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Supplementary Note 1 – Physics of the
Fermi-Hubbard model

The Fermi-Hubbard model1 encapsulates the effect of
inter-electron interactions in a single narrow band sys-
tem. It was proposed to describe d-orbitals in transition
metals. In these systems, the strength of the interac-
tions between localised electron orbitals is comparable
with the bandwidth. This makes it a natural candidate
for studying strongly correlated effects in solids2. The
phenomenology of different cuprates that develop high-
temperature superconductivity (e.g. Sr1−xCaxCuO2) has
been linked with the different phases of the model, al-
though is still open if the model itself can support a high
temperature superconducting phase3.

A general tight-binding description of the electron
Hamiltonian in solids is

H = −
∑
αβ

tαβa
†
αaβ +

∑
αβγδ

Uαβγδa
†
αa
†
βaγaδ, (1)

where tαβ contains the contributions from the kinetic en-
ergy and ion potential of the lattice, while Uαβγδ param-
eterizes the electron-electron interactions (here α,β, γ, δ
contain all the labels of the fermion operator). In the
atomic limit, where the overlap between orbitals at dif-
ferent sites decays exponentially, the leading contribu-
tion of the interaction term comes from density-density
coupling. In the atomic limit of the 1-band case with-
out spin-orbit coupling, the tight-binding description be-
comes

H = −
∑
ij

tij,σa
†
i,σaj,σ + U

∑
i

ni,↑ni,↓, (2)

where ni,σ = a†i,σai,σ. For homogeneous nearest neigh-
bour hopping tij = t for adjacent sites i, j. and measur-
ing energies in units of t, this Hamiltonian becomes Eq.
(1) in the main text.

In 1D, the Fermi-Hubbard model is solvable by the
Bethe ansatz, meaning that by solving the Bethe equa-
tions an efficient description of the energy and ground
state exists4. In 1D this model shows spin-charge sepa-
ration, as its quasiparticles are spinons and holons. The
system belongs to the universality class of the Luttinger
liquid5, away from half-filling. Exactly at half-filling, the

system becomes a Mott insulator, developing a finite gap
to addition of particles. In general, at zero temperature,
at least two transitions are expected for dimensions larger
than one. For small fillings, the encounter probability of
two particles is small, making the interaction unimpor-
tant and the system metallic (although interactions could
still affect the anomalous exponents of different correla-
tors). At half-filling there is one electron per site on
average and at large enough interaction strength U it
is expected that the system adopts the configuration of
exactly one electron per site. This state is the Mott insu-
lator. At larger fillings the system should again become
metallic, where the carriers are holes. In general, two
transitions are expected as a function of density, from
metallic to the Mott insulator near half-filling, and back
to metallic at higher fillings. In 1D this happens at ex-
actly half-filling for U > 0. In higher dimensions the
location of these transitions is still unresolved. The na-
ture of the Mott transition is a matter of debate, where
different mechanisms are expected to contribute, from
the localization of quasiparticles6 to the development of
magnetic instabilities7.

Supplementary Note 2 – Prior work

Experimental implementations of quantum al-
gorithms for the Fermi-Hubbard model. The
Fermi-Hubbard model has long been proposed as a plau-
sible application of quantum computing. However, to
our knowledge, there has been no experimental demon-
stration of finding the ground state of instances of the
model using a quantum computer without introducing
some notion of compression or restriction to a subspace.

Linke et al.8 found the ground state of the 1×2 Fermi-
Hubbard model using a discretised adiabatic algorithm
implemented in an ion trap experiment. Using symme-
tries of the system, this problem can be mapped to 2
qubits. Linke et al. produced two copies of the ground
state and used these to measure its entanglement as mea-
sured by Rényi entropy, via a controlled-swap gate. The
overall circuit uses 5 qubits and 31 2-qubit gates (12 to
produce each copy of the ground state, and 7 for the
controlled-swap).

Montanaro and Stanisic9 demonstrated the VQE al-
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gorithm for the Fermi-Hubbard model, again on a 1× 2
system compressed to 2 qubits and using 2 2-qubit gates,
in superconducting qubit hardware. Suchsland et al.10

used symmetries to compress a 4-site Hubbard ring at
half-filling to 4 qubits, and applied the VQE algorithm
on a different superconducting qubit platform to find the
ground state. Their variational ansatz used 3 2-qubit
gates.

Very recently, Gard and Meier11 proposed the use of
VQE for finding the ground state of the (noninteract-
ing) single-particle 1D Fermi-Hubbard model, which can
be solved efficiently classically for any size, as a bench-
mark for quantum computers. These authors used clas-
sical simulations of VQE to find the optimal parameters,
and then executed the corresponding circuits, with up to
21 2-qubit gates, to measure the energy on a variety of
quantum hardware platforms.

Outside of the VQE paradigm, a closely related work
implemented a simulation of time-dynamics of the Fermi-
Hubbard model12, starting with a ground state of the
noninteracting model prepared by Givens rotations, and
time-evolving according to a Trotterised version of the
1×8 Fermi-Hubbard Hamiltonian with occupation num-
ber 4 or 6. That work was able to demonstrate separation
of spin and charge dynamics; meaningful results were ob-
tained for circuits of 2-qubit gate depth over 400. Differ-
ent error-mitigation techniques were used in that work
to those employed here: averaging over different choices
of qubits, Floquet calibration, and a rescaling method.
Other contrasts are that the present work includes the
optimisation component of VQE, considers a 2×Ly sys-
tem, and computes many different observables.

Other large-scale implementations of varia-
tional algorithms. Beyond Fermi-Hubbard, in related
work VQE has been demonstrated in the context of quan-
tum circuits for preparing Hartree-Fock states on up to
12 qubits with high accuracy on a Google Sycamore
processor13. These states can be efficiently prepared via
Givens rotations in a similar way to the initial state used
in our VQE experiment. The VQE procedure is there-
fore solely used to correct for errors in these Givens ro-
tations. As Hartree-Fock states are efficiently simulable
classically, algorithms creating them are excellent bench-
marks of quantum computer performance, but cannot
achieve exponential speedups over classical computation.

VQE has been applied to a number of other systems in
quantum chemistry. The largest such experiment that we
are aware of applied a hardware-efficient ansatz combined
with error-mitigation techniques to find ground states
of H2 and LiH, using up to 6 qubits and 2-qubit gate
depth 314. VQE has also been used to demonstrate the
metal-insulator transition in H3, via an experiment with
3 qubits and 2 2-qubit gates15. See Ref. 16 for a survey
of many other small implementations up to 2018.

Another domain where a variational approach can
be used is quantum algorithms for optimisation, via
the Quantum Approximate Optimisation Algorithm17

(QAOA). In QAOA, one aims to find good approximate

solutions to hard constraint satisfaction problems which
can be expressed as finding the ground state of a clas-
sical Hamiltonian. The QAOA algorithm optimises over
parametrised quantum circuits where the elementary op-
erations are time-evolution according to the terms in this
Hamiltonian, and time-evolution according to a trans-
verse “mixer” term. As QAOA is solving a problem
where the goal is to output a classical bit-string, rather
than (for example) to output an accurate estimate of an
energy, it is substantially easier to obtain meaningful re-
sults even in the presence of high levels of noise; even
if the success probability is exponentially small in the
problem size, this can still be distinguishable from ran-
dom noise, given enough samples. The largest QAOA
experiment that we are aware of used up to 23 qubits
on a Google Sycamore processor and up to 3 variational
layers18.

Numerical studies. The variational ansatz we used
in our experiments is based on one developed and vali-
dated in previous work, which simulated the VQE algo-
rithm classically for Fermi-Hubbard instances on up to 12
sites19. Independent work20 has very recently used clas-
sical simulation to study the ability of a low-depth varia-
tional ansatz to represent features of the Fermi-Hubbard
model such as spin correlations, double occupancies, en-
ergy and ground-state fidelity (energies and fidelities were
already computed for U = 2 in Ref. 19). The results pre-
sented are for 1D chains on 8 sites.

Other experimental implementations of the
Fermi-Hubbard model. In recent years, many funda-
mental contributions to the study of the Fermi-Hubbard
model have been obtained within special-purpose ana-
logue quantum simulators21–24. Among these, cold atoms
in optical lattices play a central role thanks to the high
degree of control of system parameters, such as dimen-
sionality, hopping, and interaction strength, and single-
atom resolution imaging techniques21,24–27. These sys-
tems provide access to a plethora of observables which
are challenging to measure in solid state devices, such
as full counting statistics of local degrees of freedom and
higher-order correlation functions.

Thanks to these features, these experiments shed light
on the interplay between doping and magnetism in low-
temperature Fermi-Hubbard systems in regimes which
are difficult to explore even with state-of-the-art nu-
merical techniques. For instance, in 1D Fermi-Hubbard
chains the possibility to measure non-local correlation
functions in real space allowed the demonstration of spin-
charge separation28 and probing the onset of incommen-
surate magnetism29. On the other hand, experiments
on doped 2D Fermi-Hubbard models explored the effects
of doping on the long-range antiferromagnetic order30,
studied the crossover from a polaron metal to a Fermi
liquid31, and unveiled exotic transport properties32,33.

Despite the many groundbreaking insights provided
by cold atoms in recent years, simulation of condensed-
matter models with analogue quantum simulators has to
face two main challenges26. First, the temperatures that
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can be achieved in current setups are usually too high
to reach zero-temperature ordered phases. And second,
to explore the onset of long-range order, it is essential
to realize larger systems with the same degree of single-
atom and single-site control. Digital quantum simulators
have the potential to attain zero-temperature phases in
a more efficient way, allow full control of each individual
parameter of the model, such as coupling strengths and
local fields, and eventually should enable access to larger
and more general systems.

Supplementary Note 3 – Complexity and scaling
of the Efficient Hamiltonian Variational ansatz

Quantum circuit complexity. The complexities of
the largest circuits that we executed are summarised in
Supplementary Table I. It is interesting to note that for
a 2 × 4 lattice, the most complex instances in terms of
circuit complexity were not at half-filling; this is because
in this specific case, one fewer layer of Givens rotations
is present than worst-case bounds would suggest34.

Scaling of algorithms using rectangular and zig-
zag configurations. The quantum circuit depth for
each layer of the EHV ansatz for a Lx×Ly lattice, Lx ≤
Ly, with no restrictions on quantum circuit topology19,
and assuming that an arbitrary 2-qubit operation can be
implemented with one hardware-native gate, is as low as
2Lx+ 1 (for even Lx). Almost all gates that occur in the
algorithm act across nearest neighbours in the Jordan-
Wigner line, with the exception of onsite gates and basis
transformations necessary for measuring vertical hopping
terms.

To implement this circuit using a LxLy×2 rectangular
configuration of qubits on a device, we can associate one
row with each spin-type, and associate modes within each
spin sector with qubits in the Jordan-Wigner ordering
(see Ref. 35 for a related proposal). Then onsite gates are
local, so there is no additional cost per ansatz layer, and
the only remaining long-range transformation is the basis
transformations for measuring vertical hopping terms.

To implement these, it is sufficient to reorder a pair
of rows in the Fermi-Hubbard lattice such that vertically
neighbouring pairs become horizontally neighbouring. It
is easiest to illustrate a procedure for this with an exam-
ple. If we label modes in the first row of a 4×Ly lattice
as 1, 2, 3, 4, and modes in the second row as A,B,C,D,
we want to transform from the ordering 1234ABCD to
the ordering 1D2C3B4A. This transformation can be
split into two parts: flipping ABCD to DCBA, and
then transforming 1234DCBA to 1D2C3B4A. For rows
of length Lx the first part can be implemented with Lx
layers of FSWAP operations in an alternating even-odd
pattern36. The second part requires Lx − 1 layers of
FSWAPs, in a triangle configuration beginning at the
middle, to interleave the first and second rows. The over-
all cost is therefore 2Lx−1 layers of FSWAP operations;
for the special case of a 2 × Ly lattice, we can improve

Lattice Nocc Embedding
Circuit

depth

2-qubit

depth
2-qubit gates

1× 4 4 Rectangle 41 20 64

1× 8 8 Zig-zag 53 26 140

2× 4 7 Zig-zag 65 32 176

Supplementary Table I. Largest circuit complexities for the
configurations considered in our experiments. The 1 × 4 ex-
periments used a depth 2 VQE ansatz, while the other ex-
periments used a depth 1 ansatz. Circuit complexities de-
pend on which energy measurement is being performed in the
VQE algorithm; stated complexities are the maximal ones
over these circuits, showing the occupation numbers where
these are achieved.

this to just 1 layer (Fig. 1 in the main text).
All of the same arguments hold for the zig-zag con-

figuration that we use in our experiments, except that
now we need an additional layer of FSWAP gates be-
fore and after the onsite gates, giving an overall cost of
2Lx + 3 2-qubit gate depth per ansatz layer. We re-
mark that previous work giving complexity bounds for
nearest-neighbour and Sycamore architectures19 consid-
ered more “balanced” configurations suitable for fitting
more modes into a small quantum processor whose width
and height are closer in size; this led to larger bounds
(4Lx+1 for nearest-neighbour and 6Lx+1 for Sycamore,
respectively).

We remark that instances of the Hamiltonian Varia-
tional ansatz we use with one variational layer can be
simulated efficiently classically37,38, so in order to use our
approach to demonstrate a significant quantum speedup
for Fermi-Hubbard instances beyond sizes accessible to
classical exact diagonalisation, higher-depth variational
circuits must be employed.

Supplementary Note 4 – Error mitigation

The error mitigation techniques we used can be divided
into three categories: low-level techniques which are not
specific to the Fermi-Hubbard model and are targeted at
the particular hardware platform used; techniques based
on the symmetries of the Fermi-Hubbard model; and a
technique that is designed to mitigate errors in fermionic
simulation algorithms. For a survey of other error miti-
gation techniques, see Ref. 39.

1. Low-level error mitigation

Circuit structure. We ensure that our quantum
circuits are of a form where we alternate between lay-
ers of single-qubit and two-qubit gates. This is simi-
lar to the circuit topology used for quantum supremacy
experiments40, and is advantageous because two-qubit
gates generally take longer to execute than single-qubit
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gates, and the time taken to execute a layer is equal to
the time for the slowest gate in it.

Qubit selection. Our experiments use a set of up to
16 qubits in a particular orientation. On the quantum
processor we used, there were four such sets of 16 qubits
available, and the choice of which set to use could make
a significant difference to experimental performance. In
a VQE experiment, a straightforward metric to use to
select qubits is the energy measured for some choice of
parameters. In general, measuring lower energies is bet-
ter, as we expect decoherence to increase the energy;
coherent errors will also usually increase the energy, if
the initial state’s energy is close to the lowest possible
within that VQE ansatz. We therefore selected qubits
for our experimental run by choosing fixed parameters
(all zeroes), measuring the energy at these parameters on
all four sets of possible qubits, and choosing the qubits
which achieved the lowest energy. Spot checks through-
out the experimental run showed that this set of qubits
remained high-quality. Unlike some previous work12, we
found that averaging results over different qubit sets was
not advantageous in reducing the final error (even when
other error-mitigation techniques were also applied); it
was usually better just to pick one “best” set of qubits
and use them throughout.

Run selection. For each set of VQE parameters, we
carried out 3 experiments at different times to create the
corresponding VQE state and generate energy estimates.
We then selected the run which returned the lowest “raw”
energy estimate (following postselection by occupation
number (see below)) for subsequent calculations. The
intent behind this is that we expect the level of noise and
errors experienced by the qubits at a particular time to
be correlated with the measured energy, so a lower energy
should correspond to a higher-accuracy experiment.

Spin echo. For our experiments on 16 qubits we used
a technique inspired by the concept of refocusing by spin
echo in NMR41. Given an unknown unitary operation
U = eiθZ , then as XUX = U−1, implementing the se-
quence UXUX produces the identity map. If we think of
U as an error whose precise form is unknown, this allows
the error to be corrected. Here we implemented this idea
by sandwiching alternating layers of 2-qubit gates with
layers of X gates (Supplementary Figure 1). As X⊗2

commutes with the
√

iSWAP gate, on a perfect quantum
computer this would leave the unitary operation imple-
mented unchanged. On an imperfect quantum computer,
it may help to correct errors. Introduction of X gates
was previously found to reduce errors on an idle qubit
in a similar superconducting quantum processor42, and
more complex dynamical decoupling sequences43 have
been demonstrated to significantly reduce decoherence in
other superconducting quantum computing systems44.

In our experiments the effect on errors was substantial,
whichever subset of qubits was used. As well as correct-
ing unwanted Z rotations, another possible explanation
for this effect may be that 2-qubit gates are known to ex-
perience a substantial “parasitic CPHASE12”, manifest-

(a) Structure of circuit with X layers
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Supplementary Figure 1. (a) Spin-echo technique for reducing
errors. (b) The graph shows the energy obtained from measur-
ing at the lowest-energy parameters achievable in VQE depth
1 for a 1×8 instance at half-filling. Lines with triangle mark-
ers are with spin-echo, lines with circle markers are without.
Exact energy is −3.478 so lower energies are better. 4 sets
of qubits were tested in zigzag configurations; labels indicate
starting positions and direction (‘rd’: right then down; ‘dr’:
down then right)

.

ing as an undesired phase acting on |11〉. The X gates
move this phase to |00〉, which may reduce its effect over
the circuit as a whole. Also observe from Supplementary
Figure 1 the substantial variations in measured energies
over time.

2. Symmetries of the Fermi-Hubbard model

The Fermi-Hubbard model has a number of symme-
tries which can be used to mitigate errors: time-reversal
symmetry, particle number conservation per spin sector,
particle-hole symmetry, and reflection symmetry of the
lattice.

Time-reversal symmetry of the terms in the Fermi-
Hubbard model implies that the VQE energy is un-
changed if all parameters are negated45. This is because
the initial state |ψ0〉, the ground state of the noninteract-
ing Fermi-Hubbard model, is real in the computational
basis, and each of the interaction terms Hk in the Fermi-
Hubbard Hamiltonian is symmetric. Hence

e−iθkHk =
(
eiθkHk

)†
=
(
eiθkHk

)∗
,
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where ∗ denotes complex conjugation in the computa-
tional basis. The final state of the algorithm for param-
eters {−θk} is then

|ψf 〉 =
∏
k

e−iθkHk |ψ0〉 =
∏
k

(eiθkHk)∗ |ψ0〉

=

(∏
k

eiθkHk |ψ0〉

)∗
.

The energy of this state with respect to the overall Fermi-
Hubbard Hamiltonian H is then equal to that achieved
by the final state with parameters {θk}, because

〈ψf |H|ψf 〉 = 〈ψf |∗H|ψf 〉∗ .

We can take advantage of this symmetry by evaluating
the energy for a given set of VQE parameters θ as the
average of the energies at θ and −θ. The intent is that
this will mitigate the effect of systematic coherent errors
such as over-rotations.

Particle number conservation per spin sector
in the Fermi-Hubbard model follows from invariance of
the Fermi-Hubbard Hamiltonian under the U(1) × U(1)

symmetry a†i,σ 7→ eiασa†i,σ (i.e. a pair of U(1) transfor-
mations, each acting on spin-up and spin-down modes
independently). As a consequence, the overall Fermi-
Hubbard Hamiltonian preserves the occupation number
(Hamming weight) within spin-up and spin-down sectors.

Further, occupation number preservation within each
spin sector holds for all operations in the Hamiltonian
variational ansatz. As the quantum algorithm starts with
a state with a known occupation number in each spin
sector, this enables us to reject any runs with an incorrect
final occupation number. In particular, this detects many
errors that occur due to incorrect qubit readout, which
can be a significant source of error in superconducting
qubit systems (for example, realistic estimates could be
a 1% probability of a 0 being incorrectly read as a 1,
and a 5% probability of a 1 being incorrectly read as a
0). We found that in our 16-qubit experiments, between
7% and 29% of runs were retained due to having correct
occupation numbers (see Supplementary Table II).

It is interesting to note that we expect that checking
the occupation number within each spin sector should be
sufficient to detect the vast majority of readout errors,
without the need for additional readout error mitigation
techniques46–49. A rough upper bound on the probability
that there is an undetected readout error can be found
by multiplying the probability that there is a pair of er-
rors 0 7→ 1 and 1 7→ 0 by the number of pairs of qubits
within each spin sector, and then by 2 for the number
of spin types. Assuming independent readout errors, the
probability of such a pair of errors can be roughly upper-
bounded by 10−3, and in a 16-qubit experiment we have
8 qubits in each spin sector, giving

(
8
2

)
= 28 possible

pairs of readout errors in each spin sector, and hence an
overall upper bound of less than 6% on the probability
that there is a undetected readout error.

Lattice Min probability Max probability

1× 4 0.32 0.66

1× 8 0.12 0.29

2× 4 0.077 0.25

Supplementary Table II. Probabilities of successfully postse-
lecting on occupation number for the different lattices consid-
ered in our experiments.

Particle-hole symmetry relates low to high fillings
in the Fermi-Hubbard model. On a bipartite lattice we
define two sublattices A and B, such that each neighbour
of a site in A belongs to B and vice versa. The particle-

hole transformation P acts as PajσP† = (−1)bja†jσ,
where bj = 0 if j ∈ A and bj = 1 if j ∈ B. Under
this transformation the Hamiltonian (1) in the main text
becomes

PHP† = H + U(L−Nocc) (3)

where Nocc = N↑ + N↓ is the number of electrons in
the system and L is the size of the system. The density

operator niσ = a†iσaiσ transforms as PniσP† = aiσa
†
iσ =

1 − niσ. For a unique ground state |GS(N↑,N↓)〉 with
Nσ electrons of spin σ, P|GS(N↑,N↓)〉 = |GS(L−N↑,L−N↓)〉
and the density correlations satisfy

〈niσnjσ′〉N↑,N↓ = 〈niσnjσ′〉L−N↑,L−N↓

− 〈niσ〉L−N↑,L−N↓ − 〈njσ′〉L−N↑,L−N↓ + 1, (4)

where we defined 〈GS(N↑,N↓)|O|GS(N↑,N↓)〉 =: 〈O〉N↑,N↓ .
The spin correlations can be obtained from (4).

Importantly, all the terms in the Hamiltonian Varia-
tional ansatz are also essentially invariant under this sym-
metry. With the “snake” Jordan-Wigner ordering shown
in Fig. 1 of the main text the particle-hole transforma-
tion becomes simply P = X⊗N , i.e. an X gate acting on
each of the N = 2L qubits. Hopping terms in the ansatz
commute with X⊗2, while onsite terms (CPHASE gates)
commute up to a Z rotation on both qubits. As the
same parameter is used for all such rotations within one
layer, this becomes an unobservable global phase within
each occupation number subspace. Thus X⊗N effectively
commutes with the entire variational circuit C, implying
that for any observable O,

〈ψ|X⊗NC†OCX⊗N |ψ〉 = 〈ψ|C†X⊗NOX⊗NC|ψ〉 , (5)

and hence that we can interpret any observable on a VQE
state |ψ〉 in terms of a related observable on the particle-
hole transformed state X⊗N |ψ〉.

Particle-hole symmetry can thus be used for error mit-
igation, by producing an estimate of an observable for
the VQE ground state at occupation number Nocc as an
average of the experimentally obtained value at Nocc and
the value at L−Nocc (suitably transformed). This effec-
tively replaces the worst-case and best-case errors of this
pair with their average.
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Reflection symmetry. The site-dependent observ-
ables we measure (charge and spin, and the correspond-
ing correlations) are symmetric about reflections of the
lattice in the x and y directions. We can obtain a further
reduction in worst-case error by averaging these quanti-
ties over reflections of the lattice (2 points in the case of
a 1D lattice, and 4 points in the case of a 2D lattice).

3. Training with fermionic linear optics

Training with fermionic linear optics (TFLO) is a
method proposed by two of us50 to mitigate errors in
quantum algorithms for simulating fermionic systems,
which fits into an overall framework initially introduced
by Czarnik et al.51. The idea is based on producing a
set of pairs of noisy and exact energies, which are then
used as training data to infer a map from the noisy en-
ergy evaluation for the final state produced by VQE to
an approximation of the exact energy.

To implement this concept requires a family of quan-
tum circuits which well-represent the error behaviour of
the quantum circuit which we actually wish to evaluate.
In Ref. 51, the family of circuits used was Clifford cir-
cuits, which can be simulated efficiently classically via
the Gottesman-Knill theorem. Here, we use fermionic
linear optics (FLO) circuits, which can also be simu-
lated efficiently classically52. This family of circuits is
tailor-made for mitigating errors in VQE for the Fermi-
Hubbard model. An FLO circuit starts with a com-
putational basis state, which corresponds to the state
produced by applying some creation operators to the
vacuum, and contains operations corresponding to time-
evolution by quadratic Hamiltonians, via unitary opera-

tors of the form U = eiH , where H =
∑
j,k hjka

†
jak.

In the case of VQE with the Hamiltonian variational
ansatz53, all operations in the circuit are either time-
evolution by terms in the Fermi-Hubbard Hamiltonian,
or preparation of the initial ground state of the non-
interacting Fermi-Hubbard model via Givens rotations
(which are FLO). Thus almost all operations in the cir-
cuit are FLO, except for time-evolution by the onsite
terms. Therefore, any VQE circuit where the onsite pa-
rameters are set to 0 is an FLO circuit and can be simu-
lated efficiently to benchmark the behaviour of errors in
the circuit.

The TFLO method has been successfully applied to
VQE for a 2 × 3 instance of the Fermi-Hubbard model
in classical emulation (with a simple depolarising noise
model), and to a 1 × 2 instance on real quantum
hardware50, reducing errors by a factor of 10–30 or more.
However, as with other error mitigation techniques, it is
unclear in advance how well TFLO will perform in a given
experiment, especially for larger instance sizes.

Here we make several optimisations to fine-tune the
performance of TFLO for larger system sizes and en-
able us to achieve high-quality results. As with previous
work50, we use an algorithm based on linear regression to

infer the map from noisy to real energies. As justification
for this, if the intended quantum state produced by the
experiment with variational parameters θ is ψ(θ) and
the noise process that occurs in the quantum computer
is a quantum channel that maps

ψ(θ) 7→ ψ̃(θ) = (1− p)ψ(θ) + pρ (6)

for some fixed quantum state ρ, then the noisy energy
is a corresponding linear transformation of the exact en-

ergy trHψ̃(θ). Some natural error processes occurring in
quantum hardware are indeed of this form (such as the
depolarising channel applied to the output of the experi-
ment); however, many other errors are not. Nevertheless,
in practice we observe an approximately linear relation-
ship between exact and noisy energies (Supplementary
Figure 2).

However, one can see that not all points fit perfectly
along a line, and we expect systematic and transient er-
rors to occur that lead to certain data points being low-
quality. We use the Theil-Sen estimator54,55 to reduce
the effect of these outliers, which is a linear regression
algorithm based on taking the median of the slopes be-
tween pairs of points.

Next, to further improve the tolerance of this method
to noise, we look for a fairly large number (here we choose
16) of tuples of parameters whose corresponding energies
are well spread-out, to minimise the effect on the linear
fit of systematic or transient errors in computing each
individual energy. For the case of 1 VQE layer, FLO
circuits have two nonzero VQE parameters for 1 × Ly,
and three nonzero parameters for 2 × Ly. We find pa-
rameters whose corresponding exact energies are spread
out by searching over energies obtained for a uniformly
spaced grid of size 16 for each parameter. The cost of this
method grows exponentially with the number of layers,
so for 2 or more layers, we instead search over 256 random
parameter choices. In all cases, we use efficient classical
simulation software previously developed for VQE for the
Fermi-Hubbard model19 to compute these energies. This
code uses an exponential-time simulation approach which
does not use the efficient algorithm for simulating FLO
circuits52; however, for the problem sizes considered, it
is sufficiently efficient. As larger problem sizes are con-
sidered, it will become essential to use a theoretically
efficient classical simulation algorithm.

A final important improvement that we make to the
previously developed TFLO algorithm is designed to cor-
rect for coherent errors. In principle, TFLO with linear
regression can correct for decoherence of the form of (6)
with very high accuracy. However, an important class of
errors which are not corrected in this way are coherent
errors that depend on the choice of parameters (for ex-
ample, over-rotations). To correct for errors of this form,
after performing TFLO as previously discussed, we im-
plement a final step where we subtract off the residual
error at the FLO point which is closest to the parame-
ters at which we wish to evaluate the energy – the point
obtained by setting the onsite parameter(s) to zero. The
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(c) 1 × 4, U = 4, depth 2
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Supplementary Figure 2. Representative examples showing a near-linear relationship between noisy and exact VQE energies
for (a) 1 × 8 (with depth 1), (b) 2 × 4 (with depth 1), and (c) 1 × 4 (with depth 2) instances of the Fermi-Hubbard model.
Here, U = 8 in panel (a) and U = 4 in panels (b)–(c). All results are at half-filling, corresponding to some of the most complex
circuits we execute. The straight line demonstrates the fit found using the Theil-Sen algorithm we used. Residual error is
reduced by subtracting the remaining error in the closest FLO point to the VQE parameters (shown in green). Error bars are
too small to be visible.

intuition behind this step is that, as almost all gates in
this FLO circuit are the same as the real circuit we wish
to execute, we expect the error behaviour to be very sim-
ilar.

Other observables. As well as the energy, TFLO can
be applied to any other observable, as long as the exact
and noisy expectations are available for the FLO points.
Except for the energy, all observables considered by us
are diagonal in the computational basis, which means
their noisy expectation values can be approximately com-
puted from the same samples that were used to compute
the expectation value of the onsite term in the Hamil-
tonian. For any diagonal observable, the corresponding
exact expectation value can be approximately computed
from samples in the computational basis at the FLO
point, which can be generated efficiently classically52; the
observables considered here could also be computed ex-
actly. (In our experiments, for ease of implementation we
instead used samples generated by simulating the circuit
directly, which is sufficiently efficient for the circuit sizes
we consider.)

Hence TFLO can be applied to all other observables
considered in this paper as well, without the need for
additional quantum resources. However, a caveat applies:
The evaluation points for TFLO were chosen such that
the energies are spread out to facilitate a good linear
fit. This does not necessarily imply that the expectation
values of other observables are also spread out.

In fact, at half-filling the ground state expectation
value of all single-site density niσ operators is uniformly
1
2 due to the particle-hole symmetry. And for states with
uniform density, the density is invariant under FLO cir-
cuits (we will prove this shortly). Hence the inferred lin-
ear transformation from noisy densities to exact densities
will always be the constant 1

2 -function. Note however,
that in this special case of half-filling the particle-hole
symmetry holds regardless of whether U = 0 and hence
predicting 〈niσ〉 = 1

2 is actually correct. For other ob-

servables (e.g. charge densities) the expectation value of
the observable to mitigate is invariant under FLO cir-
cuits, but does change when applying non-FLO gates.
In such cases TFLO would fail altogether and would al-
ways predict the value of the FLO simulations. To avoid
these issues, we performed the following checks. First,
if the exact observable values found by classical simu-
lation were all close (within 0.05), we only applied the
coherent error correction step, and not a linear fit (which
would be meaningless in this case). Otherwise, we per-
formed a linear fit using the Theil-Sen algorithm, and
checked whether the linear fit was a good explanation of
the data, as measured by the coefficient of determina-
tion (R2) being larger than 0.7. If this check failed, we
assume that there is no simple relationship between the
noisy and exact values and simply return the noisy value
of the observable.

The fact that the charge and spin densities of states
with constant density are invariant under FLO circuits
can be shown as follows. First note that any (number-
preserving) FLO unitary can be written as the product of
Givens rotations, hence it suffices to show the statement
for Givens rotations. Without loss of generality, consider
a Givens rotation applied to the first two qubits, write
the state as

|Ψ〉 = |00〉 |ψ00〉+ |01〉 |ψ01〉+ |10〉 |ψ10〉+ |11〉 |ψ11〉 (7)

and note that 〈n1〉Ψ = 〈n2〉Ψ implies 〈ψ01|ψ01〉 +
〈ψ11|ψ11〉 = 〈ψ10|ψ10〉 + 〈ψ11|ψ11〉 ⇔ 〈ψ01|ψ01〉 =
〈ψ10|ψ10〉. Applying a Givens rotation with angle θ to
the first two qubits then yields

|Ψ′〉 = G12(θ) |Ψ〉
= |00〉 |ψ00〉+ [cos(θ) |01〉+ sin(θ) |10〉] |ψ01〉
+ [− sin(θ) |01〉+ cos(θ) |10〉] |ψ10〉+ |11〉 |ψ11〉

(8)
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and computing the density on the first qubit then yields

〈n1〉Ψ′ = cos(θ)2 〈ψ01|ψ01〉+ sin(θ)2 〈ψ10|ψ10〉
+ 〈ψ11|ψ11〉 = 〈n1〉Ψ

(9)

where we used for the second equality that 〈ψ01|ψ01〉 =
〈ψ10|ψ10〉. Similarly 〈n2〉Ψ′ = 〈n2〉Ψ. For all other sites j
the density is invariant because [nj ,G12(θ)] = 0. Hence
〈ni〉 is invariant under FLO unitaries.

4. Sampling overheads and scalability

In this section we discuss the overheads associated
with our error-mitigation techniques, and their scalabil-
ity. Among the low-level techniques, the only one with an
overhead is selecting the best of 3 runs. The use of time-
reversal symmetry has a running time overhead of a fac-
tor of 2, because each set of VQE parameters is mapped
to two sets. Similarly, taking advantage of particle-hole
symmetry involves doubling the number of runs. The use
of reflection symmetry has no additional cost.

For particle number conservation, experimental sam-
pling overheads are listed in Supplementary Table II.
One can use known characterisations of the probability
of readout errors to estimate the sampling overhead for
larger system sizes. Google’s 53-qubit Weber processor
has estimated 0 7→ 1 readout error rate 2% (when mea-
suring in parallel), and 1 7→ 0 readout error rate 7%. As-
suming that these error rates extend to larger systems, at
half-filling a 64-qubit experiment (beyond the bounds of
classical exact simulability) would have a 17% expected
probability of retaining each run; a 128-qubit experiment
would have a 7% probability of retention. These are not
unreasonable overheads in runtime.

The overhead associated with TFLO corresponds to
the evaluation of FLO circuits for a constant number of
fixed parameter settings (here we used 16), as well as for
a choice of parameter settings associated with the point
at which the energy is evaluated.

For large Fermi-Hubbard lattice sizes, a more signifi-
cant source of error than qubit readout will be errors as-
sociated with imperfect 2-qubit gates. Our experiments
used up to 176 2-qubit gates on a quantum processor
with 2-qubit gate fidelities ∼ 0.995. Converting this to
a roughly estimated quantum circuit fidelity by simply
exponentiating the gate fidelity by the number of gates
gives an estimated circuit fidelity ∼ 0.41, which was suf-
ficient to achieve qualitatively accurate results.

Implementing one layer of the Hamiltonian variational
ansatz for a 1× Ly lattice (which is classically solvable)
using the quantum circuit family proposed in this work
requires 2 · (2Ly + 2(Ly − 1)) = 4(2Ly − 1)

√
iSWAP

gates in a quantum circuit of depth 10. At most L2
y 2-

qubit gates are also required to prepare the initial state,
using a quantum circuit of depth 2(Ly − 1). Finally, at
most 2Ly 2-qubit gates are used for the final energy mea-
surement, in depth 2. The total 2-qubit gate complexity

for a 1-layer VQE circuit is then at most L2
y+10Ly−4 in

depth 2Ly + 10. This inevitably leads to circuit fidelities
dropping exponentially with the instance size; however,
even for quite large instances, the overall circuit fidelity
may still be reasonably high. Addressing a 1× 25 Fermi-
Hubbard instance, for example, would use 871 gates, and
with a gate fidelity of 0.995, an estimated circuit fidelity
of ∼ 0.01 would be achieved.

Even a fidelity this small could be sufficient to
achieve qualitatively accurate results when enhanced us-
ing TFLO and other error-mitigation techniques, al-
though experimentation would be required to determine
the level of accuracy that could be achieved, and the
overheads incurred. One might anticipate overheads to
increase inversely proportionally to the circuit fidelity.
A larger device allowing the ability to run multiple
copies of the VQE circuit would enable the use of ad-
ditional error-mitigation techniques such as virtual dis-
tillation/exponential error suppression56,57, at the cost
of an overhead in quantum circuit depth and number of
measurements. These techniques could be combined with
the error-mitigation techniques used here.

Addressing Lx × Ly instances for Lx > 1, or using
larger numbers of variational ansatz layers, will require
more complex circuits and hence higher-performance
hardware. For an Lx × Ly lattice, the gate complex-
ity scaling of the algorithm proposed in Ref. 19 is
O(LxLy(LxLy + kLx)) for a circuit with k variational
layers. On the other hand, the circuit depth of this al-
gorithm is substantially smaller, by a factor of O(LxLy),
which may significantly improve the accuracy of estimat-
ing physically relevant observables in practice.

Supplementary Note 5 – Classical comparators

In this section we give more details about how the clas-
sical comparator quantities in Figures 4, 5, and 6 in the
main text and elsewhere were calculated.

Simulated and ground state quantities. The
“simulated” line in Fig. 4 in the main text refers to the
energy produced using an exact classical simulation of
the VQE algorithm, using a software package targeted at
efficient simulation of the Fermi-Hubbard model19. The
optimisation algorithm used was BFGS, which was pre-
viously found to be effective19, but can get trapped in
local minima; results were therefore checked using the
Cobyla algorithm. Ground state quantities such as ener-
gies, charges, spins, and correlations were computed by
exact diagonalisation.

Slater determinant. A natural classical compara-
tor against the performance of the variational ansatz of
quantum states that we use is the family of Slater de-
terminant (Hartree-Fock) states, which can be seen as
product states that obey appropriate fermionic antisym-
metry.

Given a Slater determinant, its energy with respect
to the Fermi-Hubbard Hamiltonian can be computed ef-
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Supplementary Figure 3. Fidelity | 〈ψ̃G|ψG〉 |2 with the ground state |ψG〉 achieved by the VQE estimate |ψ̃G〉 (in theory),
compared with the best achievable fidelity by a Slater determinant, and the fidelity achieved by the Slater determinant with
the lowest energy for the (a) 1×8, (b) 2×4, and (c) 1×4 Fermi-Hubbard instances. VQE results in (a)–(b) use one variational
layer, while in (c) results for both one (red) and two (blue) layers are shown. In all panels, U = 4.

ficiently either using a general technique for simulating
fermionic linear optics circuits52, or more simply via the
Slater-Condon rules from quantum chemistry. One par-
ticular Slater determinant that can be used as a trial
state is the ground state of the U = 0 (noninteracting)
Fermi-Hubbard model. However, it is possible to achieve
an energy closer to the true ground energy, for exam-
ple by the well-known mean-field approximation to the
Fermi-Hubbard model58.

The iterative mean-field approach is not guaranteed to
converge, or to find a Slater determinant that minimises
the energy. To measure the ability of a “best possible”
Slater determinant to compete with the VQE solution,
we therefore used a different approach, where we opti-
mised (classically) over the space of Slater determinants,
with the goal of minimising the energy with respect to the
Fermi-Hubbard Hamiltonian. To parametrise this space,
we used the entries of an L × L Hermitian matrix h for
a system with L sites, corresponding to a Hamiltonian

HSD =
∑
i,j hija

†
iaj , with the same matrix h being used

for spin-up and spin-down, to ensure that spin-flip sym-
metry was obeyed. Then the Slater determinant with
occupation number k corresponding to this matrix, the
ground state of HSD, is found by taking the k eigen-
vectors ei = (αi1, . . . ,αiL) of h with lowest eigenval-
ues and forming the product of single-particle operators

αi1a
†
1 + · · ·+αiLa

†
L. In the case of even occupation num-

bers, we used the same occupation number for spin-up
and spin-down; for odd occupation numbers, we had one
more spin-up electron (matching the VQE experiments).

We used the Slater-Condon rules to compute the over-
all Fermi-Hubbard energy corresponding to h, as a sub-
routine within the classical BFGS optimiser. This al-
lowed us to minimise this energy over h, for several ran-
domly perturbed starting conditions. We found that this
approach reliably converged to the apparent global min-
imum.

Fidelities. A more stringent condition on preparation
of the ground state than the energy being low is that the

fidelity with the ground state is high. The fidelity is not
accessible experimentally, but the best achievable fidelity
of the VQE approximation to the ground state can be
computed in classical emulation and compared against
the best possible fidelity achievable by a Slater determi-
nant. These results are shown in Supplementary Figure
3; in almost all cases the VQE approximation outper-
forms the best possible Slater determinant.

Supplementary Note 6 – Formula for variance of
observables taking postselection into account

In this section we derive the expression stated in
Ref. 59 for the variance of the sample mean when the
number of samples is random. Assume that X1, · · · ,XN

are N i.i.d random variables with mean µ and variance
σ2 and Y1, · · · ,YN are N i.i.d. Bernoulli variables with
p(Yi = 1) = p for all i. The Xi play the role of our
samples and Yi indicates if we keep the i-th sample after
postselection or not. The estimator for the mean µ is
then

Z =

∑
i YiXi∑
j Yj

. (10)

It is straightforward to verify that this estimator is un-
biased:

E[Z] = E

[∑
i YiXi∑
i Yi

]
=
∑
i

E[Xi]E

[
Yi∑
j Yj

]
= µ. (11)

To calculate its variance, it is useful to condition on the
number of successful samples |Y | =

∑
i Yi:
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(a) 1 × 8, U = 4, depth 1
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(c) 1 × 4, U = 4, depth 2
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Supplementary Figure 4. Comparison of the hopping (kinetic) and onsite (potential) energies in the experimental VQE ground
state (blue, solid lines), the perfect VQE ground state found in classical simulations (yellow, dashed lines), and the true ground
state for the three lattices studied by us (green, dashed lines) for (a) 1 × 8, (b) 2 × 4, and (c) 1 × 4 Fermi-Hubbard instance.
Results shown in (a)–(b) have been obtained with a single variational layer, while in (c) two layers have been used. In all
panels, U = 4.

E[Z2] =
∑
y

Pr[Y = y]

|y|2
EX

[( ∑
i : yi=1

Xi

)2]

=
∑
y

Pr[Y = y]

|y|2
EX

 ∑
i : yi=1

X2
i +

∑
i 6=j : yi=yj=1

XiXj


=
∑
y

Pr[Y = y]

|y|2
(
|y|E[X2

1 ] + |y|(|y| − 1)E[X1]2
)

= E[X1]2 +
∑
y

Pr[Y = y]

|y|
(E[X2

1 ]− E[X1]2)

= µ2 + E[1/|Y |]σ2,
(12)

so

Var(Z) = E[Z2]− E[Z]2 = σ2EY [1/|Y |]. (13)

To calculate the remaining expectation value, note that
in all our cases |Y | is large (around 20,000) and hence
well concentrated. A straightforward Taylor expansion
of f(|Y |) = 1

|Y | around its expectation value Np yields

then

1

|Y |
=

1

Np
−|Y | −Np

(Np)2
+

(|Y | −Np)2

(Np)3
+O

(
(Np)−4

)
(14)

and taking expectation values on both sides gives

EY

[
1

|Y |

]
=

1

Np
− 0 +

Np(1− p)
(Np)3

(15)

which finally makes the variance

Var(Z) =
σ2

Np

(
1 +

1− p
Np

)
+O

(
(Np)−3

)
. (16)

Several more complicated and accurate asymptotic ex-
pansions are given in Ref. 59 and references therein. The
above expression is sufficient for our needs (indeed, the
O(1/(pN)2) correction is already almost unnoticeable).

Supplementary Note 7 – Additional
experimental results

1. Hopping and onsite energies

In Supplementary Figure 4 we repeat the analysis done
for Fig. 4 of the main text, but this time splitting the
kinetic (hopping) and interaction (onsite) contributions
to the energy. Comparing the “Simulated” with the
“Ground state” energies one can see that the VQE state
overestimates the onsite energy, but underestimates the
hopping energy. This leads to some cancellation of errors,
which helps to achieve the very small overall energy er-
rors reported in the main text. One can interpret this as
the VQE ground state lying “between” the true ground
state and the initial noninteracting ground state.

However, error cancellation does not fully explain the
accuracy of our results: for example, for the 1x4 lattice at
half-filling, the hopping energy error between our experi-
mental results and the ground state is −0.133, the onsite
energy error is 0.505, yet the overall energy error is 0.046.
This is because our error-mitigation methods act on the
energy as a whole, enabling higher-accuracy results than
acting on each energy separately. Higher depth VQE cir-
cuits would produce more accurate approximations, and
would eventually reproduce the exact hopping and onsite
energy curves.

Furthermore, in Supplementary Figure 4 the “VQE”
hopping energy and the “Simulated” hopping energy are
in better agreement than the respective onsite energies.
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This can be explained by the TFLO training points hav-
ing the same onsite energy, making a linear fit impossible.
This means TFLO does not work effectively to correct er-
rors in the onsite energy.

2. Additional results for the 2× 4 lattice

In this section we collate figures and additional discus-
sion for our results on a 2× 4 lattice.

Metal-insulator transition. In Supplementary Fig-
ure 5 (a)-(b), we observe the behaviour of the chemical
potential for different occupations. We do not see the
onset of the MIT, as µ′ remains essentially constant. We
suspect that this is due to two compounded effects: un-
corrected errors affecting the quantum processor, and the
low depth of the EHV ansatz used not being able to suffi-
ciently capture correlations in this system, as we discuss
below.

Charge density expectation. In large 2D systems,
it is expected that at half-filling the charge becomes com-
mensurate with the lattice, spontaneously breaking dis-
crete translation symmetry. With this in mind we study
the charge density in the 2 × 4 system (Supplementary
Figure 6(a),(e)). In this small system we find that the
charge expectation inherits some of the physics of 1D. A
way of seeing this is the following. Consider the non-
interacting limit U = 0 with zero hopping along the
rungs (tR = 0). In this case the energy of the system
consists of two degenerate bands each corresponding to
a 1 × 4 system. Increasing the hopping along the rungs
to its original tR = 1 value, the two degenerate bands
split in energy by tR. The single particle states in the
lower band correspond to the symmetric combinations of
electrons from both chains. Increasing the interactions
from zero gradually, the system resembles a 1 × 4 Hub-
bard chain of fermions delocalised along the rungs. This
explains the uniform charge density profile at a quarter
filling (Nocc = 4), as this corresponds to a completely
filled lower band of “rung” electrons. This delocalisation
also decreases the effect of the onsite interaction, as can
be seen by comparing a true 1D system with the effective
one made of “rung” electrons using standard perturba-
tion theory around the non-interacting regime.

Spin density. The spin profiles for odd occupa-
tions for the VQE ansatz (Supplementary Figure 6(c)–
(d)) and for the true ground state (Supplementary Fig-
ure 6(g)-(h)) are similar, and close to the non-interacting
pattern (Supplementary Figure 6(f)). This supports
the interpretation that VQE is able to capture non-
correlated behaviour at depth 1 in this system, to re-
produce the physics of a weakly interacting system, but
fails to account for correlations, which in this system are
“screened” by the delocalisation of particles across the
rungs. Based on this, we expect that to observe truly
correlated behaviour in this system (e.g. a peak in µ′

around half-filling, Supplementary Figure 6), we need a
deeper VQE circuit to represent the ground state observ-

ables with higher accuracy.

Supplementary Note 8 – Further details about
BayesMGD

Here, we give an explicit formulas for βm and Σm in
Eq. (5) of the main text together with their derivation.
We also present pseudo-code for the BayesMGD algo-
rithm and show how it is related to Kalman filters.

1. The Bayesian update step

We make three main assumptions in our design of the
BayesMGD algorithm:

1. For all θ′ near θm−1 the probability of observ-
ing some value y′ is given by p(y′ |θ′,β) =
N (fs(θ

′;β)) where the surrogate model can be
written as fs(θ

′;β) =
∑nm
j βjφj(θ) with nm model

functions φj(θ) that can be read off Eq. (4) of the
main text.

2. In the m-th iteration, before observing new
data our belief about the model parame-
ters is a multivariate Gaussian pm|m−1(β) =
N (βm|m−1, Σm|m−1).

3. When making a gradient descent step, we lose cer-
tainty about the model parameters β proportional
to the step width s, but our belief does not change.
That is, making the gradient descent step sends

Σm+1|m = Σm|m + s2

l2 1 and βm+1|m = βm|m.

Assumptions 1 and 2 imply that after observing new data

{yi,σi} at points {θ(i)} we can use Bayes’ theorem (com-
pare Eq. (5) of the main text) to compute the posterior
of β,

pm|m(β) ∝P ({yi,σi} | {θ(i)},β) pm|m−1(β)

=

np∏
i=1

N (yi; fs(θ
(i);β),σi)

×N (β;βm|m−1, Σm|m−1)

=N (β;βm|m, Σm|m),

(17)

Defining the design matrix

X =

 φ1(θ(1)) · · · φnm(θ(1))
...

...

φ1(θ(np)) · · · φnm(θ(np))

 , (18)

the measurement noise matrix

Σ =


σ2

1

. . .

σ2
np

 (19)
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Supplementary Figure 5. Additional results for 2× 4. (a)–(b): Chemical potentials µ(Nocc) = E(Nocc)− E(Nocc − 1). Labels
are as in Fig. 4 in the main text. Inset shows the derivative µ′(Nocc) = E(Nocc + 1)− 2E(Nocc) +E(Nocc − 1) of the chemical
potential at even occupations. (c): Total staggered spin correlation

∑
s(−1)s 〈SzsSzs+1〉 at and close to half-filling, where the

ordering is taken along the Jordan-Wigner snake (Fig. 1(a) in the main text). It compares experimental results from VQE with
true values in the ground state (GS). U = 0 points are exact classical calculations.
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Supplementary Figure 6. (a) Experimental VQE and (e) ground state charge density for a 2× 4 lattice. (b)–(d) Experimental
VQE and (f)–(h) ground state spin density for a 2 × 4 lattice. In all panels, the X axis shows the occupation number Nocc

while the Y axis the row index. By symmetry, charges and spins are equal for each pair of sites in each row, so the plot shows
charge/spin for one site in each row. Spin plots split by even/odd occupations. In the ground state, spin is 0 everywhere for
Nocc even. In the VQE ground state (b), spin is close to 0 everywhere.

and a measurement outcome vector

y = (y1, · · · , ynp)†, (20)

and plugging these into the expressions for Gaussian dis-
tibutions yields

log pm|m(β) =− 1

2
(y −Xβ)†Σ−1(y −Xβ)

− 1

2
(β− βm|m−1)†Σ−1

m|m−1(β− βm|m−1)

+ const,
(21)

where the normalisation factors were absorbed into
“const”. The product of two Gaussian distributions is

again a Gaussian distribution. So we know that

log pm|m(β) = −1

2
(β−βm|m)†Σ−1

m|m(β−βm|m) + const

(22)
for some βm|m and Σm|m. Comparing terms in the last
two equations then gives

Σ−1
m|m = X†Σ−1X + Σ−1

m|m−1

βm|m = Σm|m(X†Σ−1y + Σ−1
m|m−1βm|m−1).

(23)
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Algorithm 1: BayesMGD

Input: function f returning uncertain values y,σy,
model functions {φj}nmj=1,
initial point θ, stability constant A,
learning rate γ, rate decay exponent α,
sampling radius δ, radius decay exponent ξ,
sample number np, maximum evaluations neval,
tolerance ε, length scale l,
initial parameters β, covariance matrix Σ
m← 0
while m < neval do

m← m+ 1

δm ← δ/mξ . Set sample radius
γm ← γ/(m+A)α . and step width
S ← sample np points from δm-ball around θ
L← {}
for θi ∈ S do

Add f(θi) = (yi,σi) to L
end
(β, Σ)← BayesUpdate({φj},S,L,β, Σ)
g← ∇θfs(θ;β)
θ← θ− γmg . Gradient descent step

Σ← Σ + |γmg|2
l2

1 . Add uncertainty due to step

if γm · |g| < ε then
(y,σy)← fs(θ; β, Σ)
return ((y,σy),θ) . Return if step size is small

end

end
(y,σy)← fs(θ;β, Σ)
return ((y,σy),θ) . Return if maximum iterations
reached

2. Pseudocode for BayesMGD

In Algorithms 1 and 2 we give pseudocode for the
BayesMGD algorithm and the Bayesian update step.
Throughout we assume a linear model of the form
fs(θ;β) =

∑nm
j=1 βjφj(θ), where nm is the number of

model parameters and the model is linear in the model
parameters βj , but the model functions φj are not neces-
sarily linear in θ. Compare this with Eq. (4) of the main
text,

fs(θ;β) = β0 +

nc∑
j=1

βjθj +

nc∑
j,k=1, j<k

βjkθjθk, (24)

to identify the model functions φj(θ). For simplicity
of notation, we also implicitly lift any function that is
passed a variable together with the uncertainty of the
variable to a version that returns the function value to-
gether with its uncertainty computed using Gaussian er-
ror propagation.

3. Relation between BayesMGD and Kalman filters

The Kalman filter is an algorithm that iteratively com-
bines noisy measurement data with prior knowledge and

Algorithm 2: BayesUpdate

Input: model functions {φj}nmj=1,

evaluation points {θi}Ni=1,
values with noise {(yi,σi)}Ni=1,
prior parameters with covariance β0, Σ0

Create empty nm ×N matrix X . Data preparation
Xji ← φj(θi)
Collect the yi into y

Collect the σ2
i onto diagonal of Σ

Σ−1
1 ← X†Σ−1X + Σ−1

0 . Update equations

β1 ← Σ1(X†Σy + Σ−1
0 β0)

return (β1, Σ1)

knowledge of the dynamics to estimate the state of a dy-
namical system60. A notable, early application was in
the Apollo Guidance Computer61. However, as far as
we know, Kalman filters have not yet been considered in
the context of function optimisation. Instead their main
application so far was to estimate the state of physical
systems, like air- or spacecraft and robotics. We will now
show that our BayesMGD algorithm is mathematically
equivalent to the Kalman filter algorithm.

In the language of Kalman filters,

• xm−1|m−1 is the state estimate at time step m given
all measurements up to and including time step
m− 1. In our case these are the most likely model
parameters βm−1|m−1;

• Pm−1|m−1 is the covariance matrix of that esti-
mate. In our case this is Σm−1|m−1.

From these the state at time m is predicted as

xm|m−1 = Fmxm−1|m−1 + Bmum

Pm|m−1 = FmPm−1|m−1F
†
m + Qm

(25)

where Fm encodes the dynamics of the system, Bmum
is the result of external control inputs and Qm is the
process noise. In our case the dynamics are trivial (Fm =
1), there is no external control input um and the process

noise is Qm = s2

l2 . In the next step, observation data is
used to refine the prediction. The observations zm are
linearly related to the true state xm as

zm = Hmxm + vm (26)

where Hm is some (possibly m-dependent) matrix and
vm the observation noise which is assumed to be zero-
mean gaussian white noise vm ∼ N (0, Rm). In our case
the observation data are the measurement outcomes y,
the measurement noise is Σ and the design matrix X
plays the role of Hm. Using this data the prediction is
refined to

P−1
m|m = H†mR−1

m Hm + P−1
m|m−1

xm|m = Pm|m(H†mR−1
m zk + P−1

m|m−1xm|m−1).
(27)
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With the above identifications these are the same equa-
tions as (23) and it is clear that the way BayesMGD pre-
dicts the optimal model parameters β is the same way
that a Kalman filter predicts the system state x.

4. Experimental comparison of optimisation
algorithms

To compare the performance of BayesMGD, vanilla
MGD and SPSA we ran VQE for different, well under-
stood problem instances on real hardware with all three
optimisation algorithms.

For BayesMGD, we used hyperparameters A = 1,
np = 1.5 dim(β), γ = 0.3, α = 0.602, ξ = 0.101,
δ = 0.6 and l = 0.2, which gave consistently good results
in simulations and were used in the experiments. We
implemented MGD based on the description in Ref. 62.
MGD has the same hyperparameters as BayesMGD, ex-
cept for l, which is not a hyperparameter. In our exper-
iments we used the same hyperparameter settings as for
BayesMGD. β and Σ were initialised as

β0 = 0

Σ0 = diag( 107︸︷︷︸
Σβ0

, 107, · · · , 107︸ ︷︷ ︸
Σβj

, 105, · · · , 105︸ ︷︷ ︸
Σβjk

), (28)

which has the effect that if the least squares fit is under-
determined the algorithm will first fit with a linear model
and only set the βjk to non-zero values if the data cannot
be explained with a linear model.

Our implementation of SPSA was the same as that
presented in Ref. 19, except that we only implemented a
simple one-stage algorithm, not the three-stage approach
used there, as we found that this was sufficient to obtain
good performance. We used the same hyperparameters
as that previous work, except that we reduced the sta-
bility constant A, as this was found to be more effective
in experiments (we set α = 0.602, γ = 0.101, a = 0.2,
c = 0.15, A = 1).

As a figure of merit we show the energy difference be-
tween the exact energy expectation value one would ob-
tain on a perfect device and the best exact energy attain-
able with the given VQE circuit. For a fair comparison,
the number of shots per evaluation and number of evalu-
ations per iteration was chosen such that the number of
shots per iteration was the same for all optimisation runs
shown in Supplementary Figure 7.

The left column of Supplementary Figure 7 shows that
when the optimisation budget is given in shots instead of
time, BayesMGD and MGD clearly outperform SPSA.
However, when the optimisation budget is wall clock
time, the rate of convergence of SPSA and (Bayes)MGD
was roughly the same, as is best seen in the upper right
panel of Supplementary Figure 7. In one of the SPSA
runs on the 2 × 4 lattice the different sources of ran-
domness in the SPSA algorithm conspired to send the
parameters very close to the global minimum already
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Supplementary Figure 7. Comparison of the B(ayes)MGD,
MGD and SPSA optimisation algorithms. Shown is the en-
ergy difference between the classically evaluated, exact ener-
gies Eexact at the parameters produced at each step of the
respective optimisation algorithm from noisy measurements
on real hardware, and the best attainable energy at the given
circuit depth E∗, as a function of the optimiser iteration (left
column) and as a function of wall clock time since the start
of the VQE run (right column). The upper row shows the
results on a 2 × 4 lattice with ansatz depth 1 and the lower
row shows the results on a 1 × 4 lattice with ansatz depth
2. Two runs are shown for each optimisation algorithm and
lattice.

in the first iteration. These are the lower, orange, al-
most constant lines in the upper row and interestingly
SPSA does not improve the parameters past that, while
(Bayes)MGD was able to find better parameters even
closer to the minimum. The lower row shows that, for
harder instances with more free parameters (here 6 in-
stead of 4), also (Bayes)MGD may fail to improve the
parameters further once it got close to the minimum.

In the instances shown here, there was no clear differ-
ence between the performance of BayesMGD and MGD.
However, in simulated tests of VQE for the antifer-
romagnetic Heisenberg model on the kagome lattice63

with 12 qubits and 18 parameters we found that for
η :=

np
(nc+1)(nc+2)/2 ≥ 1 the performance of BayesMGD

and MGD is comparable, while for η < 1 BayesMGD
often outperforms MGD. We recall that η is defined as
the ratio between the number np of evaluation points
taken in each iteration and the number (nc+1)(nc+2)/2
of evaluation points necessary for a fully determined
quadratic fit. Hence η < 1 corresponds to an under-
determined quadratic fit, where good usage of prior in-
formation is especially important. These situations are
shown in Supplementary Figure 8, where for η = 0.7
and 1.5 BayesMGD and MGD perform similar, while for
η = 0.05 BayesMGD outperforms MGD. Note that in the
given case for η = 0.05 the number of sample points is
smaller than the number of parameters, i.e. even a linear
fit is not fully specified.
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Supplementary Figure 8. Comparison of B(ayes)MGD and
MGD with a simulated cost function with 18 parameters. As
a cost function we chose the cost functions from Ref. 63 on
2×6 qubits with 3 layers. The number of shots per evaluation
was scaled with nshots ∼ η−1, making the number of shots
per optimiser iteration constant. For clarity, we show only
the exact function value at the current θ instead of the noisy
evaluations at the sample points. These are typically higher
and far more spread out.

Supplementary Note 9 – Comparison with
classical state of the art methods

In the main text we compared the results obtained
by VQE with the best Slater determinant, showing that
VQE outperforms this method. It is good to high-
light that the Fermi-Hubbard model has been used as
a test-bed for several classical approximation algorithms
and these methods can be used to obtain approxima-
tions to ground state properties with better errors on
larger systems that the ones studied here. For ex-
ample, based on state of the art simulations of the
Fermi-Hubbard model64 using multireference projected
Hartree-Fock (MRPFH) or unitary coupled cluster sin-
gle double triple (UCCSDT), the error in the determina-
tion of the ground state energy per site between these
methods is ∼ 0.03 (at U = 8 and close to half fill-
ing, on a system of 64 sites). In a more recent numer-
ical study of superconductivity in the Fermi-Hubbard
model65, the gap in energy per site between two other
leading methods (constrained-path (CP) auxiliary-field
quantum Monte Carlo (AFQMC) and density matrix
renormalization group (DMRG)) was ∼ 0.005, also for
a system of 64 sites, with U = 8, close to half filling, and
with no pairing field.

By comparison our measured VQE energy per site has
an error ∼ 0.03 with respect to the perfect VQE ground
state at depth 1, in the same regime of parameters but
in a system 8x smaller. This hints that being able to in-
crease the system size and number of VQE layers, while
maintaining or somewhat improving the current level of
error, could make VQE competitive with state of the
art classical methods. We consider that outperforming

the best Slater determinant at the size considered in this
study, with a noisy device, is a necessary first goalpost
to achieve.

From a complexity-theoretic point of view, approxi-
mating the ground state energy of a general quantum
Hamiltonian is complete for the complexity class Quan-
tum Merlin-Arthur (QMA)66, which can be thought as
the quantum version of the non-deterministic polynomial
(NP) complexity class. As such QMA contains NP. In
light of this, in general it is expected that not even a fully
fault-tolerant quantum computer could approximate the
energy of the most difficult instances without using expo-
nential resources. Nevertheless, the expectation is that
optimising over quantum circuits may offer yet another
approximation technique not available with classical al-
gorithms, and may be useful for physically meaningful
instances. To determine beyond doubt if VQE is com-
petitive against the plethora of approximate classical al-
gorithms available, a thorough experimental analysis of
VQE is needed in terms of the error scaling with system
size for different parameters and regimes. It is known
that classical approximations face different drawbacks as
function of interaction strength, temperature or system
size64. It is an open problem and an active area of re-
search to fully characterise the power of VQE with in-
creasing system size and varying physical conditions.
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