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REVIEWER COMMENTS 

Reviewer #1 (Remarks to the Author): 

In their manuscript "Whole Genome Sequence analysis of blood lipid levels in over 66,000 individuals" 

Selvaraj et al. describe the analyses of whole genome seq data with plasma lipid levels from the 

Trans-Omics for Precision Medicine (TopMed) programme. The authors investigated over 66,000 

subjects across multiple ancestry groups. Results from the WGS data were analysed across and within 

each ancestry group and intersected with available array-based GWAS data to identify potentially 

novel associations of genetic variants with lipids. Replication of these results were performed in 

45,000 independent samples with array-based genotyping. Subsequent analyses for identification of 

gene-specific functional categories and non-coding genomics regions influencing plasma lipid 

concentrations were performed. 

Using this approach the authors identified several novel variants within known regions. 

This manuscript is an interesting work using sequencing data along with microarray GWAS data to 

conduct a systematic scan for plasma lipids. The results show that additional alleles could be identified 

however, no novel loci were identied limiting the novelty of results. 

My main comments is that I would like to see additional mechanistic insights of the newly identifed 

alleles and whether these contribute to the same mechanisms as variants already know or whether 

novel mechanistic insights can be drawn from these variants. 

Further comments: 

Replication analyses of results from WGS was performed in samples with array-based genotyping 

imputed to TOPMed. Please explain this in more detail as one might imaging that the same 

results/loci/variants will be detected if our impute on the data also used for discovery. 

Plasma lipid data were analysed for LDL-C, HDL-C, TC and TG. Are data on further subgroups of lipids 

are available, eg VLDL that can be analysed (even if only available in part of the cohorts)? 

Processing of sequencing data was performed in the TOPMed Informatics Research Core and the 

different processing steps have been described in the methods. Can the authores additionally also 

provide details on the rate of exclusions during processing e.g. due to sex missmatches, failure of 

calling etc. 

Minor points: 

Figure resolution needs to be improve in particular of Figure 1. 

Reviewer #2 (Remarks to the Author): 

In this report, Margareth Sunitha Selvaraj and colleagues performed a whole-genome sequence 

analysis of blood lipids in 66,329 participants from diverse ethnic groups. They replicated novel 

associations in up to 45,000 participants with genome-wide SNP genotyping array information. This is 

an original, well-designed and informative study, and the manuscript is concise and well-written. 

Major comments 

1-The replication group does not have whole-genome sequence information, which represents a major 

limitation of this study. The authors mentioned that large samples with whole-genome sequence data 

were scarce, but I am unsure about this claim. For instance, whole-genome sequence data have been 

recently made publically available for 200,000 participants from the UK Biobank. Decode Genetics has 

access to large samples of Icelandic participants with whole-genome sequence data. 



2-As the authors have access to the information of 428 million variants, they may estimate the 

percentage of variation of lipid levels explained by the variants in an independent population (e.g. UK 

Biobank). An important question is to know if we can explain a more important fraction of heritability 

with WGS than SNP genotyping array data. 

3-The authors may consider performing sex-specific association studies. 

4-The authors may explore if lipid-associated variants show genetic pleiotropy with other complex 

traits (e.g. using linkage disequilibrium score regression method). 

5-The authors may perform gene function / molecular pathway gene-enrichment analyses for genes 

located in lipid-associated loci. 

6-The authors may consider prioritizing causal variants and genes at lipid-associated loci (e.g. using 

OpenTarget tool, Mountjoy et al., Nat Genet 2021). This is especially important to state that at least a 

fraction of rare non-coding variants associated with lipid levels may be causal. 

7-Most of the lipid-associated loci identified by the authors using WGS have been previously identified 

in GWAS based on genome-wide SNP genotyping array and imputation. Therefore, it is critical to add a 

discussion about the pros and cons of dense WGS versus genotyping arrays in the future of genetic 

elucidation of complex traits. Cost is an important matter of debate here. 

Minor comments 

8-“Approximately 28M variants with MAC > 20 were individually associated with LDL-C, HDL-C, TC and 

TG”. This statement is vague. Could you please add a P-value threshold? 

9-“Of these variants, most were previously demonstrated to be associated with plasma lipids either at 

the variant- or locus-level”. This statement is vague. Could you please provide a percentage? 

10-The authors included non-coding variants in gene-centric rare variant analyses. They should 

precise which non-coding regions have been considered (introns, 5’UTR, 3’UTR) and provide 

information about the size of 5’ and 3’ regions included in the analysis 
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REVIEWER COMMENTS

Reviewer #1 (Remarks to the Author):
In their manuscript "Whole Genome Sequence analysis of blood lipid levels in over 
66,000 individuals" Selvaraj et al. describe the analyses of whole genome seq data with 
plasma lipid levels from the Trans-Omics for Precision Medicine (TopMed) programme. 
The authors investigated over 66,000 subjects across multiple ancestry groups. Results 
from the WGS data were analysed across and within each ancestry group and 
intersected with available array-based GWAS data to identify potentially novel 
associations of genetic variants with lipids. Replication of these results were performed 
in 45,000 independent samples with array-based genotyping. Subsequent analyses for 
identification of gene-specific functional categories and non-coding genomics regions 
influencing plasma lipid concentrations were performed. Using this approach the 
authors identified several novel variants within known regions. 

This manuscript is an interesting work using sequencing data along with microarray 
GWAS data to conduct a systematic scan for plasma lipids. The results show that 
additional alleles could be identified however, no novel loci were identied limiting the 
novelty of results.

1. My main comments is that I would like to see additional mechanistic insights of the 
newly identifed alleles and whether these contribute to the same mechanisms as 
variants already know or whether novel mechanistic insights can be drawn from these 
variants. 

Author Response: 
Thank you for your comments and suggestions. Whether the newly identified alleles at 
known loci exert influence on lipids in a distinct mechanism compared to previously 
prioritized alleles is an interesting question and merits further investigation. In the 
present manuscript, we pursued extensive evaluation at the CETP locus. We 
demonstrate that African ancestry-prioritized alleles have more of an effect on LDL-C 
compared to HDL-C along for European ancestry-prioritized alleles. We describe 
genomic regions and annotations to better inform these mechanistic differences. This is 
of particular interest because pharmacologic CETP inhibition leads to starkly different 
LDL-C effects.  

Out of the seven variants reported in Table1, three variants, “7:137875053:T:C” 
(CREB3L2), “16:56957451:C:T”(CETP) and “13:113841051:T:C”(GAS6), replicated (p < 
5x10-5) in a meta-analysis of Mass General Brigham Biobank, Penn Medicine Biobank 
and UK Biobank. The CETP and GAS6 variants were determined to be eQTLs in GTEx, 
prioritizing the genes that may be responsible for the variant-lipid trait associations for 
these two variants.  

We previously showed CETP variants colocalized with both HDL-C and LDL-C. 
We have additionally performed colocalization of GAS6 variants with eQTLs. Our GAS6
variant, 13:113841051:T:C, is a previously reported GWAS SNP for LDL-C and TG, and 
our study now identified it as a novel-variant for TC. We now show that variants 
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associated with GAS6 gene expression are primarily colocalized with the LDL-C and TG 
results, whereas for TC, we observed colocalization with GAS6 along with several 
additional genes. These observations highlight the possibility of multiple cis-acting 
genes in addition GAS6 which may distinguish LDL-C/TG versus TC effects. 

Text in the Manuscript: 
In silico analysis to gain mechanic insights from single variant GWAS results 
Prioritization and functional enrichment analysis 

We first mapped the variants to genes and to functional regions using 
ANNOVAR. Second, we determined gene tissue specificity, relating tissue-specific gene 
expression with disease-gene associations, using MAGMA. Significantly associated 
variants were enriched in intronic and intergenic regions (Supplementary Fig. 3). Using 
GTEx, tissue-specific gene expression was enriched among liver, stomach, and 
pancreatic tissues (Supplementary Fig. 4) with top tissue-gene sets tabulated in 
Supplementary Table 8. Using the STRING protein-protein interaction database 
examining liver-specific genes, we highlight that the HDL-C protein network uniquely 
harbored metal-ions related genes (MT1A, MT1B, MF1F, MT1G, MT1H) and anticipated 
LCAT-CETP interactions (Supplementary Fig. 5). Enriched pathways from Reactome, 
GeneOntology and other curated and canonical pathways (Supplementary Table 9) 
with a p-value < 2.5x10-06 were observed including response to metal ions, lipoprotein 
assembly, and chylomicron remodeling. 

GAS6 locus, LDL-C, TG, and TC 
Variants at GAS6 were previously associated with LDL-C and TG22 23, but in our 

analysis, rs7140110 was now significantly associated with TC. We performed 
colocalization analysis of the variants +/-500Kb from rs7140110 in liver and adipose 
tissues from GTEx. Across the three lipid-related tissues (liver, adipose subcutaneous 
and adipose visceral), strong colocalization was observed in liver for all three lipid 
phenotypes (TG 46.6%; LDL-C 33.3%; TC 28%). The TG and LDL-C-associated 
variants were eQTLs for the GAS6 gene only. However, the TC-associated eQTLs at 
this locus influenced the cis expression of multiple genes, including GAS6, antisense 
genes of GAS6 (AS1, AS2) as well as other genes (i.e., TFDP1, CHAMP1, LINC00565, 
ADPRHL1, RASA3, UPF3A, GRTP1, AL442125.1, C13orf46, DCUN1D2, CDC16, 
TMEM255B, GRTP1-AS1, ATP4B, TMCO3). In addition to GAS6, the TC-associated 
rs7140110 is an sQTL for TMEM255B in adipose subcutaneous tissue (p-value 5.6x10-

08), with further support from TC colocalization analysis and was not significant for other 
lipid levels.  

Methods: 
Computational mining of single variant GWAS  
i) Gene-set enrichment using FUMA 

We performed enrichment analysis with single variant GWAS summary stats 
from the four lipids using FUMA 94 (version 1.3.7) with default parameters and 
significance at 5x10-9. FUMA is an integrated platform which efficiently facilitates 
functional mapping and enrichment of GWAS-associated genes using multiple useful 
resources. The method uses 18 different biological data repositories and tools to 
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process GWAS data. We additionally used MAGMA95 (version 1.08) gene-based 
analysis enrichment workflow within FUMA with the complete GWAS summary data for 
eQTL based tissue enrichment. The functionally prioritized genes were visualized based 
on their protein-protein interaction networks using the STRING database96. 

ii) CETP and GAS6 gene expression and lipid trait colocalization 
We studied the correlation of LDL-C and HDL-C effects with eQTL effects at 

chromosome 16q13, which includes CETP and correlation of LDL-C and TC with eQTLs 
at rs7140110 of GAS6. We downloaded GTEx eQTL build 38 (version8) data for liver, 
adipose subcutaneous, and adipose visceral (omentum) tissues from GTEx on 
16/APR/202097. For the CETP variant analysis, we selected eQTLs with nominal 
significance (p-value<0.05) and utilized the eQTL-gene pairs with the most significant p-
values. Genes with at least 5 eQTLs were selected for the colocalization analysis. We 
selected variants with a suggestive significance (p-value < 5x10-7) for LDL-C or HDL-C 
effects within 500 kb of the lead locus variant. For the GAS6 variant analysis, we 
curated all the GWAS variants within 500 kb of the lead variant with nominal 
significance (p-value<0.05) and matched them to eQTL data where the transcription 
starting site of the corresponding gene is within +/-500 kb. We conducted colocalization 
analysis using the coloc.abf() function98 and identified nominally significant 
(PP.H4>1x10-03) genes-eQTL pairs. The coloc methodology implements an efficient 
statistical framework to identify shared variants from two association signals through 
posteriors probabilities. Finally, we used the colocalized signals and compared the 
significant genes using STRING 96, a protein-protein interaction database. All the 
correlation tests were conducted in R, where we calculated Pearson correlations 
between the lipid effect estimates and gene expression effects (slope) from GTEx. 

Further comments: 
2. Replication analyses of results from WGS was performed in samples with array-
based genotyping imputed to TOPMed. Please explain this in more detail as one might 
imaging that the same results/loci/variants will be detected if our impute on the data also 
used for discovery. 

Author Response: 
The TOPMed imputation panel is robust, built from 97,256 deeply sequenced human 
genomes and contains 308,107,085 genetic variants from multi-ethnic samples. This 
panel was used to maximize the likelihood that variants sought for replication would be 
present in the target dataset. Imputation procedures are agnostic to phenotypes. Most 
importantly, the imputation was performed in independent non-overlapping samples 
from Mass General Brigham Biobank, Penn Medicine Biobank, and UK Biobank.  

Text in the Manuscript: 
The TOPMed imputation panel is robust, built from 97,256 deeply sequenced human 
genomes and contains 308,107,085 genetic variants from multi-ethnic samples. 
Imputation was performed in independent non-overlapping samples agnostic to 
phenotypes.
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3. Plasma lipid data were analysed for LDL-C, HDL-C, TC and TG. Are data on further 
subgroups of lipids are available, eg VLDL that can be analysed (even if only available 
in part of the cohorts)? 

Author Response: 
LDL-C, HDL-C, TC, and TG are widely available, including in TOPMed, as they are 
provided by the standard lipid panel. In a prior TOPMed study4 we only were able to 
curate these measurements in a small number of individuals (n~6300) and leveraged 
these measures for secondary analyses after performing discovery in the standard lipid 
measures. 

4. Processing of sequencing data was performed in the TOPMed Informatics Research 
Core and the different processing steps have been described in the methods. Can the 
authores additionally also provide details on the rate of exclusions during processing 
e.g. due to sex missmatches, failure of calling etc. 

Author Response: 
Thank you for this comment. The quality control of WGS data was carried centrally and 
variant discovery and genotype calling was performed jointly, across TOPMed studies, 
for all samples in each freeze using the GotCloud pipeline as noted by the Reviewer. 
Details regarding WGS data acquisition, processing and quality control vary among the 
TOPMed data freezes. Freeze-specific methods are described on the TOPMed website 
(https://www.nhlbiwgs.org/data-sets) along with a recent publication (Taliun D et al 
Nature. 2021). Since the central quality steps are carried out by IRC and DCC for the 
entire data before each freeze is released, the number of samples excluded at that 
stage is not considered in this study. We refer the Reviewer and readers to these 
external sources describing the central quality control measures of TOPMed. 

Text in the Manuscript: 
Quality control was performed centrally by the TOPMed IRC and the TOPMed Data 
Coordinating Center (DCC) as previously described17. Briefly, the two sequence quality 
criteria used in freeze 8 are: estimated DNA sample contamination below 10%, and 
95% or more of the genome covered to 10x or greater. The variant filtering in TOPMed 
Freeze 8 is performed by (1) first calculating Mendelian consistency scores using known 
familial relatedness and duplicates, and (2) training a Support Vector Machine (SVM) 
classifier between known variant sites (positive labels) and Mendelian inconsistent 
variants. A small number of sex mismatches were detected as annotated females with 
low X and high Y chromosome depth or annotated males with high X and low Y 
chromosome depth. These samples were either excluded from the sample set to be 
released on dbGaP or their sample identities were resolved using information from prior 
array genotype comparisons and/or pedigree checks. Details regarding WGS data 
acquisition, processing and quality control vary among the TOPMed data freezes. 
Freeze-specific methods are described on the TOPMed website 
(https://www.nhlbiwgs.org/data-sets) and in documents included in each TOPMed 
accession released on dbGaP. 

https://www.nhlbiwgs.org/data-sets
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Minor points: 
5. Figure resolution needs to be improve in particular of Figure 1. 

Author Response: 
We have increased the resolution for Figure 1. 

Reviewer #2 (Remarks to the Author): 

In this report, Margareth Sunitha Selvaraj and colleagues performed a whole-genome 
sequence analysis of blood lipids in 66,329 participants from diverse ethnic groups. 
They replicated novel associations in up to 45,000 participants with genome-wide SNP 
genotyping array information. This is an original, well-designed and informative study, 
and the manuscript is concise and well-written. 

Major comments 
1-The replication group does not have whole-genome sequence information, which 
represents a major limitation of this study. The authors mentioned that large samples 
with whole-genome sequence data were scarce, but I am unsure about this claim. For 
instance, whole-genome sequence data have been recently made publically available 
for 200,000 participants from the UK Biobank. Decode Genetics has access to large 
samples of Icelandic participants with whole-genome sequence data. 

Author Response: 
We thank the reviewer for providing this important suggestion. Whole genome 
sequence data in large sample sizes from diverse ancestry such as TOPMed are 
sparse. As suggested, we have now incorporated the UK Biobank 150K WGS dataset in 
this study as additional replication. 

In the revised manuscript, we have provided evidence of replication for our rare 
variant significant results using UK Biobank whole genome sequences. For the single 
variant GWAS we included UKB imputed data to be consistent with other imputed 
datasets used for single variant GWAS replication and to utilize the large sample size of 
UKB imputed data. Meta-analyzed results for single variant GWAS from all the 
replication cohort are provided in Table 1 and Supplementary Table 5. 

Importantly, using the WGS UKB data, we provide evidence of replication for all 
the rare variant aggregate sets from gene-centric coding, non-coding, and region-based 
results from sliding and dynamic windows identified in our analysis of the TOPMed data. 
We have tabulated the STAAR p-values the number of variants used for testing in each 
aggregate set in Supplementary Tables 14, 15, 16 and 17.  

Text in the Manuscript: 
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We analyzed the UK Biobank whole genome sequences among ~130K 
participants to provide evidence of replication for the significant coding and non-coding 
aggregate sets. We used a Bonferroni-corrected significance threshold based on the 
number of genes tested in each type of aggregate-based test. For gene centric-coding 
aggregates, we conducted replication of 21 genes (p-value < 0.05/21=2.38x10-03) and 
for non-coding aggregates we replicated the findings from 13 genes (p-value < 
0.05/13=3.85x10-03). At Bonferroni significance, 71% and 62% of genes replicated for at 
least one coding and non-coding aggregate set, respectively (Supplementary Table 
14-15). We observed that most of the Mendelian lipid genes replicated for coding 
aggregates including ABCA1, ABCG5, LCAT, APOB, LDLR, PCSK9, and LPL. For the 
non-coding aggregate set, the most significant replications were observed for the 
APOB, LDLR (SPC24) and PCSK9 loci, further corroborating the observation that both 
coding and noncoding rare variant signals contribute to variation in lipid levels at these 
loci. 

We replicated 28 sliding and 51 dynamic window aggregate sets using UKB 
whole genomes, at a Bonferroni-corrected alpha threshold of 0.05/no.of regions for 
each approach separately. At Bonferroni significance, 61% of the regions from each of 
the sliding window (p-value = 0.05/28=1.79x10-03) and dynamic window (p-value = 
0.05/51=9.80x10-04) approaches significantly replicated (Supplementary Table 16-17). 
Multiple regions linked to LDLR, PCKS9, CETP, APOC3 and ABCA1 were highly 
significant. 

2-As the authors have access to the information of 428 million variants, they may 
estimate the percentage of variation of lipid levels explained by the variants in an 
independent population (e.g. UK Biobank). An important question is to know if we can 
explain a more important fraction of heritability with WGS than SNP genotyping array 
data. 

Author Response: 
We thank the reviewer for providing this suggestion. Due to our sample size for 
discovery with whole genome sequencing, in the revised manuscript we have included 
heritability estimates as implemented in Greml-LDMS approach to address the percent 
of variation of lipid levels that are explained using WGS data. We estimated heritability 
using the TOPMed WGS data from unrelated individuals in three ancestral groups 
(African, European, Hispanic).  

We implemented the quality control approaches from a recent TOPMed paper5 and 
calculated heritability estimates by binning the variants in to 4 MAF bins. We observed 
an increase in heritability estimates by MAF bin. However, with the current 
implementation of the method, we observe that the lower MAF bins have high standard 
errors. Comparing our results against estimates calculated from array-genotypes6 from 
published literature and variants from MGB Biobank array-genotypes, we see a 
considerable increase in heritability estimates from WGS data, where the rare variants 
contribute to the additional proportion of variability explained. And the WGS estimates 
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capture the heritability from non-European ancestries more efficiently than array 
genotyping.  

Text in the Manuscript: 
Heritability contributions from rare variants: 

To understand the contribution of rare variants towards lipid trait heritability, we 
examined heritability of lipids by variant allele frequency across three ancestral samples 
(White, Black, and Hispanic) in TOPMed. We calculated trait heritability using Greml-
LDMS 39 following the steps as implemented by Wainschtein et al 40. Using the TOPMed 
WGS, we grouped the variants into 4 MAF bins for the three ancestral samples. In each 
MAF bin, we grouped variants based on the LD scores into 4 quartiles and calculated 
variance contributed by the SNPs (h2) for each of the lipids using unrelated individuals 
from each ancestral group (Supplementary Fig. 10) and set negative estimate to zero. 
We observed that rare variants from the lower MAF bins contributed to trait heritability 
but have large standard errors (Supplementary Table 20). We observed an increase in 
h2 values including WGS variants relative to estimates obtained from array-genotypes 
as reported by Cadby et al 41 for the European samples. We also compared the h2

estimates from all the variants from WGS TOPMed cohort against array-genotypes 
captured in MGB Biobank to understand the differences contributed by these two 
sequencing methods. As expected, the h2 estimates from array-genotypes were 
reduced corresponding to missing heritability from the lower MAF bins captured by 
WGS. The heritability estimates from array-genotypes were markedly higher for 
European samples relative to African and Hispanic sample sets indicating that WGS 
better captured heritability for the latter groups.  

Methods: 
Calculation of heritability estimates from TOPMed WGS data 

We calculated heritabilities estimated for the four lipids using TOPMed WGS data 
using Greml-LDMS approach 39, where we binned the variants into four MAF bins based 
on minor allele frequency and grouped the variants to four LD quartiles based on LD 
score calculated by GCTA method 99. The four MAF bins used in this study includes 
>=0.05, >=0.01 to <0.05, >=0.001 to <0.01 and >=0.0001 to <0.001. We excluded any 
variant with MAF < 0.0001 from this analysis. The hereditary estimation was calculated 
for three ancestral groups (African, European, Hispanic) where only unrelated samples 
(kinship score < 0.025) were included in the analysis. We excluded the other two 
ancestral groups (i.e., Asian and Samoan) from this analysis due to insufficient sample 
sizes. In total we included 9640, 21568 and 10631 in African, European and Hispanic 
ancestries respectively. For each MAF bin, we implemented certain quality control (QC) 
measures using PLINK software20, which includes; genotype missingness (--geno 0.05), 
sample missingness (--mind 0.05), Hardy-Weinberg equilibrium (--hwe 10-6) and LD 
pruned variants (--indep-pairwise 50 5 0.1) as implemented by Wainschtein et al40. 
Next, we implemented Greml-LDMS with LD score region as 200 and GRM cut-off as 
0.05 for the four lipid phenotypes. We calculated 20 principal components from the QC 
passed variants in each MAF bin and implemented GCTA workflow with --reml-no-
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constrain, --reml-no-lrt and --reml-maxit 10000 parameters to avoid the no-convergence 
issues and negative h2 estimates. For comparing the h2 estimates between variants 
from WGS data and array-genotypes, first, we used QC passed WGS variants as 
mentioned above, second, we curated the variants from MGB Biobank array data and 
intersected them with WGS variants from TOPMed. Next, we calculated heritability 
estimates for array-genotype variants and compared with h2 estimates from WGS 
variants for the three ancestral groups. 

3-The authors may consider performing sex-specific association studies. 

Author Response: 
We thank the reviewer for this comment. We would like to refer the reviewer to a recent 
Global Lipids Genetics Consortium manuscript7 that reports sex-specific associations for 
lipid levels in a much larger analysis using array-based genotypes. In that study, we 
performed a GWAS meta-analysis separately in males (N=749,391) and females (N 
=562,410) and excluded loci discovered in the sex-combined analysis. We identified few 
loci that reached genome-wide significance only in one sex (p < 5x10-8; 16 in females 
and 9 in males). Given the low yield of our analyses in a sex-combined analysis and the 
much more robust finding from the GWAS, we believe we would be relatively 
underpowered to detect additional effects using the TOPMed WGS data. 

4-The authors may explore if lipid-associated variants show genetic pleiotropy with 
other complex traits (e.g. using linkage disequilibrium score regression method).

Author Response: 
To understand the genetic correlation with other complex traits, we conducted a 
phenome-wide association (PheWAS) using 1572 complex traits in the UK Biobank. We 
extended this analysis for three common variants which showed significant replication, 
which are 16:56957451:C:T (CETP); 13:113841051:T:C (GAS6); 7:137875053:T:C 
(CREB3L2). We identified complex traits which were significant at FDR<0.05 and 
tabulated the results in Supplementary table 11. 

Text in the Manuscript: 
Phenome wide association with complex traits: 

We conducted a phenome-wide association (PheWAS) of 1572 binary complex 
traits using UK Biobank for the three replicated common variants (16:56957451:C:T 
(CETP); 13:113841051:T:C (GAS6); 7:137875053:T:C (CREB3L2)). We adjusted for 
PC1-10, age, age2, sex and race, for each trait. We claimed significance at FDR 0.05 
and identified various complex traits significant, including ischemic heart disease for the 
CETP variant and heart failure/atherosclerosis, hypercholesterolemia traits for GAS6
variant. The summary statistics from PheWAS analysis for the significant complex traits 
are tabulated in Supplementary Table 11. 

Methods: 
iii) Phenome wide association analysis 
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The complex trait information was curated from UK Biobank resource, where we 
curated multiple disease phenotypes for UKB samples into International Classification of 
Diseases (ICD)-based phecodes based on phecode map (https://phewascatalog.org) 
using the PheWAS R package (version PheWAS_0.99.5-4). We conducted a phenome-
wide association analysis (PheWAS) using a logistic regression model glm() in R. We 
adjusted the models for PC1-10, age, age2, sex, and race. 

5-The authors may perform gene function / molecular pathway gene-enrichment 
analyses for genes located in lipid-associated loci. 

Author Response: 
Please refer to R #1 Point #1 above.

6-The authors may consider prioritizing causal variants and genes at lipid-associated 
loci (e.g. using OpenTarget tool, Mountjoy et al., Nat Genet 2021). This is especially 
important to state that at least a fraction of rare non-coding variants associated with lipid 
levels may be causal. 

Author Response: 
Open targets and specifically the Open Targets Genetics Portal integrates public 
domain GWAS data to prioritize variants and targets. But most of the integrated data 
comes from common variant studies and a very few rare variants are integrated to the 
portal. Therefore, we queried the single variant GWAS SNPs using the tool but did not 
identify them as causal variants. We carried out variant prioritization and the results are 
described above.

Text in the Manuscript: 
We did not find information for these variants in the Open Target Genetics database28. 
Finally, two of the common novel-loci variants (rs183130  and rs7140110) were present 
in eQTL and sQTL databases29, and we performed analysis to determine the correlation 
among effects for these variants more in detail.  

7-Most of the lipid-associated loci identified by the authors using WGS have been 
previously identified in GWAS based on genome-wide SNP genotyping array and 
imputation. Therefore, it is critical to add a discussion about the pros and cons of dense 
WGS versus genotyping arrays in the future of genetic elucidation of complex traits. 
Cost is an important matter of debate here. 

Author Response: 
We thank the reviewer for this comment. We have added the comparison in the 
Discussion. 

Text in the Manuscript: 
Our discovery analyses with replication as well as heritability assessment are consistent 
with the notion that both rare coding and non-coding alleles, not well-captured by 
genome-wide arrays. Furthermore, we observe that heritability gains relative to 

https://phewascatalog.org/
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genome-wide genotyping arrays are more significant for individuals of European-
ancestry likely indicative of Eurocentric array designs. A tradeoff for WGS, however, is 
the greater cost. However, as costs continue to decrease as well as cheaper WGS 
implementations via reduced coverage, cost may no longer be a downside.  

Minor comments 
8-“Approximately 28M variants with MAC > 20 were individually associated with LDL-C, 
HDL-C, TC and TG”. This statement is vague. Could you please add a P-value 
threshold? 

Author Response: 
To clarify the sentence, we have modified the text. There is no p-value thresholding at 
this stage, we used a MAC cut-off of 20 to start the single variant GWAS. Therefore, in 
the discovery cohort, we started with approximately 28M variants.

Text in the Manuscript: 
We performed single variant analysis of approximately 28M variants with a MAC > 20 
for four lipid phenotypes. We identified significant genomic risk loci for each lipid level 
(Supplementary Table 3) and considered a p-value < 5x10-9 to claim significance as 
previously recommended for whole genome sequencing common variant association 
studies. 

9-“Of these variants, most were previously demonstrated to be associated with plasma 
lipids either at the variant- or locus-level”. This statement is vague. Could you please 
provide a percentage? 

Author Response: 
We now provide a percentage based on our discovery data in the sentence.  

Text in the Manuscript: 
Of these variants, 99% were previously demonstrated to be associated with plasma 
lipids either at the variant- or locus-level. 

10-The authors included non-coding variants in gene-centric rare variant analyses. They 
should precise which non-coding regions have been considered (introns, 5’UTR, 3’UTR) 
and provide information about the size of 5’ and 3’ regions included in the analysis 

Author Response: 
We included 7 non-coding mask in our analysis based on STAAR workflow 8, as 
described in the text. The UTR mask includes rare variants in both 5’ and 3’ UTR 
regions and the UTR region is defined by GENCODE Variant Effect Predictor (VEP) 
categories. We have added more details about these masks and the defining criteria.  

Text in the Manuscript: 
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We aggregated rare variants into multiple groups for coding and non-coding analyses. 
For the coding region, we defined five different aggregate masks of rare variants 1) plof 
(putative loss-of-function), plof-Ds (putative loss-of-function or disruptive missense), 
missense, disruptive-missense, and synonymous. For the non-coding regions, we used 
seven rare variant masks: 1) promoter-CAGE (promoter variants within Cap Analysis of 
Gene Expression [CAGE] sites86,87), 2) promoter-DHS (promoter variants within DNase 
hypersensitivity [DHS] sites 88), 3) enhancer-CAGE (enhancer within CAGE sites87), 4) 
enhancer-DHS (enhancer variants within DHS sites89), 5) UTR (rare variants in 3' 
untranslated region [UTR] and 5' UTR untranslated region), 6) upstream, and 7) 
downstream. Detailed explanations of the regions defined based on these masks is 
discussed within STAARpipeline13.

In the gene-centric workflows, for both coding (within exonic boundaries) and non-
coding (promoter: +/- 3kb window of transcription starting site (TSS), enhancer: 
GeneHancer predicted regions, UTR (both 5' and 3' UTR 
regions)/upstream/downstream: GENCODE Variant Effect Predictor (VEP) categories) 
regions, we considered only genes with at least two rare variants (i.e., 18,445 genes in 
all 22 autosomes). 
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