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APPENDIX A: REACTIVE TORQUE. A DIPOLAR PARTICLE

The time-averaged optical torque < Γ >= r× Re{F} on the object, of lever arm r is:

< Γ >=

∫
S

d2r r× Re{Tij}nj. (A1)

In turn, the reactive torque: Ξ = r× Im{F} reads:

Ξ =

∫
S

d2r r× Im{Tij}nj + ω

∫
V

d3r (LO
m − LO

e ). (A2)

With the electric and magnetic time-averaged orbital angular momenta:

LO
e = r×PO

e LO
m = r×PO

m. (A3)

We shall call reactive strength of orbital angular momentum density to the quantity ω(LO
m−

LO
e ).

APPENDIX B: THE CANONICAL AND SPIN MOMENTA WITH SOURCES.

LAGRANGIAN DERIVATION

1. The electric canonical and spin momenta

It is well-known that the electric and magnetic classical fields governed by Maxwell’s

equations hold dual symmetry in free-space [1]. Their lack of duality in presence of sources,

i.e. electric charges and currents, has been studied by many authors who, following P.A.M.

Dirac [8], postulate the existence of (so far unobserved) magnetic charges and currents that

restore such symmetry, see e.g. [6, 9–12].

Without recurring to magnetic sources, deriving a Lagrangian in dual space that leads to

an energy-momentum tensor from which electromagnetic quantities fulfill all conservation

laws, and that yields a consistent decomposition of the energy flow (Poynting vector) into

a canonical (or orbital) momentum and a spin momentum, like for electromagnetic fields

in free-space [6], is problematic.

Here we introduce, notwithstanding, potentials and an energy-momentum tensor, that

lead to such a possible decomposition and, hence, a characterization of the canonical and

spin momenta in presence of sources.
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We write the Lagrangian for the electromagnetic field Fαβ=(E,H) with sources [13]:

L = − 1

16π
FαβF

αβ − 1

c
jγA

γ. (B1)

Greek indices run as: 0, 1, 2, 3. Covariant and contravariant tensor indices are related by

[1]: T ...α... = gαβT ......β ; where gαβ = gαβ is the Euclidean space metric tensor: gαβ = 0 when

α 6= β, g00 = 1, g11 = g22 = g33 = −1 ; gαβgβγ = δαγ . The coordinate vector is denoted as

either xα = (ct, r), or xα = gαγx
γ = (ct,−r), so that the scalar product of two 4-vectors is

AγB
γ = A0B0 −A ·B; and ∂α = ∂

∂xα
= ( ∂

c ∂t
,∇), ∂α = ∂

∂xα
= ( ∂

c ∂t
,−∇).

The current and potential 4-vectors are [13]: jγ = (cρ,−J) and Aγ = (φ,A). Also Fαβ =

(−E,H), Fαβ = (E,H). Fαβ = gασgβτF
στ . Fαβ = ∂αAβ − ∂βAα and Fαβ = ∂αAβ − ∂βAα

convey E = −1
c
∂A
∂t
− ∇φ, H = ∇ × A. It is well-known that the Lagrange equations

associated to (B1) lead to the second pair of Maxwell equations: ∂γF
αγ = −4π

c
jγ, namely:

∇ · E = 4πρ and ∇×H = ∂E
∂t

+ 4π
c

J.

As is known, the Lagrangian (B1) gives rise to the canonical energy-momentum tensor:

T̃αβ = ∂αAγ
∂L

∂(∂βAγ)
− gαβL = − 1

4π
(∂αAγ)F β

γ + gαβ(
1

16π
FγσF

γσ +
1

c
jγA

γ). (B2)

The electric canonical (or orbital) momentum POα
e of the electromagnetic field is given by

the component T̃α0/c [6], with α 6= 0

POα
e =

1

c
T̃α0 = − 1

4πc
(∂αAγ)F 0

γ + gα0(
1

16πc
FγσF

γ0 +
1

c2
jγA

γ) = − 1

4πc
(∂αAγ)F 0

γ , (α 6= 0).(B3)

I.e, since F 0
0 = 0 and α 6= 0, the ith component of the cananonical momentum is:

POi
e =

1

c
T̃ i0 = − 1

4πc
(∂iAj)F 0

j = − 1

4πc
(∂iAj)gjkF

0k

=
1

4πc
(∂iAj)F 0j =

1

4πc
Ej∂iA

j, (i, j,= 1, 2, 3). (B4)

Henceforth being understood that latin indices run as 1, 2, 3.

Concerning the electric spin momentum P S i
e associated to the tensor ∆Tαβ that added

to the canonical energy-momentum tensor with sources (B2) symmetrizes it [6], we choose

∆Tαβ = ∂γψ
αβγ +

1

c
Aαjβ − 1

16πc
gαβjγA

γ =
1

4π
∂γ(A

αF βγ) +
1

c
Aαjβ − 1

c
gαβjγA

γ.

ψαβγ =
1

4π
AαF βγ , ψαβγ = −ψαγβ, ∂β∂γψ

αβγ = 0. (B5)

So that, since α 6= 0 and F 00 = 0, P S i
e would be

P Si
e =

1

c
∆Tα0 =

1

c
∆T i0 =

1

4πc
∂j(A

iF 0j) +
1

c
Aij0 = − 1

4πc
∂j(E

jAi) +
1

c
Aij0, (i, j = 1, 2, 3).(B6)

3



The sum of the canonical and spin momenta, POi
e and P Si

e , Eqs. (B4) and (B6), is that part

ge of the field momentum due to the electric field, i.e.

gie =
1

4πc
[Ej∂iA

j − ∂j(EjAi)] +
1

c
Aij0, (i, j = 1, 2, 3) (B7)

In order to make the link of (B7) with the expression (32), we consider time-harmonic fields.

Then the spatial parts hold

A = − i
k

(E +∇φ), ∇ · E = 4πρ, (B8)

After introducing the time average on the O-operation as: < AOB >= (1/2)Re(A∗OB),

straightforward operations lead to the time-average of the electric field (i.e. Poynting)

momentum

< g >= PS
e + PO

e +
1

2ω
Im{ρ∗E}. (B9)

Equation (B9) is identical to Eq. (32).

Note that we did not need to introduce any choice of gauge in the 4-potential Aα. This

is due to the fact that our selected ∆Tαβ, Eq. (B5), automatically symmetrizes the energy-

momentum tensor with sources, (B2), as the term 1
c
Aαjβ in (B5) cancels an identical term

obtained from 1
4π
∂γ(A

αF βγ) and the second Maxwell equation: ∂γF
βγ = −4π

c
jβ. Conse-

quently, the symmetrized energy-momentum tensor results

Tαβ = T̃αβ + ∆Tαβ = − 1

4π
FαγF β

γ +
1

16π
gαβF δσFδσ , (B10)

which has the same functional form as the symmetric free-space energy-momentum tensor

[1, 13] and, as such, it fulfils the conservation equation with sources

∂αT
αβ = −1

c
F βγjγ. (B11)

2. The magnetic canonical and spin momenta with sources

Within the aforementoned limitations from the lack of duality between the electric and

magnetic field in presence of (non-magnetic) sources, we now pass on to addressing dual

quantities. First, we quote the dual field pseudotensor: Gαβ = 1
2
εαβγδFγδ, where εαβγδ

denotes the fourth-order Levi-Civita completely antisymmetric tensor. This (free-field) dual

pseudotensor holds: Gαβ = ∂αCβ − ∂βCα, Gαβ = ∂αCβ − ∂βCα.
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We introduce the dual fields with sources

G(s)αβ = −G(s)βα = (−H,E) = (∂αCβ − ∂βCα) + 4πRαβ. (B12)

So that

G
(s)
αβ = (H,E) = (∂αCβ − ∂βCα) + 4πRαβ = gβτG

(s)στ . (B13)

The superscript (s) denotes fields in presence of sources. The dual potential 4-vector is

Cγ = (θ,C), and the tensor

Rαβ = −Rβα = Rαβ = −Rβα = (0,Υ), 0 = (0, 0, 0),
∂Υ

∂t
= −J. (B14)

The ordering of 0 and Υ in Rαβ (or in Rαβ), Eq. (B14), is the same as that of H and E in

G(s)αβ, respectively; (or in G
(s)
αβ). The 4-vector potential is Cγ = (θ,C). Equations (B12)

and (B13) mean

E = −∇×C + 4πΥ, H = −1

c

∂C

∂t
−∇θ . (B15)

Note that introducing the Maxwell equation: ∇ · E = 4πρ into the first of Eqs. (B15) one

obtains the well-known continuity equation: ∇ · J + ∂ρ
∂t

= 0.

It should be remarked that we introduced the tensor Rαβ to make the fields Gαβ (or Gαβ),

written in vectorial form: (H,E) [or (−H,E)] as Eqs. (B15), to fulfil the second pair of

Maxwell equations with sources: ∇ · E = 4πρ and ∇ × H = 1
c
∂tE + 4π

c
J. Likewise, it is

known that the vectorial form of the first pair of Maxwell equations: ∇ × E = 1
c
∂tH and

∇ · H = 0 is obtained from Fαβ = ∂αAβ − ∂βAα = (E,H) (or from Fαβ) , expressed as

E = −1
c
∂A
∂t
−∇φ , H = ∇×A.

However, we note that the Lagrange equations of the Lagrangian built from Fαβ, Eq. (B1),

yield the second pair of Maxwell’s equations written in tensor notation: ∂γF
αγ = −4π

c
jγ,

but not the first pair: ∂γG
αγ = 0. Such first pair of Maxwell equations is obtained from the

dual Lagrangian without sources [1, 13]

L̂ = − 1

16π
GαβG

αβ. (B16)

This asymmetry reflects the breackdown of electromagnetic duality in absence of magnetic

sources. On these grounds, even in presence of sources, we propose the source-free dual
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Lagrangian (B16) rather than the one built from the pseudotensorG
(s)
αβ andG(s)αβ introduced

above. This Lagrangian also yields the correct energy.

In this connection it is worth observing that had one employed in (B16) G
(s)
αβ and G(s)αβ

given by (B12) and (B13), rather than their free-space expressions, the first pair of Maxwell

equations would be obtained from such a Lagrangian if the following extra condition holds:

∂βR
αβ = 0, (B17)

which according to (B14) means that ∇×Υ = 0, and hence ∇× J = 0. Thus the current

density J would be longitudinal. We believe that this is an unnecessary and little realistic

restriction.

Note that (B17) was obtained from the Lagrange equations using in (B16) Eqs. (B12)

and (B13) instead of Gαβ and Gαβ, as well as the equalities:
∂[(∂αCβ−∂βCα)Rαβ ]

∂(∂αCβ)
= 2Rαβ =

2Rαβ =
∂[(∂αCβ−∂βCα)Rαβ ]

∂(∂αCβ)
since Rαβ = Rαβ and Rαβ = −Rβα.

The canonical energy-momentum tensor then is

˜̂
Tαβ = ∂αCγ ∂L

∂(∂βCγ)
− gαβL̂ = − 1

4π
(∂αCγ)Gβ

γ +
1

16π
gαβGγσG

γσ. (B18)

The magnetic canonical momentum P̂Oα
m is given by T̃α0/c, with α 6= 0

P̂Oα
m =

1

c
˜̂
Tα0 = − 1

4πc
(∂αCγ)G0

γ +
1

16πc
gα0GγσG

γ0 = − 1

4πc
(∂αCγ)G0

γ, (α 6= 0). (B19)

And since G0
0 = 0 and α 6= 0, the ith component of the cananonical momentum finally is:

P̂Oi
m =

1

c
˜̂
T i0 = − 1

4πc
(∂iCj)G0

j = − 1

4πc
(∂iGj)gjkG

0k

=
1

4πc
(∂iCj)G0j =

1

4πc
Hj∂iC

j, (i, j,= 1, 2, 3). (B20)

As for the magnetic spin momentum P̂ S i
m associated to the tensor ∆T̂αβ, we choose

∆T̂αβ = ∂γχ
αβγ +

1

c2
εαβγδC

γjδ =
1

4π
∂γ(C

αF βγ) +
1

c2
εαβγδC

γjδ.

χαβγ =
1

4π
CαF βγ , χαβγ = −χαγβ, ∂β∂γχ

αβγ = 0. (B21)

As α 6= 0 and G00 = 0, we get

P̂ S i
m =

1

c
∆T̂α0 =

1

c
∆T̂ i0 =

1

4πc
∂j(C

iG0j) +
1

c2
εi0klC

kjl = − 1

4πc
∂j(H

jCi) +
1

c2
εiklC

kjl, ).(B22)
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The sum of the canonical and spin magnetic momenta, P̂Oi
m and P̂ Si

m , Eqs. (B20) and (B22),

is that part gm of the Poynting momentum due to the magnetic field, namely

gim =
1

4πc
[Hj∂iC

j − ∂j(HjCi)] +
1

c2
εiklC

kjl, (i, j, k, l = 1, 2, 3). (B23)

Equation (B23) coincides with (33) for time-harmonic fields. Note that then the spatial

parts hold

C = − i
k

(H +∇θ), ∇ ·H = 0, (B24)

As before, after introducing the time average: < AOB >= (1/2)Re(A∗OB), it is straight-

forward to obtain

< g >= PS
m + PO

m −
1

2kc2
Im{J∗ ×H}. (B25)

It should be remarked, however, that the electromagnetic duality breakdown requires that

the fields Gαβ in the tensor ∆T̂αβ, and its corresponding magnetic spin momentum P̂ S i
m ,

meet some conditions. One is that Cα = (0,C). I.e. θ = 0. Then:

H = −1

c

∂C

∂t
. (B26)

So that ∇ · ∂tC = 0; and if we chose the Lorenz condition ∂γC
γ = 0 , one would also have

∇·C = 0. This is equivalent to a Coulomb gauge in the space of dual quantities. However in

this space ∇θ = 0 does not mean ρ = 0 since ∇·E = 4π∇·Υ = 4πρ, and hence ∇·J = −∂tρ.

Moreover, using (B15) and the first Maxwell equation: ∇× E = −1
c
∂tH we get

∇2C− 1

c2
∂2C

∂t2
= −4π∇×Υ, (B27)

which indicates that the source function of the wave equation for C is transversal. In the

Fαβ-space, Coulomb’s gauge involves the source in Eq. (B27) for A being a transversal

current, and the charge is associated to a longitudinal current which acts as a source of

static (i.e. near) field. This does not happen in the dual space, however, where nothing

indicates that the current density associated to the charge be longitudinal.

On the other hand, although the source vector of the wave equation of C is transversal,

it does not coincide with a transversal current density. These features of the potential Cγ in

the space of dual fields Gαγ are in clear contrast with that of the potential Aγ in the space

of Fαγ.

7



Another aspect of the tensor ∆T̂αβ is that, added to the canonical dual tensor
˜̂
Tαβ, it does

not yield a symmetrized energy momentum tensor, in contrast with ∆Tαβ, nor its divergence

is zero. (Notice in this connection that neither the tensor ∆Tαβ of Eq. (B5) posesses a zero

divergence as it should unless ∂γ(jβA
β) = 0). These again are other symptoms of the

electromagnetic duality breackdown in the presence of sources, and indicate that concerning

symmetry of
˜̂
Tαβ and null divergence of ∆Tαβ and ∆T̃αβ, there might be different choices for

these tensors, and even for the dual Lagrangian. We have selected here those that we were

more strightforwardly able to find among those leading to the canonical and spin momenta

of the electromagnetic field within a covariant formulation.

APPENDIX C: THE IMAGINARY MAXWELL STRESS TENSOR AND THE

ANGULAR SPECTRUM OF THE FIELDS

First, we expand the fields into their angular spectra of plane waves [3, 14]:

E(r) =

∫ ∞
−∞

d2K e(K) exp[i(K ·R + kzz)]. (C1)

Where r = (R, z), R = (x, y), k = (K, kz), K = (Kx, Ky), |k|2 = k2.

kz =
√
k2 −K2 = qh , K ≤ k, (propagating waves).

kz = i
√
K2 − k2 = iqe , K > k, (evanescent waves). (C2)

And an analogous expansion for B(r). Therefore, by splitting the field angular spectrum

integral into homogeneous and evanescent components, (with susbscript h and e, respec-

tively),∫ ∞
−∞

d2R(PS
m −PS

e ) =
1

16πω

∫ ∞
−∞

d2R

∫
K≤k

d2K

∫
K′≤k

d2K′ Im{exp[−i(K−K′) ·R + (qh − q′h)z)]

×[−i(K−K′, qh − q′h)]× [b∗h(K)× bh(K
′)− e∗h(K)× eh(K

′)]}

+
1

16πω

∫ ∞
−∞

d2R

∫
K>k

d2K

∫
K′>k

d2K′ Im{exp[−i(K−K′) ·R + (qe + q′e)z)]

×[−i(K−K′),−(qe + q′e)]× [b∗e(K)× be(K
′)− e∗e(K)× ee(K

′)]}. (C3)

Making z = z0 ≥ 0, the R-integration yields (2π)2δ(K′ − K). Then, after performing

the K′-integral and expressing b⊥(K) = (bx(K), by(K), 0), e⊥(K) = (ex(K), ey(K), 0), we

inmediately see that the the homogeneous (propagating) part of (C3) is zero. Therefore the
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above becomes∫ ∞
−∞

d2R(PS
m −PS

e ) =
π

2ω

∫
K>k

d2K exp(−2qez0)Im{[0, 0,−qe]× [b∗e(K)× be(K)− e∗e(K)× ee(K)]}

=
π

ω

∫
K>k

d2K qe exp(−2qez0)Im{b∗e z(K)be⊥(K)− e∗e z(K)ee⊥(K)}.(C4)

In particular, we may take z0 = 0.

APPENDIX D: THE COMPLEX MAXWELL STRESS TENSOR ON A DIPOLE

Addressing the complex Maxwell stress tensor theorem, Eq. (17), in the scattering from

a magnetoelectric dipole or particle, we split the fields into incident E(i), B(i) and scattered

E(s), B(s): E = E(i) + E(s), B = B(i) + B(s). The dipole scattered fields are

E(s)(r) =
k2

ε
[n× (p× n)]

eikr

r
+

1

ε
[3n(n · p)− p](

1

r3
− ik

r2
)eikr

−
√
µ

ε
(n×m)(

k2

r
+
ik

r2
)eikr. (r = rn). (D1)

B(s)(r) = µk2[n× (m× n)]
eikr

r
+ µ[3n(n ·m)−m](

1

r3
− ik

r2
)eikr

+

√
µ

ε
(n× p)(

k2

r
+
ik

r2
)eikr. (ε = µ = 1). (D2)

We assume the surrounding medium to be vacuum or air, so that ε = µ = 1. Introducing

the above splitting into the first term of (17), one obtains for the non-zero terms∫
∂V

d2r Tijnj =
1

8π

∫
∂V

d2r{(E(i) ∗ · n)E(i) + (B(i) · n)B(i) ∗

+(E(i) ∗ · n)E(s) + (E(s) ∗ · n)E(i) + (B(i) · n)B(s) ∗ + (B(s) · n)B(i) ∗

+[(E(s) ∗ · n)E(s) + (B(s) · n)B(s) ∗]− Re{E(i) ∗ · E(s) + B(i) ·B(s) ∗}+
1

2
(|E(s)|2 + |B(s)|2)]n} . (D3)

When one takes the real part of (D3) which yields the time-averaged force < F >, the

integral (D3) of the first two terms with the incident field only, is zero; while the last

two terms of this real part of (D3) are well-known [4, 16] to yield the electric-magnetic

dipole interference force < Fem >= −k4

3
Re{p ×m∗}. Furthermore, since this real part is

independent of the integration contour, by choosing ∂V to be a sphere of large radius r such

that kr → ∞, there is no contribution of the fourth, sixth, seventh and eight terms since

the scattered field in this region of S is known to be transversal to n. In addition, on this

large surface ∂V one inmediately sees by applying Jones’ lemma based on the principle of
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the stationary phase [2, 4], that the contribution of the mixed incident-scattered field third

and fifth terms is also zero since n becomes equal to the incident wavevector, with respect

to which the incident field is transversal.

Therefore, only the diagonal last four terms, which belong to the real part of the CMST,

contribute to < F >. This is the reason by which we emphasize through the text that the

far-field flux IMST is zero. In fact, taking the imaginary part of (D3) in the far-zone one

obtains that all terms, one by one, are zero. This has important consequences for the total

spin momentum, as shown in in the section on dipoles of the main text.

Taking the imaginary part of (D3), which depends on the choice of the integration surface

∂V , the first integral involving only E(i) and B(i) is cancelled out by the incident reactive

orbital momentum, even if the body is illuminated by an evanescent wave [cf. Eq. (48)].

We take as the dipole volume and its boundary: V0 and ∂V 0, respectively. They correspond

to the smallest sphere of radius a that encloses the dipole; or if this is a particle, ∂V 0 is

the limiting outside sphere circunscribed to its physical surface. The contribution of the

non-diagonal terms involving the scattered field yields

1

8π
Im{

∫
∂V0

d2r[(E(s) ∗ · n)E(s) + (B(s) · n)B(s) ∗]} = 0. (D4)

We note that the left side of (D4) is: − 2k
3a3

Re{p∗ ×m} when the r−1 dependent far-zone

terms are excluded from E(s) and B(s) in (D1) and (D2).

Since the dipole is small versus the wavelength, we work with E(i)(r) and B(i)(r) expanded

into a Taylor series around the origin of coordinates which coincides with the dipole center:

E(i)(r) = E(i)(0) + r[(n · ∇)E(i)(r)]r=0 , B(i)(r) = B(i)(0) + r[(n · ∇)B(i)(r)]r=0 . (D5)

On surface integration of (D3) there appear terms with factors k2a2 exp(∓ika), (1 ±

ika) exp(∓ika) and (k2a2 ∓ ika) exp(∓ika). They stem from those (k2/r) exp(∓ikr),

(1/r3 ± ik/r2) exp(∓ikr) and (k2/r ∓ ik/r2) exp∓(ikr), respectively, in the scattered fields

(D1) and (D2). In compatibility with (D5) and in order to obtain for the real part of (D3)

the correct well-known expression [4] which is a quantity independent of a, (since we know

that this real part should not depend on the integration contour), we should take these three

factors as 0, 1 and 1, respectively. Further studies should confirm, however, whether this

always holds for the imaginary part of (D3), or whether one should include the full above

a-factors in evaluating this imaginary part.
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In order to illustrate how the terms of (D3) involving incident and scattered fields are

evaluated, we show as an example the calculation of the term

− 1

8π
Re

∫
∂V0

d2rRe(E(i) ∗ · E(s))n = − 1

8π
Re

∫
∂V0

d2r(E(i) ∗(0) + r[(n · ∇)E(i) ∗(r)]r=0 · E(s))n. (D6)

Using spherical coordinates, d2r = r2dφ sin θdθ, n = (sin θ cosφ, sin θ sinφ, cos θ). The part

of E(s) that contributes to the force on the electric dipole and yields a non-zero integral in

(D6) reduces on using a framework such that p = (0, 0, p) in (D1), to

− 1

8π
Re

∫
∂V0

d2rRe(E(i) ∗ · E(s))n = − 1

8π
Re

∫ 2π

0

a2(
1

a3
− ik

a2
) exp(ika)dφ sin θ

×
∫ π

0

dθ(sin θ cosφ, sin θ sinφ, cos θ) {[3p cos θ(sin θ cosφ, sin θ sinφ, cos θ)

−(0, 0, p)] · [1 + a(sin θ cosφ ∂x + sin θ sinφ ∂y + cos θ ∂z)](E
∗
i x(r), E∗i y(r), E∗i z(r)}r=a

= − 1

8π
Re{(1− ika) exp(ika)

4πp

5
[∂zE

∗
i x(0) + ∂xE

∗
i z(0)− 5

3
∂xE

∗
i z(0) ,

∂zE
∗
i y(0) + ∂yE

∗
i z(0)− 5

3
∂yE

∗
i z(0), ∂xE

∗
i x(0) + ∂yE

∗
i y(0) + (3− 5

3
)∂zE

∗
i z(0)]}

=
1

5
Re{ p[1

3
∂xE

∗
i z(0)− 1

2
∂zE

∗
i x(0) ,

1

3
∂yE

∗
i z(0)− 1

2
∂zE

∗
i y(0) ,−1

6
∂zE

∗
i z(0)]}. (D7)

In all above expressions, and in subsequent calculations, we employ the shortened notation:

∂kEil(0) for [∂kE
(i)
l (r)]r=0, (k, l = x, y, z). Notice that we considered ka = 0 in obtaining

the last line of (D7) by shrinking V0 to its center point. This is justified for the RMST only,

since its integration is independent of the sphere size.

By analogous calculations with the other terms of (D3) contributing to the field scattered

by the electric dipole, one gets

1

8π

∫
∂V0

d2r(E(i) ∗ · n)E(s) =

p

10
(1− ika) exp(ika)[∂xE

∗
i z(0) + ∂zE

∗
i x(0) , ∂yE

∗
i z(0) + ∂zE

∗
i y(0) , 2∂zE

∗
i z(0) ]

− p

30
k2a2 exp(ika)[∂zE

∗
ix + ∂xE

∗
iz , ∂zE

∗
iy + ∂yE

∗
iz , 2∂zE

∗
iz ] , (D8)

The second term of (D8), with the factor k2a2, is the contribution of the radiative part of

E(s). Also,

1

8π

∫
∂V0

d2r(E(s) ∗ · n)E(i) =
p ∗

3
(1 + ika) exp(−ika)∂z[Ei x(0) , Ei y(0) , Ei z(0) ]. (D9)

In addition, in the magnetic part of the complex MST there is the term of (D2) contribut-

ing to the magnetic field scattered by the induced electric dipole p, which is that of the

11



intermediate-field region: ikeikr

r2
n×p. By using the Maxwell equation ∇×E = ikB it yields

− 1

8π

∫
∂V0

d2rRe{B(i) ·B(s) ∗}n = Re{p
6

(∂xE
∗
i z(0)− ∂zE∗i x(0) , ∂yE

∗
i z(0)− ∂zE∗i y(0), 0)},(D10)

and

1

8π

∫
∂V0

d2r(B(i) · n)B(s) ∗ =

p∗

6
(k2a2 − ika) exp(−ika)(∂xEi z(0)− ∂zEi x(0) , ∂yEi z(0)− ∂zEi y(0), 0). (D11)

Adding (D7) - (D11), after taking their real part, expressing p with arbitrary Cartesian

components pj, (j = 1, 2, 3), one gets making ka = 0 in (D8) and (D9), as well as the

ka-factor equal to one in (D11), and dropping the subscript i of the incident field

< Fk >=
1

2
Re{pj ∂kE∗j }, (j, k = 1, 2, 3), (D12)

Equation (D12) is the well-known time-averaged force on an electric dipole [4, 15]. The

corresponding force on the magnetic dipole is obtained in an analogous way. Then the above

near-field calculation yields the expression for the time-averaged force on a magnetoelectric

dipole, which is well-known [4, 16],

< Fk >=
1

2
Re{pj ∂kE∗j +mj ∂kB

∗
j } −

k4

3
Re[p×m∗]k . (j, k = 1, 2, 3), (D13)

On the other hand, taking the imaginary part in (D3), and using (D8) - (D11), one obtains

on the electric dipole

Im{
∫
∂V0

d2r T
(mix)
kj (p)nj} = Im{[ 1

10
(1− ika)− 1

30
k2a2] exp(ika) pj [∂kE

∗
j + ∂jE

∗
k ]

+
1

3
(1 + ika) exp(−ika) p∗j∂jEk +

1

6
(k2a2 − ika) exp(−ika)p∗j(∂kEj − ∂jEk)} . (j, k = 1, 2, 3). (D14)

Where we have denoted as T
(mix)
kj (p) that part of the CMST, Eq. (D3), that uniquely in-

volves the electric dipole moment p. The superscript (mix) indicates that only interferences

incident-scattered field contribute to the IMST

Equation (D14) is the flow IMST on an electric dipole. One approximation that simplifies

(D14) is to consider all parenthesis factors equal to 1 and the term, which comes from the

far-field, with the −(1/30)k2a2 factor as −1/30; so that one gets an expression independent

of a.

Im{
∫
∂V0

d2r T
(mix)
kj (p)nj} = − 1

10
Im{[pj ∂kE∗j + pj ∂jE

∗
k ]}. (j, k = 1, 2, 3). (D15)
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Alternatively, one would obtain an expression akin to (D15), but with a factor −1/15 instead

of −1/10, by neglecting in (D14) the term with the −(1/30)k2a2. This is a plausible choice

after making all parenthesis of (D14) equal to one, which amounts to take ka ' 0; and hence

there would be no clear justification of (D15). However we should say that a similar question

appears in the derivation of (D12) and (D13) for the RLF that we know are correct.

The imaginary part of the surface integral Im{
∫
∂V0

d2r T
(mix)
kj (m)nj} is derived in an

analogous way, yielding an expression like (D14) and (D15) with m∗ and B replac-

ing p and E∗, respectively. Then the simplified version according to (D15) of the sum

Im{
∫
∂V0

d2r T
(mix)
kj (p)nj}+ Im{

∫
∂V0

d2r T
(mix)
kj (m)nj} is

Im{
∫
S

d2r T
(mix)
kj nj} =

1

8π

∫
V

d3r∇ · Im{EkE∗j +B∗kBj} =

− 1

10
Im[pj ∂kE

∗
j + pj ∂jE

∗
k −mj ∂kB

∗
j −mj ∂jB

∗
k]}, (j, k = 1, 2, 3). (D16)

The sum of (D14) and the analogous for {T (mix)
kj (m)nj}, or its simplified version (D16) (with

a factor 1/15 rather than 1/10 if the field radiative part of r−1 dependence is excluded),

constitutes the proof of the IMST of Eq. (51).

APPENDIX E: A HEURISTIC OBTENTION OF THE COMPLEX FORCE

FROM A TIME-HARMONIC FIELD ON AN ELECTRIC AND A MAGNETIC

DIPOLE

1. Electric dipole

We address the complex force from a time-harmonic electromagnetic field whose analytic

signals are E(r, t) = E(r) exp(−iωt), B(r, t) = B(r) exp(−iωt) on an electric dipole at

r = 0 of moment P(0, t) = p exp(−iωt), p = αeE(0), [J (r, t) = J(r) exp(−iωt) = dP/dt,

J(r) = −iωpδ(r)]. In absence of magnetic charges, following [15] we tentatively write:

Fi =
1

2
[(p∗ · ∇)E + ikp∗ ×B]i =

1

2
[αeEj

∗∂jEi + ikα∗eεijkEj
∗Bk], (i, j, k = 1, 2, 3). (E1)

Since Bk = − i
k
εklm∂lEm and εijkεklm = δilδjm−δimδjl, Eq. (E1) of the complex force becomes

Fi =
1

2
α∗eEj

∗∂iEj, (i, j = 1, 2, 3). (E2)
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Whose real and imaginary parts are: the well-known expression of the time-averaged force

on an electric dipolar particle [15]:

< Fi >=
1

2
Re{αeEj∂iE∗j }, (E3)

and

Im{Fi} = −1

2
Im{αeEj∂iE∗j }, (E4)

that we suggest might rule the imaginary force.

2. Magnetic dipole

There exist two possible expressions to be obtained in the study of the RLF on a magnetic

dipole of moment m(r, t), depending on whether one models it as a close loop of electric

current (cld) or as a Gilbert dipole (mcd) due to positive and negative magnetic charges

[7, 17, 18].

In the first case the time-dependent complex force exerted by a wavefield of analytic

signals E(r, t), B(r, t) on a magnetic dipole at r = 0 of moment M(r, t) = m(r) exp(−iωt) =

αmB(r), that we suggest following [17] for the RLF, is:

F cld(r, t) =
1

2
[∇(M∗ ·B)− 1

c

∂

∂t
(M∗ × E)], (E5)

where 1
c
(M∗ × E) is the analogous, in terms of the analytic signals associated to the fields,

of.Shockley’s hidden momentum [19]

Expanding the first term and using Maxwell’s equation: ∇ × B = ∂E/∂t + c
4π
J , Eq.

(E5) acquires the form

F cld(r, t) = Fmcd +
2π

c
M∗ ×J , (E6)

where

Fmcd(r, t) =
1

2
[(M∗ · ∇)B − 1

c

∂M∗

∂t
× E ] (E7)

is the complex force on a Gilbert dipole in terms of the analytic signals. Therefore Eq.(E6) is

the relationship between the forces in the two models, cld and mcd, of the magnetic dipole.
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Now, the complex force F cld from a time-harmonic field E(r, t) = E(r) exp(−iωt),

B(r, t) = E(r) exp(−iωt) on a cld magnetic dipole of moment M(0, t) is, since then the

second term of (E5) is zero,

F cld =
1

2
[∇(m∗ ·B) + m∗ × (∇×B)]. (E8)

Where the r-dependence of all quantities in (E8) is implicit. Expanding the double vector

product of the second term and proceeding as in Appendix E.1, we obtain

(F cld)i =
1

2
m∗j∂iBj, (i, j = 1, 2, 3). (E9)

Whose real part is the well-known time-averaged force on a purely magnetic dipole [5, 16]:

< F cld >i=
1

2
Re{mj∂iBj

∗}. (E10)

And whose imaginary part is our tentatively proposed reactive force on a magnetic dipole,

Im{F cld}i = −1

2
Im{mj∂iBj

∗}, mj(0) = αmBj(0), (i, j = 1, 2, 3). (E11)

On the other hand, the complex force of this time-harmonic wavefield on a Gilbert dipole

of magnetic charge current density J (r, t) = Jmc(r) exp(−iωt) = dM/dt, Jmc(r) =

−iωmδ(r), is from (E7):

Fmcd =
1

2
[(m∗ · ∇)B− ikm∗ × E] =

1

2
[(m∗ · ∇)B + m∗ × (∇×B)− 4π

c
m∗ × Jmc].(E12)

Where the Maxwell equation for ∇×B has been used to eliminate E. Then, expressing the

electric current density as: Jmc = −iωpδ(r) and proceeding as before, we obtain:

(Fmcd)i =
1

2
m∗j∂iBj + 2iπkδ(r)(m∗ × p)i. (E13)

Notice that since
∫∞
−∞ d

3rδ(r) = 1, the second term of (E13) has, like the first term, spatial

dimension L−2. Also we note that (E9) and (E13) hold (E6) with the 1/2 factor since

1
2
4π
c

m∗ × J = −2iπkδ(r) m∗ × p.

Therefore, the real and imaginary parts of the force on the Gilbert dipole are respectively:

< Fmcd >i=
1

2
Re{mj∂iB

∗
j }+ 2πkδ(r)Im{p×m∗}i, (E14)

and

Im{Fmcd}i = −1

2
Im{mj∂iB

∗
j } − 2πkδ(r)Re{p×m∗}i, (i, j = 1, 2, 3) (E15)
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At this stage we should remark that for a Gilbert dipole model the Maxwell equation is no

longer ∇×E = ikB, but ∇×E = ikB− c
4π

Jmc, where Jmc = −iωmδ(r), as seen above. So

instead of Eq. (E2), valid for an electric dipole without magnetic charges, the equation for

the complex force on the electric dipole if one assumes the existence of magnetic charges is

(F)i =
1

2
p∗j∂iEj + 2iπkδ(r)(m× p∗)i. (E16)

Whose real and imaginary parts are

< F >i=
1

2
Re{pj∂iE∗j } − 2πkδ(r)Im{p×m∗}i. (E17)

and

Im{F}i = −1

2
Im{pj∂iE∗j } − 2πkδ(r)Re{p×m∗}i, (i, j = 1, 2, 3). (E18)

3. ELECTRIC AND MAGNETIC DIPOLE

Therefore, we conclude that if magnetic charges are assumed, the real and imaginary

parts of the resulting electric and magnetic dipole forces are:

< F >i + < Fmcd >i=< F >i + < F cld >i =
1

2
Re{pj∂iE∗j }+

1

2
Re{mj∂iB

∗
j }, (E19)

and our proposed expression:

Im{F}i + Im{Fmcd}i = −1

2
Im{pj∂iE∗j } −

1

2
Im{mj∂iB

∗
j } − 4πkδ(r)Re{p×m∗}i. (E20)

While in the model in which no magnetic charges are present, we obtain for the resulting

reactive force

Im{F }i + Im{F cld}i = −1

2
Im{pj∂iE∗j } −

1

2
Im{mj∂iB

∗
j }. (E21)

Which in contrast with the time-averaged force which is the same for the cld amd mcd

models, (E21) differs from (E20) by 4πkδ(r)Re{p×m∗}i.

This procedure does not yield for the RLF (E19) the interference term [cf. Eq. (D13)]:

−k4

3
Re{p × m∗} [4, 16] of the electric and magnetic dipoles. Therefore it is likely that

the ILF so obtained, although valid for pure electric or magnetic dipoles, be not valid for

magnetoelectric dipolar particles.
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From Eq. (A2) we guess for the reactive spin torque:

Ξspin = −1

5
Im[p× E∗ + m×B∗] +

k

c

∫
V

d3r (LO
e − LO

m). (E22)

Notice that, again, the diagonal terms of the complex MST do not contribute to the recoil,

or scattering, component [4] of Ξspin.

Or in terms of the above quoted the electric and magnetic angular momenta: Fe and

Fm, we write

Ξspin = −k
c
{1

5
(αIeFe + αImFm)−

∫
V

d3r (LO
e − LO

m)}. (E23)

Of course the angular orbital momenta, like we saw above for the orbital momenta, store

power of the propagating plane wave components of the wavefields.

APPENDIX F: THE REACTIVE FORCE FROM AN INCIDENT PLANE WAVE

WITH SPIN ANGULAR MOMENTUM

Figure S1 compares results from a linearly polarized (LP) plane wave with those of circular

polarization (CP), both incident on the PS particle of Example 2, and propagating along OZ.

As an example, Fig. S1(a) depicts the field intensity in and around the PS particle for CP

and LP illumination. Under LP light the field has a butterfly-shape intensity distribution,

expected from a dipolar particle, while the intensity excited by CP light is uniform along

the azimuthal direction, because of the rotational symmetry of the system. On the other

hand, the interaction of particle with plane waves yields a longitudinal component of the

field, whose phase remarkably discriminates LP and CP illumination. As shown in Fig.

S1(b), the LP light leads to a phase jump at the x = 0 plane; while CP illumination yields

a phase distribution with a singular point, or vortex, which is known as the result of the

spin-to-orbit coupling. However, despite these significant differences in the characteristics

of the fields, the ILF produced by the CP illumination is identical to that from LP light [cf.

Fig. 2(b)], as illustrated in Fig. S1(c).

APPENDIX G: ON THE CALCULATION OF THE ROM

Both < F > and Im{F} are calculated from the complex Lorentz integral in V0, Eq.(6).

The induced densities ρ and J are obtained from the constitutive relations on the total field
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FIG. S 1: Comparison of field distribution and reactive force for the PS particle of Fig.2 when

the incident plane wave is linearly polarized (LP), [amplitude E0(1, 0, 0), E0 = 1], and circularly

polarized (CP) [amplitude E0(1, i, 0), E0 = 1/
√

2], at the wavelength of 800 nm. (a) Field intensity

distribution. (b) Phase profile of the z-component of the electric field in and around the particle

after scattering, for LP and CP illumination. Dashed lines outline the particle contour. The sharp

vertical line in the upper right figure indicates that for LP illumination, after the light-particle

interaction, the resulting electric field z-component has opposite signs on the left and right side of

the x = 0 plane. (Notice that the space shown in the figures is the XY -plane where the particle

center is located). (c) ILF spectrum for LP and CP light.

E = E(i) + E(s), B = B(i) + B(s) via the first and fourth Maxwell equations, respectively.

In our numerical method, the total field is obtained using the commercial software package

“FDTD Solutions” (Lumerical, Inc.). The simulation region is 0.22× 0.22× 0.22 µm3, and

a uniform mesh with grid size of 5 nm was used. We compute the complex Lorentz force by

the expression: F = 1
2

∫
V

[ρ∗E(r) + J∗

c
× B(r)] d3r, determining ρ and J via the procedure

described in [20]. Then we evaluate the IMST across the surface of a cube that encloses the

spherical dipolar particle of volume V0. Let the volume of this cube be denoted Vq. The

volume of the four corners between Vq and V0 is V4c, its surface being ∂V4c

Obviously since ρ = 0 and J = 0 outside V0, we have from the total field E = E(i) + E(s),

B = B(i) + B(s) the following:

0 = Im{F}4c =

∫
∂V4c

d2r Im{Tij}nj + iω

∫
V4c

d3r [PO
m −PO

e ]i , (G1)
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I.e. ∫
∂V4c

d2r Im{Tij}nj = −iω
∫
V4c

d3r [PO
m −PO

e ]i . (G2)

But ∫
∂V4c

d2r Im{Tij}nj =

∫
∂Vq−∂V0

d2r Tijnj . (G3)

Then from (G2):

iω

∫
Vq

d3r [PO
m −PO

e ]i = iω

∫
V0

d3r [PO
m −PO

e ]i −
∫
∂V4c

d2r Im{Tij}nj . (G4)

And from (G3) and (G4) one derives:

iω

∫
Vq

d3r [PO
m −PO

e ]i = iω

∫
V0

d3r [PO
m −PO

e ]i +

∫
∂V0−∂Vq

d2r Im{Tij}nj . (G5)

Which taking into account (57) for V = Vq, leads to

iω

∫
Vq

d3r [PO
m −PO

e ]i = Im{F i} −
∫
∂Vq

d2r Im{Tij}nj . (G6)

Equation (G6) is the procedure we use to calculate the ROM integrated in the volume Vq

from the two terms of its right side previously computed as described above.
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