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Supplementary Methods 
 
Subjects 
The CNP sample was recruited from the greater Los Angeles area. All participants in the studied 
sample completed a battery of seven paradigms employed in the consortium (i.e. resting state, 
risk taking, working memory, episodic memory encoding, episodic memory retrieval, stop signal, 
task switching). Diagnoses for the three disorders in the sample were based on the Structured 
Clinical Interview for DSM-IV 1 and the Adult ADHD Interview 2. Any patients who met criteria for 
more than one diagnosis were excluded. For patients with schizophrenia and bipolar disorders, 
the positive and negative symptoms were assessed by the Scale for the Assessment of Positive 
Symptoms (SAPS 3) and the Scale for the Assessment of Negative Symptoms (SANS 3), respectively. 
Verbal IQ was assessed by the vocabulary subtest of the Wechsler Adult Intelligence Scale (WAIS 
4), and performance IQ was quantified by the matrix reasoning subtest of WAIS. The overall IQ 
scores were calculated as the sum of the scaled verbal and performance IQ scores. Healthy 
subjects were excluded if they had a life-time diagnosis of a major Axis-I disorder, substance abuse 
or significant medical illness. See Poldrack et al. 5 for a detailed sample description of this public 
dataset. 
 
Data acquisition 
The imputed HCP genetic data were downloaded from 
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001364.v1.p1. 
Briefly, DNAs were extracted from the blood samples for each subject, and genotyping was based 
on the Illumina Infinium Multi-Ethnic Genotyping Array (MEGA). The genetic imputation was 
performed using IMPUTE2 6 based on the 1000 Genomes released v.5 phase 3 reference panel 
(ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502). We performed PRS calculations based 
on these imputed data. 
 
The preprocessed HCP imaging data were downloaded from https://db.humanconnectome.org/. 
Briefly, data were collected from a customized 3T Siemens Connectom scanner equipped with a 
32-channel head coil. The resting-state paradigm was scanned with four sessions spanned across 
two consecutive days, and the other paradigms were scanned with two sessions on a single day. 
To balance the amount of data across paradigms and to avoid overrepresentation of resting state 
in the following cross-paradigm computations, we only used the resting-state data from the two 
sessions acquired on the first day. The following parameters were used for fMRI data acquisition: 
TR = 720 ms, TE = 33.1 ms, FA = 52°, FOV = 208 × 180 mm2, 2 mm slice thickness, 72 slices, multi-
band factor = 8. Of note, unlike the commonly applied phase encoding directions along the 
“anterior-posterior” axis, the HCP fMRI data were acquired using left-right and right-left phase 
encoding directions to accelerate scan time and to minimize image distortion 7. The CNP data were 
downloaded from https://openneuro.org/datasets/ds000030. Data were collected from 3T 
Siemens Trio scanners located at UCLA using the same GRE-EPI sequence: TR = 2s, TE = 30 ms, 
90 degree flip angle, 34 4-mm slices, 192 mm FOV. 
 
Imaging Processing 
The HCP imaging data were preprocessed based on the standard HCP pipeline 8, including a total 

https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001364.v1.p1
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502)
https://db.humanconnectome.org/
https://openneuro.org/datasets/ds000030
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of five major steps (PreFreeSurfer, FreeSurfer, PostFreeSurfer, fMRIVolume, fMRISurface). In brief, 
images were corrected for gradient nonlinearity induced distortion, head motion, and phase-
encoding related distortion, registered to individuals’ T1 weighted images, and normalized to the 
MNI space. The CNP data were preprocessed using the standard pipeline implemented in the 
Statistical Parametric Mapping software (SPM12, 
https://www.fil.ion.ucl.ac.uk/spm/software/spm12/), including slice timing correction, head 
motion realignment, functional-structural image coregistration, MNI space normalization, and 
spatial smoothing. 
 
The preprocessed data were further scrutinized for excessive head motion. All subjects in the HCP 
sample had an average frame-wise displacement (FD) below 0.4mm. Therefore, no extra subjects 
were excluded. The mean time series for each of the 270 nodes in the expanded Power brain atlas 
9-11 were extracted from the preprocessed images. The extracted time series were further 
corrected for task-related coactivations (for task data), white matter and cerebrospinal fluid 
signals, 24 head motion parameters (i.e. the 6 rigid-body parameters generated from the 
realignment step, their first derivatives, and the squares of these 12 parameters), and FD. The 
corrected time series were then high-pass filtered at 0.008 Hz to account for scan noise. 
Subsequently, a 270 × 270 pairwise connectivity matrix was generated using Pearson correlations 
for each subject during each paradigm and scan session. Following the previous suggestions for 
the HCP data 7, we averaged the derived connectivity matrices across the two scan sessions for 
each paradigm to boost signals, generating eight paradigm-dependent connectivity matrices for 
each subject in the HCP data.  
 
All paradigm-specific connectivity matrices for the same subjects were then entered into a 
principal component analysis (PCA) using singular value decomposition. Essentially, the PCA 
method decomposes the original connectivity matrices into a set of principal components (PCs) 
that are orthogonal to each other. Each generated component is a linear combination of original 
matrices, and the components are organized in the way such that the first PC accounts for the 
largest variance in the original data, and the second PC accounts for the second largest variance 
in the original data, and so on. In our data, the PCA yielded a total of eight PCs, where the first PC 
scores represent the shared connectivity patterns that explain the most variance across all 
paradigms. We extracted these first PC scores for each subject for further statistical analysis. 
 
The network-based statistic (NBS) analysis was used to associate whole-brain connectivity with 
PRSs. For details of this established method, please see previous publications 12, 13. In brief, NBS is 
an approach to effectively control for cluster-level family-wise error (FWE) in the connectomic 
analysis, which offers a larger power than mass-univariate tests on independent connections. 
Specifically, this method used a non-parametric permutation-based approach to control for type 
I error for the identified connectivity clusters. First, the original cluster was identified using an 
initial threshold of P < 0.001. The data were then permuted for 10,000 times, where during each 
permutation the same threshold (P < 0.001) was applied and the size (T values) of the identified 
cluster was recalculated. This generated a null distribution for the identified cluster. The corrected 
P value was then determined by the proportion of the derived cluster sizes in the permutation 
distribution that were larger than the observed effect. A P value below 0.05 indicated that the 

https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
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family-wise false positive rate of the identified cluster was smaller than 5%. 
 
 
Supplementary Results 
 
NBS analysis on each of the eight paradigms in the HCP data 
To assess whether single-paradigm fMRI data would be sufficient to detect the observed effect, 
we further performed the NBS analysis on each of the eight paradigms in the HCP data. No 
significant effects (PFWE > 0.05) were found for any of the eight paradigms alone, suggesting that 
single paradigm may not have sufficient power to detect the observed PRS-connectome 
relationships. 
 
Supplementary analysis using a different temporal filter 
In this study, we used a high-pass filter (cutoff 0.008Hz) for data processing due to the following 
reasons: 1) While band-pass filtering is a common practice for resting-state data, high-pass 
filtering is normally used for task-based data in order to maintain high-frequency task-related 
effects in signals. These effects primarily include the trial-to-trial variability, a critical resource 
associated with neurophysiology and human behaviors 14, 15; and 2) Even for resting-state data, 
the use of band-pass filter to remove high-frequency signals is under scrutiny in recent years. 
Several studies have shown that high-frequency signals may contain neural information as well 
and may meaningfully contribute to functional connectivity 16-19. As task-based data were the 
major focus in this study, we used high-pass filtering to maximally maintain useful neural signals. 
Here, in order to test the robustness of our results across different frequency ranges, we further 
reprocessed the data using band-pass filtering (0.008-0.1Hz). We found that the identified 
network in data derived from band-pass filtering was also significantly correlated with PRSs (R = 
-0.35, P = 2e-16), with the effect size very similar to that observed using high-pass filtering. This 
analysis suggests that the observed connectomic associations are not driven by a specific filtering 
approach. 
 
Supplementary analysis using a reverse strategy 
To further investigate whether connectivity in other brain networks would relate to both cognitive 
ability and polygenic risk, we used a reverse strategy as the one we used in the paper. That is, we 
first used NBS analysis to identify connectomic associations with IQ scores in the CNP sample, and 
then examined whether the identified networks would be correlated with PRSs in the HCP sample. 
The NBS analysis used the same procedure and parameters as reported in the paper, controlling 
for age, sex, head motion, and diagnostic group. This analysis revealed two large-scale networks 
in the CNP sample, with one positively correlated with IQ and the other negatively correlated with 
IQ (PFWE < 0.05, see Fig S3). However, the connectivity of these two networks were not correlated 
with PRSs in the HCP sample (P > 0.42). This analysis suggested that while cognitive deficits in 
patients are associated with more widely distributed networks in the brain, only the network 
reported in the manuscript is related to both polygenic risk and cognitive functioning in patients 
with schizophrenia.  
  



5 
 

Supplementary Tables 
 
Table S1. Demographic and clinical data for the CNP sample. 
 

 SZ (n = 44) BD (n = 43) ADHD (n = 34) HC (n = 77) P value 
Age (years) 35.80 ± 8.94 35.21 ± 8.87 31.09 ± 9.85 30.70 ± 8.54 0.004 

(overall) 
0.02 (SZ vs 
HC) 

Sex (M/F) 34/10 25/18 18/16 43/34 0.08 
(overall) 

IQ – Performance 10.05 ± 2.87 13.16 ± 3.05 13.53 ± 2.63 13.39 ± 2.86 <0.001 
(overall) 
<0.001 (SZ 
vs HC) 

IQ – Verbal 7.57 ± 2.22 10.28 ± 2.67 10.62 ± 2.52 10.65 ± 2.25 <0.001 
(overall) 
<0.001 (SZ 
vs HC) 

IQ – Overall 17.61 ± 4.14 23.44 ± 4.86 24.15 ± 4.29 24.04 ± 4.47 <0.001 
(overall) 
<0.001 (SZ 
vs HC) 

SAPS – Hallucinations 8.27 ± 7.58 0.15 ± 0.80 - - <0.001 (SZ 
vs BD) 

SAPS – Delusions 12.45 ± 10.26 2.10 ± 3.32 - - <0.001 (SZ 
vs BD) 

SAPS – Bizarre behavior 2.82 ± 3.87 1.55 ± 2.34 - - 0.08 (SZ vs 
BD) 

SAPS – Thought disorder 7.82 ± 8.26 4.75 ± 5.78 - - 0.05 (SZ vs 
BD) 

SANS – Affective blunting 5.73 ± 7.04 2.43 ± 4.98 - - 0.02 (SZ vs 
BD) 

SANS – Alogia 3.16 ± 3.67 0.53 ± 1.30 - - <0.001 (SZ 
vs BD) 

SANS – Avolition 10.48 ± 6.04 7.98 ± 2.25 - - 0.05 (SZ vs 
BD) 

SANS – Anhedonia 10.52 ± 6.29 7.48 ± 5.57 - - 0.02 (SZ vs 
BD) 

SANS – Attention 5.76 ± 3.55 2.85 ± 2.77 - - <0.001 (SZ 
vs BD) 
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Table S2. Nodes and edges in the identified PRS-associated network. The vast majority of 
nodes were mapped to the visual system (in red), default-mode system (in blue), and 
frontoparietal system (in yellow). 
 

 Edges 
Edge No. Node 1 (belonged system) Node 2 (belonged system) 
1 Occipital_Inf_L (visual) Temporal_Inf_L (default-mode) 
2 Temporal_Inf_L (default-mode) Supp_Motor_Area_L (cingulo-opercular) 
3 Temporal_Mid_R (default-mode) Frontal_Med_Orb_R (default-mode) 
4 Temporal_Sup_R (auditory) Precuneus_L (default-mode) 
5 SupraMarginal_L (auditory) Precuneus_L (default-mode) 
6 Frontal_Med_Orb_R (default-mode) Frontal_Mid_L (default-mode) 
7 Frontal_Med_Orb_R (default-mode) Frontal_Sup_Medial_L (default-mode) 
8 Precentral_L (sensorimotor) Temporal_Mid_R (default-mode) 
9 Frontal_Sup_Medial_L (default-mode) Temporal_Mid_R (default-mode) 
10 Paracentral_Lobule_L (sensorimotor) Temporal_Pole_Mid_R (default-mode) 
11 Frontal_Sup_Medial_L (default-mode) Temporal_Pole_Mid_R (default-mode) 
12 Temporal_Mid_R (default-mode) Lingual_L (visual) 
13 Temporal_Mid_R (default-mode) Lingual_R (visual) 
14 Temporal_Mid_R (default-mode) Calcarine_R (visual) 
15 Temporal_Mid_R (default-mode) Calcarine_R (visaul) 
16 Temporal_Mid_R (default-mode) Calcarine_L (visual) 
17 Precuneus_L (default-mode) Calcarine_L (visual) 
18 Temporal_Mid_R (default-mode) Calcarine_L (visual) 
19 Lingual_R (visual) Occipital_Mid_L (visual) 
20 Temporal_Mid_R (default-mode) Fusiform_R (visual) 
21 Precuneus_L (default-mode) Calcarine_L (visual) 
22 Temporal_Mid_R (default-mode) Calcarine_L (visual) 
23 Temporal_Inf_L (default-mode) Occipital_Inf_L (visual) 
24 Lingual_R (visual) Occipital_Sup_R (visual) 
25 Temporal_Mid_R (default-mode) Fusiform_R (visual) 
26 Frontal_Sup_Orb_R (frontoparietal) Occipital_Mid_L (visual) 
27 Temporal_Mid_R (default-mode) Occipital_Mid_L (visual) 
28 Temporal_Mid_R (default-mode) Occipital_Mid_L (visual) 
29 Lingual_R (visual) Occipital_Mid_L (visual) 
30 Temporal_Inf_L (default-mode) Occipital_Mid_R (visual) 
31 Lingual_R (visual) Occipital_Mid_R (visual) 
32 Temporal_Inf_L (default-mode) Calcarine_R (visual) 
33 Temporal_Mid_R (default-mode) Calcarine_R (visual) 
34 Temporal_Mid_R (default-mode) Calcarine_R (visual) 
35 Temporal_Mid_R (default-mode) Occipital_Inf_L (visual) 
36 Temporal_Mid_R (default-mode) Occipital_Mid_R (visual) 
37 Temporal_Inf_R (default-mode) Frontal_Inf_Tri_R (frontoparietal) 
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38 Temporal_Mid_R (default-mode) Frontal_Inf_Tri_R (frontoparietal) 
39 Lingual (visual) Frontal_Inf_Tri_R (frontoparietal) 
40 Frontal_Sup_R (default-mode) Frontal_Inf_Tri_L (frontoparietal) 
41 Temporal_Mid_R (default-mode) Frontal_Inf_Tri_L (frontoparietal) 
42 Precuneus_L (default-mode) Parietal_Inf_L (frontoparietal) 
43 Temporal_Mid_R (default-mode) Temporal_Inf_R (frontoparietal) 
44 Temporal_Mid_R (default-mode) Temporal_Inf_R (frontoparietal) 
45 Temporal_Mid_R (default-mode) Precentral_R (frontoparietal) 
46 Temporal_Mid_R (default-mode) Precentral_L (frontoparietal) 
47 Precuneus_L (default-mode) Precentral_L (frontoparietal) 
48 Temporal_Mid_R (default-mode) Precentral_L (frontoparietal) 
49 Temporal_Mid_R (default-mode) Parietal_Inf_L (frontoparietal) 
50 Lingual_R (visual) Parietal_Inf_R (frontoparietal) 
51 Temporal_Mid_R (default-mode) Frontal_Sup_Medial_L (frontoparietal) 
52 Frontal_Med_Orb_R (default-mode) Frontal_Sup_Medial_L (frontoparietal) 
53 Precuneus_L (default-mode) Frontal_Sup_Medial_L (frontoparietal) 
54 Temporal_Mid_R (default-mode) Frontal_Sup_Medial_L (frontoparietal) 
55 Temporal_Pole_Mid_R (default-mode) Frontal_Sup_Medial_L (frontoparietal) 
56 Precuneus_L (default-mode) Insula_L (salience) 
57 Precuneus_L (default-mode) Supp_Motor_Area_L (salience) 
58 Temporal_Mid_R (default-mode) Supp_Motor_Area_L (salience) 
59 Precuneus_L (default-mode) Frontal_Mid_L (salience) 
60 Temporal_Mid_R (default-mode) Cingulum_Mid_R (salience) 
61 Precuneus_L (default-mode) Frontal_Mid_R (salience) 
62 Precuneus_L (default-mode) Cingulum_Mid_R (salience) 
63 Temporal_Mid_R (default-mode) Putamen_R (subcortex) 
64 Temporal_Mid_R (default-mode) Temporal_Mid_L (attention) 
65 Temporal_Mid_R (default-mode) Temporal_Sup_R (attention) 
66 Lingual_R (visual) Occipital_Sup_R (attention) 
67 Temporal_Inf_L (default-mode) Occipital_Mid_L (attention) 
68 Temporal_Mid_R (default-mode) Temporal_Inf_L (attention) 
69 Frontal_Inf_Tri_R (frontoparietal) Accumben_R (subcortex) 
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Supplementary Figures 
 
Fig S1. Percent of variance explained by the first principal components (PCs) in the cross-
paradigm analyses. For all groups in both samples, the first PCs explained 64% - 70% of all 
variance across paradigms, supporting a state-independent “trait” architecture of functional 
connectome. No significant between-group differences were shown for the percentages, 
suggesting that the observed group differences are not driven by differences in the amount of 
extracted variance. 
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Fig S2. Robustness of the observed connectomic finding across multiple GWAS P-value 
thresholds. The associations remained significant for all computed thresholds (from 5E-7 to 5E-
2). 
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Fig S3. Networks associated with IQ scores in the CNP sample as revealed by the NBS 
analysis (left panel: positive associations; right panel: negative associations). Neither of these 
networks were related to PRSs in the HCP sample. 
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