NT157 exerts antineoplastic activity by targeting JNK and AXL signaling in lung cancer cells

Lívia Bassani Lins de Miranda¹, Keli Lima^{1,2}, Juan Luiz Coelho-Silva³, Fabiola Traina³, Susumu S. Kobayashi^{4,5,6}, João Agostinho Machado-Neto^{1,*}

¹ Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil

² Laboratory of Medical Investigation in Pathogenesis and Targeted Therapy in Onco-Immuno-Hematology (LIM-31), Department of Hematology, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil

³ Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil

⁴ Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, E/CLS-407, Boston, MA 02215, USA

⁵ Division of Translational Genomics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa 277-8575, Japan ⁶ Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02215, USA

List of supplementary material

Supplementary Table 1. Primer sequences and concentrations.

Supplementary Table 2. List of antibodies for western blot.

Supplementary Figure 1. Whole gel images from Western blot analysis.

Supplementary Figure 2. Whole gel images from Western blot analysis.

Supplementary Figure 3. Whole gel images from Western blot analysis.

Supplementary Figure 4. Whole gel images from Western blot analysis.

Supplementary Figure 5. Downregulation of AXL induced by NT157 occurs at the mRNA level in lung cancer cells.

Supplementary Figure 6. NT157 displays antineoplastic activity in H1975, an EGFR-mutated cell line.

Gene	Sequence	Concentration	
AXL	FW: GTGGGCAACCCAGGGAATATC	200 pM	
	RV: GTACTGTCCCGTGTCGGAAAG	300 1101	
BBC2	FW: GACCTCAACGCACAGTACGAG	300 nM	
BBC3	RV: AGGAGTCCCATGATGAGATTG		
BCI 2	FW: ATGTGTGTGGAGAGCGTCAA	300 nM	
DOLZ	RV: ACAGTTCCACAAAGGCATCC	300 1101	
	FW: CTCGGTGTCCTACTTCAAATG	300 nM	
CONDI	RV: AGCGGTCCAGGTAGTTCAT	300 1101	
CDKN14	FW: TGTCACTGTCTTGTACCCTTGT	300 nM	
CDNNA	RV: GCCGGCGTTTGGAGTGGTAG		
	FW: ACTCTGAGGACACGCATTTGGT	300 nM	
CDINITD	RV: TCTGTTCTGTTGGCTCTTTTGTT		
ERG1	FW: CTTCAACCCTCAGGCGGACA	300 nM	
	RV: GGAAAAGCGGCCAGTATAGGT	300 1101	
FOS	FW: AGAATCCGAAGGGAAAGGAA	300 nM	
	RV: CTTCTCCTTCAGCAGGTTGG	000 1110	
. IL INI	FW: CAGGTGGCACAGCTTAAACA	300 nM	
JUN	RV: GTTTGCAACTGCTGCGTTAG	300 1101	
MVR	FW: CTCCGCCTACAGCTCAACTCC	300 nM 300 nM 300 nM	
IVI I D	RV:TCCTTTATTCGCTTTTCCTTCTCA		
MYC FV	FW: GCCCCTGGTGCTCCATGA	300 nM	
MITO	RV: TTCCACAGAAACAACATCGATT		
NEKR1	FW: GGCAGCACTACTTCTTGACC	300 nM	
	RV: CAGCAAACATGGCAGGCTAT	300 1101	
PTFN	FW: TCCCAGTCAGAGGCGCTATG	300 nM	
	RV: CACAAACTGAGGATTGCAAG		
HPRT1	FW: GAACGTCTTGCTCGAGATGTGA	150 nM	
	RV: TCCAGCAGGTCAGCAAAGAAT		
ACTB	FW: AGGCCAACCGCGAGAAG	150 nM	
	RV: ACAGCCTGGATAGCAACGTACA		

Supplementary Table 1. Primer sequences and concentrations.

Supplementary Table 2. List of antibodies for western blot.					
Manufacturer	Target	Specie	Catalog		
	p-IRS1 ^{Ser636/639}	Rabbit	#2388		
	IRS1	Rabbit	#3407		
	IRS2	Rabbit	#3089		
	p-IGF1R ^{Tyr1135}	Rabbit	#3918		
	IGF1R	Rabbit	#3027		
	p-STAT3 ^{Tyr705}	Rabbit	#9131		
	STAT3	Rabbit	#4904		
	p-AXL ^{Tyr702}	Rabbit	#5724		
	AXL	Rabbit	#4566		
	p-SAPK/JNK ^{Thr183/185}	Rabbit	#9251		
	SAPK/JNK	Rabbit	#9252		
Cell Signaling Technology (MA, USA)	p-p38 MAPK ^{Thr180/182}	Rabbit	#9211		
	p38 MAPK	Rabbit	#9212		
	p-ERK1/2 ^{Thr202/Tyr204}	Rabbit	#9101		
	ERK1/2	Rabbit	#9102		
	p-AKT ^{Ser473}	Rabbit	#4060		
	AKT	Rabbit	#4685		
	p-4EBP1 ^{Thr70}	Rabbit	#9455		
	4EBP1	Rabbit	#9452		
	p-c-JUN ^{Ser63/73}	Rabbit	#3270		
	c-JUN	Rabbit	#9165		
	PARP1	Rabbit	#9542		
	α-tubulin	Rabbit	#2144		
Santa Cruz Biotechnology (Santa Cruz, USA)	γH2AX	Mouse	sc-517348		

H1299 cells

H460 cells

Supplementary Figure 1. Whole gel images from Western blot analysis. Western blot analysis in cell extracts from H1299 and H460 cells under experimental conditions (see Figure 4). Membranes were reprobed with the antibody for the detection of the respective total protein or α -tubulin, and developed with the SuperSignalTM West Dura Extended Duration Substrate system using a G:BOX Chemi XX6 gel doc imaging system.

Supplementary Figure 2. Whole gel images from Western blot analysis. Western blot analysis in cell extracts from H1299 and H460 cells under experimental conditions (see Figure 6). Membranes were reprobed with the antibody for the detection of the respective total protein or α -tubulin, and developed with the SuperSignalTM West Dura Extended Duration Substrate system using a G:BOX Chemi XX6 gel doc imaging system.

H1299 and H460 cells

Supplementary Figure 3. Whole gel images from Western blot analysis. Western blot analysis in cell extracts from H1299 and H460 cells under experimental conditions (see Supplementary Figure 5). Membranes were reprobed with the antibody for the detection of the respective total protein or α tubulin, and developed with the SuperSignalTM West Dura Extended Duration Substrate system using a G:BOX Chemi XX6 gel doc imaging system.

H1975 cells

Supplementary Figure 4. Whole gel images from Western blot analysis. Western blot analysis in cell extracts from H1299 and H460 cells under experimental conditions (see Supplementary Figure 6). Membranes were reprobed with the antibody for the detection of the respective total protein or α-tubulin, and developed with the SuperSignal[™] West Dura Extended Duration Substrate system using a G:BOX Chemi XX6 gel doc imaging system.

Supplementary Figure 5. Downregulation of AXL induced by NT157 occurs at the mRNA level in lung cancer cells. *AXL* mRNA levels were evaluated by qPCR in H1299 *versus* H460 cells (a) or cells treated with vehicle or NT157 (3.2, 6.4, and 12.5 μ M) (b). The bar graph represents the mean ± SD of at least three independent experiments. ****p* < 0.001, ANOVA and Bonferroni post-test. (c) Western blot analysis for p-AXL^{Tyr702} and AXL in total cell extracts from H1299 and H460 cells treated with vehicle or NT157 (3.2, 6.4, and 12.5 μ M) for 24 hours. Membranes were reprobed with an antibody to detect α -tubulin, and images were then developed with a SuperSignalTM West Dura Extended Duration Substrate system using a G:BOX Chemi XX6 gel doc imaging system.

Supplementary Figure 6. NT157 displays antineoplastic activity in H1975, an EGFR-mutated cell line. (a) Dose- and time-response cytotoxicity was evaluated by the sulforhodamine B (SRB) assay. H1975 cells were treated with vehicle (Ø) or different concentrations of NT157 (1.6, 3.2, 6.4, 12.5, 25, 50, and 100 μ M) for 24, 48, and 72 h. Values are expressed as the percentage of viable cells for each condition relative to vehicle-treated cells. Results are shown as mean ± SD of at least 3 independent experiments. (b) Colony formation of the cells treated with vehicle or NT157 (1.6, 3.2, 6.4, and 12.5 μ M) and for 7 days. The bar graph represents the mean ± SD of the relative number of colonies (% of control). ***p < 0.001; ANOVA and Bonferroni post-test. (c) Western blot analysis for p-AXL^{Tyr702}, AXL, p-SAPK/JNK^{Thr183/185}, SAPK/JNK, and PARP1 in total cell extracts from H1975 cells treated with vehicle or NT157 (3.2, 6.4, and 12.5 μ M) for 24 hours. (d) H1974 cells treated with NT157 (0.8 and1.6 μ M) and

gefitinib (12.5 and 25 μ M) alone or in combination with each other for 48 hours, as indicated. Values are expressed as the percentage of viable cells for each condition relative to vehicle-treated cells. Results are shown as mean ± SD of at least 3 independent experiments. The *p* values are indicated in the graphs; **p* < 0.05 for gefitinib- and/or NT157-treated cells vs. vehicle-treated cells, #*p* < 0.05 for gefitinib- or NT157-treated cells versus combination treatment at the corresponding doses; ANOVA and Bonferroni post-test.