PC is greater than

or equal to the PVE of the jth original PC (the added ones in the numerator and

denominator are mainly for avoiding p-values that are exactly zero). The greater

this proportion is, the larger the p-value is, and the less significant the PC is.

10 for j← 2 to d do
11 If p j ≤ p j−1, then set p j = p j−1. // Enforce monotone increase of the p-values.
12 end
13 Set K to be the maximum j such that p j ≤ α .
14 return K.
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