iScience, Volume 25

Supplemental information

Glycosyltransferase engineering and

multi-glycosylation routes development facilitating

synthesis of high-intensity sweetener mogrosides

Jiao Li, Shicheng Mu, Jiangang Yang, Cui Liu, Yanfei Zhang, Peng Chen, Yan Zeng, Yueming Zhu, and Yuanxia Sun

2	Glycosyltransferases engineering and multi-glycosylation routes development
3	facilitating biosynthesis of high-intensity sweetener mogrosides
4	Jiao Li ^{1,2‡} , Shicheng Mu ^{1‡} , Jiangang Yang ¹ *, Cui Liu ¹ , Yanfei Zhang ¹ , Peng Chen ¹ ,
5	Yan Zeng ¹ , Yueming Zhu ¹ , and Yuanxia Sun ^{1,2,3} *
6	¹ National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of
7	Industrial Biotechnology, Chinese Academy of Sciences, 32 Xi Qi Dao, Tianjin
8	Airport Economic Area, Tianjin 300308, China
9	² National Technology Innovation Center of Synthetic Biology, Tianjin 300308,
10	China
11	³ Lead contact
12	[‡] These authors contributed equally to this work
13	*Correspondence: sun_yx@tib.cas.cn; yang_jg1@tib.cas.cn; Tel.: +862284861960

15	Content
16	1. Supporting tables 1
17	Table S1. Kinetic parameters of glycosyltransferases towards mogrosides. 1
18 19	Table S2 . Enzymatic activity and product composition for MS1 and mutant M7 underdifferent mogroside substrates
20	Table S3. Kinetic parameters of glycosyltransferase MG1 towards mogrol. 1
21	Table S4. Primers used in this study. 1
22	Table S5. Strains and plasmids used in this study. 3
23	Table S6. ¹³ C and ¹ H NMR data for VI (600 MHz). 4
24	2. Supporting figures
25	Figure S1. SDS-PAGE of recombinant protein purification fractions
26 27	Figure S2. HPLC and MS analysis of MG1 enzymatic reaction products using mogrol as substrate
28 29	Figure S3. HPLC analysis of UGT72-269-1 and UGT94-289-3 enzymatic reaction products using mogrosides as substrates
30	Figure S4. Glycosylations catalyzed by enzymes MS1 and MS2 using various substrates.
31	
32 33	Figure S5. MS analysis of MS1 and MS2 enzymatic reaction products using mogrosides as substrates
34 35	Figure S6 . Multiple sequence alignment of 9 UGTs that show branched glycosylation activity to triterpenes
36 37	Figure S7 . Determination of kinetic parameters for recombinant glycosyltransferase MG1 (on IE) and MS1 and MS2 (on mogroside IIE)
38 39	Figure S9 . HPLC analysis of MS1 WT and mutant M7 enzymatic reaction products using mogroside IIE as substrate
40 41	Figure S10. HPLC analysis of MS1 WT and mutant M7 enzymatic reaction products using mogroside IIIA as substrate
42 43	Figure S11. HPLC analysis of MS1 WT and mutant M7 enzymatic reaction products using mogroside IIIE as substrate
44 45	Figure S12. HPLC analysis of MS1 WT and mutant M7 enzymatic reaction products using mogroside IVA as substrate
46 47	Figure S13. HPLC analysis of MS1 WT and mutant M7 enzymatic reaction products using mogroside IVE as substrate

48 49	Figure S14. HPLC analysis of MS1 WT and mutant M7 enzymatic reaction products using mogroside Sia I as substrate. 20
50 51	Figure S15. HPLC analysis of MS1 WT and mutant M7 enzymatic reaction products using mogroside V as substrate
52 53	Figure S16. Conformation maps of M7-IIE and WT-IIE complexes during the 3*50 ns MD simulations. 22
54 55	Figure S17. Optimization of reaction temperature, pH and divalent metal ions of MS1 and MS2.
56	Figure S18. 1H NMR spectrum of VI in Dimethyl sulfoxide-d6 (600 MHz) 24
57	Figure S19. ¹³ C NMR spectrum of VI in Dimethyl sulfoxide-d6 (600 MHz) 25
58	Figure S20. HMBC spectrum of VI in Dimethyl sulfoxide-d6 (600 MHz)
59	Figure S21. HSQC spectrum of VI in Dimethyl sulfoxide-d6 (600 MHz)
60	Figure S22. COSY spectrum of VI in Dimethyl sulfoxide-d6 (600 MHz) 28
61	Figure S23. TOCSY spectrum of VI in Dimethyl sulfoxide-d6 (600 MHz)
62	Figure S24. The gene sequences of MG1 and MS1
63	

1. Supporting tables

- 66 Table S1. Kinetic parameters of glycosyltransferases towards mogrosides. Related to
- 67 Table1.

Substrate	Enzyme	K_m (μ M)	k_{cat} (s ⁻¹)	$k_{cat}/K_m (\mathrm{mM}^{-1}\cdot\mathrm{s}^{-1})$
ШЕ	MS1	34.31 ± 0.5	0.014 ± 0.002	0.41 ± 0.01
IIE	MS2	193.20 ± 3.2	0.026 ± 0.002	0.14 ± 0.006

69	Table S2. Enzymatic activity and product composition for MS1 and mutant M7 under
70	different mogroside substrates. Related to Figure 5. To detect the product types and
71	composition glycosylated by MS1 and its mutants, the glycosylation processes were
72	controlled, in which 10-100 μg of the purified enzyme at 40°C for 15-30 min
73	(depending on the activity of mutants) and one glucose residue was transferred to
74	substrates.

Substrates	IIE			
	Conversion (%)		T .T.(fold
Product types and composition	IIIA	IIIA IIIE		
WT	20	0	0.0085	1
M7	30	0	2.97	351
Substrates	IIIA			
	Conversi	on (%)	TT/	6.1.1
Product types and composition	IVA	IVX	— mU/mg	1010
WT	18	0	0.0074	1
M7	26	9	1.91	259
Substrates	IIIE			
Due duet transport de composition	Conversi	Conversion (%)		6 1 1
Product types and composition	IVE	SiaI	— mU/mg	1010
WT	6	17	0.0096	1
M7	3	32	3.09	322
Substrates	IVA			
Due duet transport de composition	Conversi	Conversion (%)		fold
Product types and composition	VA		— mU/mg	1010
WT	-		0	-
M7	25		1.25	-
Substrates	IVE			
Due duet transport de composition	Conversi	Conversion (%)		fald
Product types and composition	V	VE	— m0/mg	1010
WT	18	-	0.0072	1
M7	1	36	2.72	378
Substrates	Sia I			
Product types and composition	Conversi	on (%)	mU/mg	fold

	V	VX		
WT	15	-	0.0075	1
M7	14	11	1.04	139
Substrates	V			
Due duet transport commonition	Conversion (%)			fold
Product types and composition	VI		— m0/mg	
WT	-		0	-
M7	27		1.08	-

Table S3. Kinetic parameters of glycosyltransferase MG1 towards mogrol. Related to

77 Table1.

Substrate	Enzyme	K_m (μ M)	k_{cat} (s ⁻¹)	$k_{cat}/K_m (\mathrm{mM}^{-1} \cdot \mathrm{s}^{-1})$
Mogrol	MG1	10.10 ± 0.3	0.86 ± 0.04	86.00 ± 6.6
IE	MG1	61.27 ± 0.7	0.04 ± 0.005	0.63 ± 0.04

Primer name	Sequence $(5' \text{ to } 3')$
MS1 F	
MS1 P	
T11H_F	
	GCATCAAAATATGTGTGTGGTGTCACCTTGTTGGGCAGCAT
I 1 11-K I 13V-F	
L13V-P	
P164-F	TTTGATGCTTGCGTGGCTCGGCTATGGCCATCTTTCAGC
P16A-R	
W17A_F	GATGCTTCCAGCGCTCGGCTATGGCCATCTTTCAGCTTT
W17A-P	
	CATAGECCAGEGEGEGETATEGECCATETTECAGETTTECT
C10A-K	
GIOA P	
V20A E	
120A-F V20A P	
120A-K	
G21A-F	
021A-K	
L23A-K	
524A-F	
524A-K	
A25P-F	
AZSP-R	
F20A-F	
F20A-K	
534A-F	
534A-K	
N3/G-F	
N3/G-K	
F38H-F	
F38H-K	
140V-F	GAACIICCAIGIGIACIICIGIICAACCICIGIIAAICI
140V-R	AACAGAAGTACACATGGAAGTTCCTCCTTGAGAGGCTTT
S46P-F	
S46P-R	
D62P-F	TICTITCICCGTCCATTCAATTTGTGGAGCTCCATCT
D62P-R	ATTGAATGGACGGAGAGAAAGAAGAAGGAAGCTTTGGTT
F77L-F	TTCTCCTGAGCTGCCTCCTCATCTTCACACAACCAACGG
F77L-R	GATGAGGAGGCAGCTCAGGAGAAGAAGGGAGATGGAGCT
H82E-F	TCCTCATCTTGAAACAACCAACGGCCTTCCCCCTACCCT

Table S4. Primers used in this study. **Related to STAR Methods**.

H82E-R	CGTTGGTTGTTTCAAGATGAGGAGGGAACTCAGGAGAAG
A102L-F	CTTCTCCATGCTGGCCCAGCACTTTGAGTCCATTTTACA
A102L-R	AGTGCTGGGCCAGCATGGAGAAGGCTTGGTGGAGAGCGG
E107S-F	CCAGCACTTTAGCTCCATTTTACAAACACTTGCCCCGCA
E107S-R	GTAAAATGGAGCTAAAGTGCTGGGCAGCCATGGAGAAGG
S108E-F	GCACTTTGAGGAAATTTTACAAACACTTGCCCCGCACCT
S108E-R	TTTGTAAAATTTCCTCAAAGTGCTGGGCAGCCATGGAGA
H116D-F	ACTTGCCCCGGATCTTCTCATTTATGACTCTCTTCAACC
H116D-R	AAATGAGAAGATCCGGGGGCAAGTGTTTGTAAAATGGACT
I139V-F	AATTCCGGCCGTGAACTTCAATACTACGGGAGTTTTCGT
I139V-R	TATTGAAGTTCACGGCCGGAATTTTGAGGGATGAAGCTA
N142L-F	CATCAACTTCCTGACTACGGGAGTTTTCGTCATTTCTCA
N142L-R	CTCCCGTAGTCAGGAAGTTGATGGCCGGAATTTTGAGGG
V146A-F	TACTACGGGAGCGTTCGTCATTTCTCAAGGGCTTCACCC
V146A-R	AAATGACGAACGCTCCCGTAGTATTGAAGTTGATGGCCG
N354A-F	CTGTGGATGGGCGTCGGTGATGGAGAGCATGATGTTTGG
N354A-R	CCATCACCGACGCCCATCCACAGTGGCTCACGAATCCCC

Strains and plasmids	description	Ref
nlasmids	description	
nET22a (1)	"DD222 and with D . A mun	Navagan
pe132a (+)	pBR322 off with PT7; Amp	Novagen
pET32a-MG1	pET32 carrying MG1	This study
pET32a-MS1	pET32 carrying MS1	This study
pET32a-MS2	pET32 carrying MS2	This study
pYZ291	2MICRON, URA3	Novagen
pYZ291-MS1	TEF1p-MG1-CYC1t	This study
pYZ291-MS1-MS1	GPD1p-MS1-adh1t-TEF1p-MS1-CYC1t	This study
pYZ291-MS1-MG1	GPD1p-MS1-adh1t-TEF1p-MG1-CYC1t	This study
Strains		This study
CEN.PK2-1C	Saccharomyces cerevisiae strain CEN.PK2-1C	Novagen
	(MATaleu2-3, 112 ura3-52 trp1-289 his3-\Delta1 MAL2-	
	8cSUC2)	
Mog1	CEN.PK2-1C containing pYZ291-MS1	This study
Mog2	CEN.PK2-1C containing pYZ291-MS1, with gene Exg1	This study
	deleted	
Mog3	CEN.PK2-1C containing pYZ291-MS1-MS1, with gene	This study
	Exg1 deleted	
Mog4	CEN.PK2-1C containing pYZ291-MS1-MG1, with gene	This study
	Exg1 deleted	

Table S5. Strains and plasmids used in this study. **Related to STAR Methods**.

С	δ ¹³ C	δ ¹ Η
1	27.2	CH ₂ , 1.49(m), 2.24(m)
2	29.3	CH ₂ , 1.91(m)
3	88.6	CH, 3.49(br, s)
4	42.9	
5	144.7	
6	119.9	CH, 5.47(d, J=5.4Hz)
7	25.2	CH ₂ , 1.79(m), 2.44(m)
8	44.7	CH, 1.67(m)
9	41.0	
10	37.1	CH, 2.50(d, J=12.4Hz)
11	79.6	CH, 3.85(m)
12	41.2	CH ₂ , 1.81(m)
13	48.5	
14	50.4	
15	35.4	CH ₂ , 1.14(m), 1.21(m)
16	29.5	CH ₂ , 1.32(m), 1.96(m)
17	51.9	CH, 1.62(dd)
18	17.3	CH ₃ , 0.92(s)
19	26.3	CH ₃ , 1.15(s)
20	37.5	CH, 1.50(m)
21	19.3	CH ₃ , 0.97(d)
22	34.1	CH ₂ , 1.48(m), 1.56(m)
23	29.9	CH ₂ , 1.40(m), 1.55(m)
24	93.2	CH, 3.40(m)
25	73.8	
26	26.8	CH ₃ , 1.12(s)
27	24.2	CH ₃ , 1.15(s)
28	28.1	CH ₃ , 1.07(s)
29	26.6	CH ₃ , 1.21(s)
30	20.0	CH ₃ , 0.89(s)
3-O-Glc-1		
C-1	104.8	CH, 4.40(d, J=7.80Hz)
C-2	80.2	CH, 3.63(m)
C-3	78.2	CH, 3.54(m)
C-4	71.6	CH, 3.19(m)
C-5	77.1	CH, 3.44(m)
C-6	69.8	CH ₂ , 3.80(dd, J1=5.8Hz, J2=11.4Hz), 4.06(d, J=11.4Hz)
3-O-Glc-2-Glc	c	
C-1	104.0	CH, 4.67(d, J=7.80Hz)
C-2	77.9	CH, 3.25(m)
C-3	78.6	CH, 3.63(m)

Table S6. ¹³C and ¹H NMR data for VI (600 MHz). Related to Figure 5.

C-4	71.8	CH, 3.29(m)
C-5	75.7	CH, 3.27(m)
C-6	63.1	CH ₂ , 3.67(dd), 3.85(d)
3-O-Glc-6-Glc		
C-1	104.8	CH, 4.42(d, J=7.80Hz)
C-2	77.9	CH, 3.19(m)
C-3	78.1	CH, 3.28(m)
C-4	71.6	CH, 3.32(m)
C-5	72.4	CH, 3.22(m)
C-6	62.7	CH ₂ , 3.67(dd), 3.85(d)
24-O-Glc-1		
C-1	104.1	CH, 4.44(d, J=7.80Hz)
C-2	81.3	CH, 3.61(m)
C-3	78.0	CH, 3.37(m)
C-4	71.7	CH, 3.27(m)
C-5	76.5	CH, 3.51(m)
C-6	70.2	CH ₂ , 3.63(dd, J1=5.8Hz, J2=11.4Hz), 4.24(d, J=11.4Hz)
24-O-1Glc-2-		
Glc		
C-1	104.6	CH, 4.77(d, J=7.80Hz)
C-2	78.3	CH, 3.28(m)
C-3	77.7	CH, 3.37(m)
C-4	75.2	CH, 3.20(m)
C-5	78.0	CH, 3.26(m)
C-6	63.6	CH ₂ , 3.64(dd), 3.87(d)
24-O-1Glc-6-		
Glc		
C-1	104.4	CH, 4.29(d, J=7.80Hz)
C-2	75.2	CH, 3.23(m)
C-3	77.7	CH, 3.36(m)
C-4	71.5	CH, 3.27(m)
C-5	76.2	CH, 3.26(m)
C-6	62.8	CH ₂ , 3.67(dd), 3.85(d)

86 2. Supporting figures

Figure S1. SDS-PAGE of recombinant protein purification fractions. Related to Figures

- 2 and 3. Lane M: protein marker; lane 1: purified MG1 (54 kDa); lane 2: MS1 (72 kDa);
- 90 lane 3: MS2 (71 kDa).

Figure S2. HPLC and MS analysis of MG1 enzymatic reaction products using mogrol

⁹³ as substrate. Related to Figure 2.

95 Figure S3. HPLC analysis of UGT72-269-1 and UGT94-289-3 enzymatic reaction

96 products using mogrosides as substrates. Related to Figure 3.

Figure S4. Glycosylations catalyzed by enzymes MS1 and MS2 using various 99 substrates. Related to Figure 5. (a) Schematic summary of glycosylations by enzymes 100 101 MS1 and MS2 using various substrates. (b) HPLC analysis of MS1 and MS2 enzymatic reaction products using mogrosides as substrates. The HPLC methods as follow: 102 Mobile phase A was ddH₂O with 0.1% formic acid, and mobile phase B contained 103 CH₃CN and 0.1% formic acid. The gradient are as follows: 0-25 min, 25%-80% pump 104 B for mogrol, mogroside IE, mogroside IIE, and mogroside III; 0-25 min, 25%-55% 105 pump B for mogroside IV, V, and VI, and the flow rate was 1 mL/min. 106

Figure S5. MS analysis of MS1 and MS2 enzymatic reaction products using mogrosides as substrates. Related to Figure 5. Flight-high-resolution electrospray ionization-mass spectrometry (ESI-MS) parameters were as follows: the scan range was 100–1,500 m/z in positive ion mode, spray voltage was 4,500 V, capillary temperature was 400°C, dry gas was 6 ml/min, dry temperature was 180°C and nebulizer pressure was 1 bar.

MS1 MS2 UGT91D2 UGT91D2 Ok_D UGT91G16 HV1 Pn3-31 Pn3-32 Consensus	MDAAQQ GETTTI LMLPWLGYGI LSAFLELAKSLSRRNFHI YFCSTSVNLDAI KPKLPSSFSDSI QFVELHLPSSPEFPHLHTTNGLPPTL MDSGYSSSYAAAAGMHVNI CPNLAFGLLPCLDLAQRLASRGHRVSFVSTPRII SRLPPVRPALAPL VAF VALPLPRVEGL DGAESTNDVPHDR MATSDSI VDDRK, QLHVATFPNLAFGLLPYQLSKLI AEKKHKVSFLSTTRII QRLSSH SPLI NVQLT PRVQELPGAEATDVHPED MDSFGVEGDHQADTTVLKAVFLPFI SKSTLI RVVDKARI FAMGVDVTI I TTPANAAAFQTSI DHDSSRSRSI KTHI VPFPQVPGLPQGFERLDADTPQH TTQTTPAHI ANFSI AAHGI VNSLEVI REI VAKGHRVTVAI PPVF ADKVAATGRPVLYHSTLPGPDAD EAWGST LLDNRRT MAASSSPLHVI CPNLAFG LLPYCLAHRLASKGHRVSFVSTPRII SRLPPLPPAVAPL VNF VALPLAVPL DGAEATSDVCDDK MGNSSSSPLHVI CPNLAFG LLPYCLAHRLASKGHRVSFVSTPRII ARLPPLPPAVAPL VNF VALPLAVPLG DGAEATSDVCDDK MDI EKGRI SI VMLPFLAHGI SPFFELAKHLSKRNCN FLCSTPI NLSSI KNRVSD. KDSSASI KL VELHLPSSPDPPQYHTTNGLPSHL MDNQKGRI SI ALLPFLAHGI SPFFELAKKLARKNCNVFLCSTPI NLSSI KNNKDSSASVKL VELHLPSSPDPPQYHTTNGLPSHL MDNQKGRI SI ALLPFLAHGI SPFFELAKQLARKNCNVFLCSTPI NLSSI KNKDSSASVKL VELHLPSSPDPPQYHTTNGLPSHL	91 95 91 100 84 89 90 90 86
MS1 MS2 UGT91D2 UGT73P12 Ok_D UGT91G16 HV1 Pn3-31 Pn3-32 Consensus	NPALHQAFSNAAQHESI CITLAPH LLI YESLQPWAPRVISSLKI PAINFITOVFVI SQG LHFI HYPHSKFPFSEFV PDNVELHRRAFDCIAAPTSEFLGTACAD WU VV VHHNAAAAALEHKV CAMVLLGSAHMIASI ADRLERAETESPAAAGQGRP. AAAP I PYLKASDCLQPEVTRFLEGHSPD WI Y YTHYNLPSI AASLGI SRAHFSVTTPWAI AYACPSADAMI NGSDGRTTVEDLTTPKVFPF LLPKI YQCLSI LQECI QQL FREMRPD FI YT MYYP VSVDAAALGI FRLVCNGGYFAQSAVN SI ELFSPQAKVDSNTETFLLPGL FFINDAI QALPQLADAYADDI P.D LLVHI TSYPARVLARKVPCVASLSPNLVAKKYE	169 184 181 186 144 155 180 168 164
MS1 MS2 UGT91D2 UGT73P12 Ok_D UGT91G16 HV1 Pn3-31 Pn3-32 Consensus	LININKAAVSTADGAS. TERTRKRGEAFLYCLHASCSVI LINSTRLEGKYNDYLSVEL. NKKVPYCPLVYEP NODGEDEGYSSI KNULD TFEVARVKLIRTKG SSGNSLAERFSLTLSRSSLVVGRSCVEFPETYPLLSTLR. GKPITFLGLNPPLH GGR. EDGEDATVRUD PTKVCVRKHDLARLVP. YKAPGI SDGYRNGLVLKGSDCLLSKCYHFFGTQW.PLLETLH QVPVVPCLLPFEIP GDEKDETWNSI KKULD PHEVENTRLQLPDWLRGAPNEYTYLNKM KDSERKSVGSLFNSFYLLEGTYEEHYKKAACTKSWSVGPVSLWNQDASDKACRGDVKEGKGDGVVLTNUD VAEPWREPRQTE RGRAYNFFEAWLKENG TEHPDTFASHPPRSLVLPKLAPQ. HADRUDDVYTFUG ACGGDRAEGGORG SHNDDWKTYTVESP ASGVTVAFFEAWLKENG TEHPDTFASHPPRSLVLPKLAPQ. HADRUDDVYTFUG ACGGDRAEGGORG SHNDDWKTYTVESP ASGVTVAFFEAWLKENG LVW RÅVGVLAVENG VEPSLVVFUGLLPPSP SADTVAFAVRLD DNSNI TPEPPSAD	258 268 270 286 227 246 265 251 247
MS1 MS2 UGT91D2 UGT73P12 O& D UGT91G16 HV1 Pn3-31 Pn3-32 Consensus	KKEPSSTVFVSFGSEYFPSKEEMEBLAHGLE. ASEVNFI WVKFPQCDNTSG. I EDALPKGFLERAGE. RGMVVKCWAPCAK, KKEPSSTVFVSFGSEYFPSKEEKEBLAHGLE. LAGTRILMALKKPTGVSDDDLPAGFERTRG. RGVVATRIVTONSI A HAAAVGAFLTFCCWN AQPAKSVVTVALGSEVPLGVEKVHELALGLE. LSGTPFVMAYKRFKQPAK. SISVELPDGFVERTRD. RGLVVFMAQCKALSESSTGAVTTCCWN RGKQGSVVTVALGSEVPLGVEKVHELALGLE. LSGTPFVMAYKRFKQPAK. SISVELPDGFVERTRD. RGLVVFMAQCKALSESSTGAVTTCCWN PAGAEKVVLVLSIS AFTRADVHELALGLE. LSGTPFVMAYKRFKQPAK. SISVELPDGFVERTRG. RGLVVFGVALULI FERAVGAVTTCCWN PAGAEKVVLVLSIS AFTRADVHELALGLE. LSGTPFVMAYKRFKQPAK. SISVELPDGFVERTRG. RGLVVFGVALULI FERAVGAVTTCCWN AQPAKSVVTI ALSS EVPLREQVHEVALGLD. LSGTRFLWALKRPTDAPDAAVLPPGFERTRG. RGLVVFGVALVSI AARGAVAAFLTFCCWN KRAESTVVFVCFGSEVFPSNEELEEVALGLE. I SVNNTLLAVRFLEGEKKGVLPEGFVGRVGD. RGLVVFGVALGARL GSSTGGFVSFGSSTGFVSFGSEVFPSNEELEEVALGLE. I SVNNTLLAVRFLEGEKKGVLPEGFVGRVGD. RGLVVFGVALGARL GSSTGGFVSFGSS KRAESTVVFVCFGSEVFPSNEELEEVALGLE. I SVNNTLLAVRFLEGEKKGVLPEGFVGRVGD. RGLVVFGVALGARL GSSTGGFVSFGSS KRAESTVFVFCFGSEVFPSNEELEVALGEL I SVNTLLAVRFLEGEKKGVLPEGFVGRVGD. RGLVVFGVALGARL GSSTGGFVSFGSS KRAESTVFFVGFGSEVFPSNEELEVALGEL I SVNTLLAVRFLEGEKKGVLPEGFVGRVGD. RGLVVFGVALGARL GSSTGGFVSFGGSS KRAESTVFFVGFGSEVFPSNEELEVALGEL I SVNTLLAVRFLEGEKKGVLPEGFVGRVGD. RGLVVFGVALGARL GSSTGGFVSFGGSS KKAESTVFFVGFGSEVFPSNEELEVALGEL I SVNTLLAVRFLEGEKKGVLPEGFVGRVGD. RGLVVFGVALGARL GSSTGGFVSFGGSS	354 365 381 310 343 358 343 339
MS1 MS2 UGT91D2 UGT91D2 Oke D UGT91G16 HV1 Pn3-31 Pn3-32 Consensus	SVM SNM GVELL GVPML VDOPF NAGL VEEAGNGVEAKRDP. DGKLORDEVAKLI KEVVVEKTR. EDVRKKARENSELLRSKGEEK. STI GLN GGVELL MEPLF. GDQCP NARLLEAKNAGLQVARNDG. DGSFDREGVAAL KEVVEKTR. EDVRKKARENSELLRSKGEEK. SLV GLN GGVELL MEPLF. GDQCP NARLLEAKNAGLQVARNDG. DGSFDREGVAAL RAVAVEESSKVFQAKAKLQELVADDACHERY. SVMSSLV LATVPLFAEOFFNEKLVDVVKLGVPVGVKEWRNNE. FGDEVVKREDLGKALAFLNGGGDESLEMRRVKVLSGATKKALQVDGSSV SOGGLATATVPLFAEOFFNEKLVDVVKLGVPVGVKEWRNNE. FGDEVVKREDLGKALAFLNGGGDESLEMRRVKVLSGATKKALQVDGSSV SOGGLATATVPLFAEOFFNEKLVDVVKLGVPVGVKEWRNNE. FGDEVVKREDLGKALAFLNGGGDESLEMRRVKVLSGATKKALQVDGSSV SOGGLATATVPLFAEOFFNEKLVDVVKLGVPVGVKEWRNNE. JGDEVKREDLGKALAFLAFUNGGESLEMRRVKVLSGATKKALQVDGSSV SOGGLATATVPLFAEOFFNEKLVDVGVKLGVPVGVKLGVPVGVKEWRNNE. JGDEVKREDLGKALAFLAFUNGGESLEMRRVKVLSGATKKALQVDGSSV SOGGLATVPLFAEOFFNEKLVDVGVKLGVPVGVKDGS. DGSFHREDVAAVWFVAVAVEDGRRVFTANKKVGELVDADRECHERC. STI GLRFGRLLWLPI.S. SDQCPMARLWEGKVGVQVPRDES. DGSFHREDVAAVVEAVAVEDGRRVFTANKKVGELVADRECHERC. SI MSVKFGVVLAVARH. LDQPLNAKLAAEVGVGVEVKRDE. NGKYKREALAFVEKVVKENG. EVLRKARELSEKNKETGEGE. SI ASNKFGVVLAVARH. LDQPLNAKLAAEVGVGVGVVRDD. NGKYKREGLAEVKKVVKKSG. EVLRKARELSEKNKEKGEQE. C P	438 449 452 479 407 430 446 427 423
MS1 MS2 UGT91D2 UGT73P12 Ok_D UGT91G16 HV1 Pn3-31 Pn3-32 Consensus	• FDENVAE SLLLKI • DGFF QQL RSYKD.	452 462 473 505 430 443 459 447 442

Figure S6. Multiple sequence alignment of 9 UGTs that show branched glycosylation
activity to triterpenes. Related to Figure 4. The following UGTs were used in this
analysis: MS1, MS2 (GenBank: XP_015629141), UGT91D2 (GenBank: ACE87855.1),
UGT73P12 (GenBank: BBN60799.1), OleD (GenBank: ABA42119.2), UGT91G16
(GenBank: QHG10987.1), HV1 (GenBank: BAJ98242.1), Pn3-31 (GenBank:
QOJ43868.1) and Pn3-32 (GenBank: QOJ43866.1).

122 Figure S7. Determination of kinetic parameters for recombinant glycosyltransferase

MG1 (on IE) and MS1 and MS2 (on mogroside IIE). Related to Table 1. The catalytic

124 constants were obtained using GraphPad Prism 5 software.

Figure S8. Determination of kinetic parameters for recombinant glycosyltransferase MS1, and its mutants on mogroside IIE. Related to Table 1.

128

Figure S9. HPLC analysis of MS1 WT and mutant M7 enzymatic reaction products

using mogroside IIE as substrate. Related to Figure 5.

Figure S10. HPLC analysis of MS1 WT and mutant M7 enzymatic reaction products

Figure S11. HPLC analysis of MS1 WT and mutant M7 enzymatic reaction products

using mogroside IIIE as substrate. Related to Figure 5.

Figure S12. HPLC analysis of MS1 WT and mutant M7 enzymatic reaction products

Figure S13. HPLC analysis of MS1 WT and mutant M7 enzymatic reaction products

using mogroside IVE as substrate. Related to Figure 5.

Figure S14. HPLC analysis of MS1 WT and mutant M7 enzymatic reaction products
using mogroside Sia I as substrate. Related to Figure 5.

146

147 Figure S15. HPLC analysis of MS1 WT and mutant M7 enzymatic reaction products

148 using mogroside V as substrate. Related to Figure 5.

Figure S16. Conformation maps of M7-IIE and WT-IIE complexes during the 3*50 ns MD simulations. Related to Figure 6. According to reaction mechanism, a catalytic conformation, which supports catalysis, occurs when the distance between the O₆ atom of C24-sugar and the N₂₂ nitrogen of the catalytic residue His22 is less than 3.6 Å and the angle of Ho₆-O₆-N₂₂ is larger than 135°

Figure S17. Optimization of reaction temperature, pH and divalent metal ions of MS1
and MS2. Related to Figure 7. (a) Relative activity of MS1 and MS2 at various
temperatures (25–60°C) at pH 8.0. (b) Relative activity of MS1 and MS2 at different
pH conditions (pH 5.0–10.0). (c) Relative activity of MS1 and MS2 with divalent metal
ions.

Figure S18. 1H NMR spectrum of VI in Dimethyl sulfoxide-d6 (600 MHz). Related 163 to Figure 5. Glycosides VI was was purified by an Agilent 1260 preparative HPLC system 164 with semi-preparative C18 reverse-phase column (21.2×250 mm, 5 µm particles, Welch, 165 166 Shanghai, China). The fractions with the same mogroside glucoside were collected and 167 concentrated on rotary evaporator. The purified product was dissolved in deuterated methanol, after vacuum freeze drying. 1D NMR and 2D NMR spectroscopies of the product, 168 including ¹H NMR, ¹³C NMR, correlation spectroscopy (COSY), total correlation 169 spectroscopy (TOCSY), heteronuclear single quantum coherence (HSQC), and heteronuclear 170 multiple bond correlation (HMBC), were recorded on an Advance DMX-600 NMR 171 spectrometer (Bruker, Karlsruhe, Germany), to identify the chemical structure of the 172 173 compound.

175 Figure S19. ¹³C NMR spectrum of VI in Dimethyl sulfoxide-d6 (600 MHz). Related

to Figure 5.

178 Figure S20. HMBC spectrum of VI in Dimethyl sulfoxide-d6 (600 MHz). Related to

179 Figure 5.

180

181 Figure S21. HSQC spectrum of VI in Dimethyl sulfoxide-d6 (600 MHz). Related to

182 Figure 5.

184 Figure S22. COSY spectrum of VI in Dimethyl sulfoxide-d6 (600 MHz). Related to

185 Figure 5.

Figure S23. TOCSY spectrum of **VI** in Dimethyl sulfoxide-d6 (600 MHz). Related to

188 Figure 5.

>MG1
GGATCCATGGAAAAGGGTGACACTCACATCTTGGTTTTCCCATTCCCAGCTCAAGGTCACATTAACCCATTGTTGCAATTGTCTAAGCAC
TTGATCGCTAAGGGTATTAAGGTTTCTTTGGTCACTACCTTGCACGTCTCTAACAGAATGCAATTGCAAGGTGCTTACTCTAACTCTGTT
AAGATCGAAGTCATTTCTGACGGTTCTGAAGACAGATTGGAAACTGACACCTTGAGACAATACTTGGACAGATTCAGACAAAAGATGACC
AAGAACTTGGAAGACTTCTTGCAAAAGGCTATGGTTTCTTCTAACCCACCAAAGTTCATCATCTACGACTCTACTATGCCATGGGTTTTG
GAAGTCGCTAAGGAATTCGGTTTGGACAGAGCTCCATTCTACACCCAATCTTGTGCTTTGAACTCTATCAACTACCACGTTTTGCACGGT
CAATTGAAGTTGCCACCAGAAACTCCAACCATTTCTTTGCCATCTATGCCATTGTTAAGACCATCTGACTTGCCAGCTTACGACTTCGAC
CCAGCTTCTACTGACACCATCATTGACTTGTTGACTTCTCAATACTCTAACATCCAAGACGCTAACTTGTTGTTCTGTAACACTTTCGAC
AAGTTGGAAGGTGAAATCATTCAATGGATGGAAACCTTGGGTAGACCAGTTAAGACTGTCGGTCCAACCGTTCCATCTGCTTACTTGGAC
AAGAGAGTCGAAAACGACAAGCACTACGGTTTGTCTTGTTCAAGCCAAACGAAGACGTTTGTTT
GGTTCTGTTTTGTACGTCTCTTACGGTTCTTTGGTCGAAATGGGTGAAGAACAATTGAAGGAATTGGCTTTGGGTATTAAGGAAACTGGT
AAATTCTTCTTGTGGGTTGTCAGAGACACCGAAGCTGAAAAGTTGCCACCAAACTTCGTTGAATCTGTCGCTGAAAAGGGTTTGGTTGTC
TCTTGGTGTTCTCAATTGGAAGTTTTGGCTCACCCATCTGTCGGTTGTTTCTTCACTCAC
TGTTTGGGTGTTCCAGTTGTCGCTTTCCCACAATGGGCTGACCAAGTCACTAACGCTAAGTTCTTGGAAGACGTTTGGAAGGTCGGTAAA
AGAGTTAAGAGAAACGAACAAAGATTGGCTTCTAAGGAAGAAGTTAGATCTTGTATCTGGGAAGTCATGGAAGGTGAAAGAGCTTCTGAA
TTCAAGTCTAACTCTATGGAATGGAAGAAGTGGGCTAAGGAAGCTGTTGACGAAGGTGGTTCTTCTGACAAGAACATTGAAGAATTCGTC
GCTATGTTGAAGCAAACCtaaCTCGAG
> MS1
GGATCCATGGACGCTGCTCAACAAGGTGACACTACCACTATTTTGATGTTGCCATGGTTGGGTTACGGTCACTTGTCTGCTTTCTTGGAA
TTGGCTAAGTCTTTGTCTAGAAGAAACTTCCACATCTACTTCTGTTCTACCTCGTTAACTTGGACGCTATTAAGCCAAAGTTGCCATCT
TCTTTCTCTGACTCTATCCAATTCGTCGAATTGCACTTGCCATCTTCTCCAGAATTGCCACCACCACCACCACCACCACGGTTTGCCA
CCAACCTTGATGCCAGCTTTGCACCAAGCTTTCTCTATGGCTGCTCAACACTTCGAATCTATCT
ATCTACGACTCTTTGCAACCATGGGCTCCAAGAGTTGCTTCTTTTGAAGATCCCAGCTATTAACTTCAACACCACTGGTGTCTTCGTT
ATCTCTCAAGGTTTGCACCCAATTCACTACCCACACTCTAAGTTCCCATTCTCTGAATTCGTCTTGCACAACCACTGGAAGGCTATGTAC
TCTACCGCTGACGGTGCTTCTACCGAAAGAACTAGAAAGAGAGGTGAAGCTTTCTTGTACTGTTTGCACGCTTCTTGTTCTGTTATCTTG
ATTAACTCTTTCAGAGAATTGGAAGGTAAATACATGGACTACTTGTCTGTC
TACGAACCAAACCAAGACGGTGAAGACGAAGGTTACTCTTCTATTAAGAACTGGTTGGACAAGAAGGAACCATCTTCTACTGTCTTCGTT
TCTTTCGGTTCTGAATACTTCCCATCTAAGGAAGAAATGGAAGAAATTGCTCACGGTTTGGAAGCTTCTGAAGTTAACTTCATCTGGGTT
${\tt GTCAGATTCCCACAAGGTGACAACACCTCTGGTATTGAAGACGCTTTGCCAAAGGGTTTCTTGGAAAGAGCTGGTGAAAGAGGTATGGTTTGGAAAGAGGTATGGTTTGGAAAGAGGTGGT$
GTCAAGGGTTGGGCTCCACAAGCTAAGATCTTGAAGCACTGGTCTACTGGTGGTTTCGTCTCTCACTGTGGTTGGAACTCTGTTATGGAA
TCTATGATGTTCGGTGTCCCAATCATTGGTGTCCCAATGCACGTTGACCAACCA
GTTGAAGCTAAGAGAGACCCAGACGGTAAAATCCAAAGAGACGAAGTTGCTAAGTTGATTAAGGAAGTTGTCGTTGAAAAAGACTAGAGAA
GACGTCAGAAAAGGACGCTAGAGAAATGTCTGAAAATCTTGAGATCTAAGGGTGAAGAAAAGTTCGACGAAAATGGTTGCTGAAAATCTCTTTG
TTGTTGAAGATTtaaCTCGAG

- 190 Figure S24. The gene sequences of MG1 and MS1, which were synthesized by
- 191 GenScript (Nanjing, China) with codon optimization according to *S. cerevisiae*. Related
- to Figures 1 and 2.