

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

# **BMJ Open**

## Purpose in life (Ikigai) and employment status in relation to cardiovascular mortality

| Journal:                         | BMJ Open                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Manuscript ID                    | bmjopen-2021-059725                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Article Type:                    | Original research                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Date Submitted by the<br>Author: | 09-Dec-2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Complete List of Authors:        | Miyazaki, Junji; Osaka University, Public Health, Department of Social<br>Medicine, Graduate School of Medicine<br>Shirai, Kokoro; Osaka University, Public Health, Department of Social<br>Medicine, Graduate School of Medicine<br>Kimura, Takashi; Hokkaido University, Department of Public Health<br>Ikehara, Satoyo; Osaka University, Public Health, Department of Social<br>Medicine, Graduate School of Medicine<br>Tamakoshi, Akiko; Hokkaido University, Department of Public Health<br>Iso, Hiroyasu; Osaka University, Public Health, Department of Social<br>Medicine, Graduate School of Medicine |
| Keywords:                        | EPIDEMIOLOGY, OCCUPATIONAL & INDUSTRIAL MEDICINE, SOCIAL<br>MEDICINE, STROKE MEDICINE, Coronary heart disease < CARDIOLOGY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |





I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

## TITLE

Purpose in life (Ikigai) and employment status in relation to cardiovascular mortality

## AUTHOR NAMES AND AFFILIATIONS

Junji Miyazaki<sup>1</sup>, Kokoro Shirai<sup>1</sup>, Takashi Kimura<sup>2</sup>, Satoyo Ikehara<sup>1</sup>, Akiko Tamakoshi<sup>2</sup>, Hiroyasu Iso<sup>\*1</sup>

<sup>1</sup> Public Health, Department of Social Medicine, Osaka University Graduate School of Medicine, 2-2

Yamadaoka, Suita, Osaka, Japan

<sup>2</sup> Department of Public Health, Faculty of Medicine, Hokkaido University, Kita 8, Nishi 5, Kita-ku,

Sapporo, Japan

## **CORRESPONDING AUTHOR**

\* Correspondence to Hiroyasu Iso Public Health, Department of Social Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565–0871, Japan. E-mail iso@pbhel.med.osaka-u.ac.jp

## **KEYWORDS**

purpose in life (*Ikigai*), employment status, cardiovascular disease, stroke, coronary heart disease, mortality, prospective study

## NUMBER OF TABLES

One figure and four tables

## ORCID

ID: 0000-0003-3634-6401

## WORD COUNT

2,675 words (without references)

tor peer terien only

### Abstract

Objectives: To investigate if having a purpose in life (*Ikigai*) is associated with cardiovascular mortality and assess whether the association varies by employment status.

Design: Prospective cohort study.

Setting: The Japan Collaborative Cohort Study (JACC Study, 1988-2009).

Participants: Cohort analyses included 29 517 men and 41 984 women (40-79 years at baseline 1988-90) from the JACC Study, free of cardiovascular disease and cancer at baseline.

Primary outcome measures: The association between purpose in life (*Ikigai*) and the risk of mortality from CVD by employment status was examined by hazard ratios (HRs) using a Cox proportional hazards model, adjusting cardiovascular risk factors.

Results: During the median 19.1-year follow-up, there were 4 680 deaths (men 2 393 and women 2 287) from CVD, including 2 053 (1 047 and 1 006) from total stroke, 716 (398 and 318) from ischemic stroke, 739 (344 and 395) from hemorrhagic stroke, 975 (550 and 425) from coronary heart disease (CHD), and 792 (361 and 431) from heart failure. Compared with unemployed people with low *Ikigai*, those with moderate and high *Ikigai* had a lower risk of CVD mortality. Multivariable HRs (95% CIs) were 0.74 (0.57 to 0.97), 0.69 (0.52 to 0.93); *P* for trend = 0.044, respectively in men, and 0.78 (0.64 to 0.95), 0.77 (0.61 to 0.97); *P* for trend = 0.039 in women. Such an inverse association was more evident for men than women and remained even after excluding early deaths that occurred within five years of the baseline survey. The inverse association with *Ikigai* was observed to remain statistically significant for total stroke and CHD after adjustment for CVD risk factors. Conclusion: Having *Ikigai* was associated with a lower risk of CVD mortality for all study participants, especially unemployed men and women.

### 

## **Article Summary**

### Strengths and limitations of this study

The strength of this study is that it is a population-based cohort study with a large sample size and a long followup period.

The association between the level of purpose in life (*Ikigai*) and the risk of cardiovascular mortality was assessed by stratification of employment status.

The limitation of this study is that psychological factors such as "the purpose of life (*Ikigai*)" were assessed using a self-administered single-item questionnaire.

An analysis that censored people who died or moved during the first five years of follow-up and examined possible adverse causal relationships from CVD development did not change the conclusions of this study.

### Introduction

Recently, there has been growing evidence that positive psychological factors, such as life satisfaction, happiness, life enjoyment, optimism, and purpose in life have been associated with favorable health outcomes, including reduced risk of cardiovascular disease, the activities of daily living, cognitive impairment, and all-cause mortality <sup>1-6</sup>. A meta-analysis of 17 studies (mainly from the United States, Canada, and Europe) reported that psychological factors, such as meaning in life, purpose of life, life satisfaction, positive affect, and self-esteem, were considered essential components of well-being <sup>7</sup>. In another meta-analysis, high life purpose was associated with a 17% lower risk of all-cause mortality and cardiovascular events such as myocardial infarction, cardiac death, and stroke, even after adjusting for sociodemographic, health, and functional status <sup>8</sup>.

"Ikigai" is a Japanese concept similar to "purpose in life," "meaning of life," "life worth living," and "reason to live," which can be translated as "that which most makes one's life seem worth living" 9. In Japanese, *Ikigai* is defined as a comprehensive concept related to life satisfaction, self-esteem, self-efficacy, morale, and cognitive evaluation of the meaning of one's life<sup>10</sup>. *Ikigai* involves more than enjoyment, pleasure, or happiness and provides significance for one's value in life, including subjective motivation for a living <sup>11</sup>. Thus, *Ikigai* is considered an essential positive psychological factor rooted in Japanese culture. In a previous prospective cohort study over 7-years' follow-up on 43 391 Japanese adults, the presence of a sense of Ikigai was associated with decreased risk of all-cause and cardiovascular mortality among middle-aged and elderly Japanese men and women<sup>12</sup>. Unemployment has been shown to affect health adversely<sup>13</sup>. A meta-analysis of 42 cross-sectional and prospective cohort studies providing data on more than 20 million people showed that unemployment was associated with an increased risk of all-cause mortality, with a 63% higher risk for those who experienced unemployment than those who did not <sup>14</sup>. Some studies showed an increased incidence of cardiovascular events such as coronary heart disease (CHD) and stroke associated with unemployment status <sup>15-17</sup>. A study based on a population-wide dataset, consisting of a record linkage between 3 084 137 Belgian individuals aged 25 to 59 years at the 2001 census, has shown that unemployment status was associated with health problems such as cardiovascular, endocrine, and psychiatric disorders <sup>18</sup>. Many studies have suggested that poor health is a direct

### **BMJ** Open

or indirect consequence of unemployment and that this causal relationship is mediated by health behaviors such as tobacco or alcohol consumption <sup>19-22</sup>. Unemployed people were more likely to have higher stress and lower psychological well-being, which may also lead to a decline in physical health <sup>23</sup>.

A panel study of 6 739 US adults (mean age 68.8 years) over four years showed that a higher purpose in life is associated with lower mortality from stroke, adjusted for age, gender, race/ethnicity, and socioeconomic status<sup>24</sup>. In a study of 230 retired Japanese men and 98 women (mean age 65.5 years) examining the relationship between work and *Ikigai*, men who were actively engaged in work were associated with greater well-being than inactive <sup>11</sup>. However, no study has focused on the impact of *Ikigai* and mortality risk by employment status to our knowledge. We hypothesized that *Ikigai* has a positive impact on cardiovascular health and examined effect modification of employment status considering the effect of having *Ikigai* is prominent even under an unemployed situation. We aimed to assess the impact of *Ikigai* and employment status on cardiovascular mortality in Japanese, using 19.1 years follow-up of a large-scale prospective cohort study.

ez.e

### Methods

### **Study population**

The Japan Collaborative Cohort Study for the Evaluation of Cancer Risks (JACC study) was enrolled between1988 and 1990 in 45 areas in Japan. Participants were required to conduct self-administered questionnaires about their lifestyle and previous medical history concerning cardiovascular disease (CVD) and cancer at baseline. The details of the study procedure are described elsewhere <sup>25</sup>. Briefly, a total of 110 585 subjects (46 395 men and 64 190 women) aged 40 to 79 years old participated in the JACC study at baseline survey. Among the participants, 7 692 were excluded due to a past history of CVD or cancer at baseline. An additionally, we excluded 31 392 excluded for 25 730 participants in areas with no questions about *Ikigai* and 5 662 participants who lacked information about *Ikigai*. Finally, 71 501 subjects (29 517 men and 41 984 women) were eligible for inclusion in the analyses (figure 1). Prior to the completion of the questionnaire, the participants were provided informed consent to be involved in this epidemiological study. Individual informed consent was obtained from each participant in 36 out of the 45 study areas (written consent in 35 areas and oral consent in 1 area). In the remaining nine areas, group consent was obtained from each community representative. Ethical approval for the present study was given by Osaka University and Hokkaido University.

### Mortality surveillance

The date and cause of death for participants were determined by reviewing all death certificates from each area. According to the International Classification of Diseases, 10th revision, cause-specific mortality was defined within total CVD mortality (I01 to I99). From baseline until December 31, 2009, a total of 15 801 participants were censored because of death, and 3986 were censored because they moved out of their original residential area; follow-up was terminated at the end of 1999 (four areas), 2003 (four areas), and 2008 (two areas). The median follow-up period was 19.1 years (interquartile range, 10.4 - 20.7).

### **Baseline Measurement**

At baseline, we used a self-administered questionnaire to obtain information on age, body mass index (BMI) (calculated by dividing body weight in kilograms by height squared in meters), smoking status, alcohol consumption, sleep duration, walking time per day, sports activity time per week, education level, marital status, employment status, and psychological conditions such as *Ikigai*, perceived mental stress, sense of life enjoyment, and medical history of hypertension and diabetes mellitus. *Ikigai* was assessed using the question "How much '*Ikigai*' do you feel in your daily life?" and responses were assessed using a four-point Likert scale: "low," "moderate," "high," and "very high." We collapsed "very high" into "high" for the analyses, as did previous studies <sup>26 27</sup>, and the three categories for perceived levels of *Ikigai* were "low," "moderate," and "high." Other psychological conditions were evaluated by single-item questions using four points Likert scale.

### Statistical analysis

### **BMJ** Open

We compared sex-specific and age-adjusted mean or prevalence of baseline variables of risk factors for CVD according to the perceived level of *Ikigai* among participants using analysis of covariance or chi-square test. The *P*-value of the covariate for trends across the perceived level of *Ikigai* was calculated using the mean value of each variable and the median value among the categories. For each participant, we calculated the person-years of follow-up from baseline in 1988 and 1990 to the first endpoint of death, moving from the community, or the end of 2009. Mortality rates for CVD were estimated according to the perceived levels of *Ikigai*.

In the analysis, we calculated the association between *Ikigai* and risk of mortality from CVD by sex, with hazard ratios (HRs) and 95% confidence intervals (CIs), using the Cox proportional hazards model. The analysis was performed adjusted for age and then for other potential confounders: BMI (< 18.5, 18.5 to <25.0, 25.0 to 30.0, 30.0 to 35.0, and  $\geq$ 35.0 kg/m<sup>2</sup>), smoking status (never, ex-smoker, and current smoker), alcohol consumption (never, ex-drinker, 1-20 and  $\geq 20.0$  g ethanol/day), sports activity time per week (almost never, 1–2, 3–4 and  $\geq$ 5 h/week), walking time per day (almost never, 0.5, 0.6–0.9, and  $\geq$ 1 h/day), education level (<13, 13–15, 16–18, and  $\geq$ 19 years), marital status (living with a spouse, divorced, bereaved and single), sleep duration per day (<5, 5, 6, 7, 8, 9 and  $\geq$ 10 h/day), perceived mental stress (low, moderate, high, very high), sense of life enjoyment (always, sometimes, moderate, never) and medical history of hypertension and diabetes (yes or no). Missing values for these covariates were treated as additional missing categories, and the model contained these dummy variables. Furthermore, the stratified analysis was performed for six categories of employment status; employed, self-employed, part-time worker, unemployed, homemaker, and other. In addition, we conducted a sensitivity analysis to exclude those who died early and those who moved and were censored in the first five years of follow-up. The following analysis calculated the association between *Ikigai* and risk of mortality from CVD among unemployed persons by type of CVD: total stroke, ischemic stroke, hemorrhagic stroke, CHD, and heart failure.

Probability values for statistical significance were two-tailed, and a *P*-value <0.05 was regarded as statistically significant. The statistical analyses were carried out using SAS version 9.4 (SAS Institute Inc., Cary, NC, USA).

### **Patient and Public Involvement**

Patients and/or the public were not involved in the design, or conduct, or reporting, or dissemination plans of this research.

### Results

During a follow-up of 1 160 648 person-years, the deaths of 4 680 (men and women: 2 393 and 2 287) due to total CVD were documented. Other deaths from major CVD types were: 2 053 (1 047 and 1 006) from total stroke, 716 (398 and 318) from ischemic stroke, 739 (344 and 395) from hemorrhagic stroke, 975 (550 and 425) from CHD, and 792 (361 and 431) from heart failure.

Table 1 shows the mean values or prevalence of cardiovascular risk factors and health behaviors at baseline according to *Ikigai* level. In both men and women, those with high *Ikigai* tended to have a higher level of the following factors: BMI, self-employed, higher education ( $\geq$  16 years), current alcohol consumption, never smoking, living with a spouse, sports activity ( $\geq$ 1-2 h/week), walking time ( $\geq$ 1 h/day), low perceived mental stress and high life enjoyment. Unlike men, women with high *Ikigai* tended to be employed or part-time workers.

Table 2 shows the sex-specific risk of mortality from total CVD according to the level of *Ikigai*, stratified by employment status. Men who had moderate and high *Ikigai* had a lower mortality risk from total CVD than those with low *Ikigai*. Multivariable HRs (95% CIs) were 0.80 (0.68 to 0.93) and 0.74 (0.64 to 0.87); *P* for trend < 0.001, respectively. A similar inverse association was observed among unemployed men. Multivariable HRs (95% CIs) were 0.74 (0.57 to 0.97) and 0.69 (0.52 to 0.93); *P* for trend = 0.044, respectively. Women who had moderate and high *Ikigai* levels tended to have lower mortality risk from total CVD than those with low *Ikigai*. However, tests for trend were not statistically significant: multivariable HRs (95% CI) were 0.87 (0.75 to 1.00) and 0.88 (0.76 to 1.03); *P* for trend = 0.136, respectively. Among unemployed women, those who had moderate and high *Ikigai* had lower mortality risk from total CVD than those who had low *Ikigai*; tests for trend were statistically significant: multivariable HRs (95% CI) were 0.78 (0.64 to 0.95) and 0.77 (0.61 to

### **BMJ** Open

 0.97); P for trend = 0.039, respectively. Table 3 shows the sensitivity analysis in which we censored individuals who died and those who moved during the first five years of follow-up, having already excluded individuals who had an early death. The inverse association was more evident for men than for women and remained even after excluding early deaths that occurred within five years of the baseline survey.

Table 4 shows the risk of mortality from CVD types according to the level of *Ikigai* among unemployed people. Unemployed individuals with high *Ikigai* had lower risk of mortality from total stroke, ischemic and hemorrhagic strokes, CHD, and heart failure than those with low *Ikigai*. After adjusting for CVD risk factors, the inverse association with *Ikigai* remained statistically significant for total stroke and CHD.

### Discussion

Having *Ikigai* was associated with a lower risk of mortality from CVD for all study participants, especially unemployed men and women, in a longitudinal large cohort study. The risk reduction for CVD mortality was observed even after excluding early deaths within five years from the baseline survey. Furthermore, the mortality risk reduction was evident for total stroke and CHD among the unemployed.

The underlying biological mechanisms for the potential preventive effect of *Ikigai* on mortality remained unclear, but some reasons have been addressed. Elevated levels of inflammatory markers such as C-reactive protein and interleukin-6 were associated with an increased risk of mortality <sup>28-30</sup>. A previous study using data from a 10-year panel survey of 985 adults aged 25-74 years residing in the United States showed that people with higher life purpose had lower physiological function scores, calculated by summarizing biomarkers such as resting blood pressure, heart rate variability, low-density lipoprotein cholesterol, glycosylated hemoglobin, plasma C-reactive protein, interleukin-6, urinary measures of epinephrine/norepinephrine and cortisol levels <sup>31</sup>. These may explain how *Ikigai* reduces the risk of mortality in people by lowering the higher stress and inflammatory response.

Two other prospective cohort studies using 9-year follow-up data for 999 persons and 6-year follow-up data for 2 478 persons have demonstrated that the risk reductions by positive psychological factors in all-cause

mortality and stroke incidence were stronger in men than in women <sup>32 33</sup>. Another analysis used JACC study data on 3 004 CVD deaths recorded during the mean 12.5-years follow-up period. It showed that men with higher *lkigai* had a reduced risk of CVD mortality after adjusting CVD risk factors, but not stroke and CHD <sup>34</sup>. In the present study, the inverse association between having *lkigai* and CVD mortality risk was more pronounced in men than in women, as in previous studies. However, with a large study population and a more extended followup period than the previous study, it demonstrated that among the unemployed, those with high *lkigai* had significantly lower mortality risk from CVD, stroke, and CHD regardless of gender. Our findings showed that having *lkigai* can reduce the risk of mortality from stroke and CHD, even among unemployment. A previous study, which followed 297 construction workers for two years and observed changes in their blood pressure, showed that the longer the unemployment, the greater the rise in blood pressure. A previous study may imply a causal link between the increase in blood pressure and the length of unemployment <sup>35</sup>. Positive psychological factors are associated with a lower prevalence of hypertension <sup>36</sup>. Therefore, *lkigai* may have reduced the risk of mortality from stroke by positively affecting blood pressure changes in unemployed people. The better health impacts of having *lkigai* may be apparent, even among the unemployed with much evidence of por health.

The present study has several strengths compared to previous studies. First, a population-based cohort study with a large sample size and a more extended follow-up period allowed us to assess the risk of cardiovascular mortality according to a level of *Ikigai*, stratified by employment status. Second, we adjusted for confounding factors, including lifestyle habits, social and psychological factors, and past medical histories such as hypertension and diabetes mellitus.

There were some limitations to our study. First, psychological factors such as *Ikigai* were evaluated by a self-administered single-item questionnaire. Second, we used mortality as an endpoint, but the onset of CVD could have induced lifestyle changes and *Ikigai*. There could be reverse causality that the occurrence of disease or illness had influenced *Ikigai* at baseline. Therefore, we excluded histories of CVD and cancer and conducted a sensitivity analysis in which individuals who died or moved during the first five years of follow-up were censored and found that the inverse association between *Ikigai* and risk of CVD mortality remained unchanged.

#### **BMJ** Open

 Lastly, although we adjusted for numerous potential confounders, some unmeasured confounders, such as the usage of medical services, may still be present. A previous study using a national panel study of 7 168 US adults showed that having a purpose in life was associated with a higher likelihood of using health care services such as cholesterol tests, colonoscopies, mammogram/X-ray, pap smear, and prostate examinations <sup>37</sup>.

### Conclusion

We found that *Ikigai* was associated with a lower risk of CVD mortality for all participants, particularly unemployed men and women. Having *Ikigai* could reduce the risk of CVD mortality among unemployed persons.

### Acknowledgments

We express our sincere thanks to Drs. Kunio Aoki and Yoshiyuki Ohno, Professors Emeritus of the Nagoya University School of Medicine and former chairpersons of the JACC Study. We are also greatly indebted to Dr. Haruo Sugano, former Director of the Cancer Institute, Tokyo, who contributed greatly to the initiation of the JACC Study; to Dr. Tomoyuki Kitagawa, Director Emeritus of the Cancer Institute of the Japanese Foundation for Cancer Research and former project leader of the Grant-in-Aid for Scientific Research on Priority Area' Cancer'; and to Dr. Kazao Tajima, Aichi Cancer Center, who was the previous project leader of the Grant-in-Aid for Scientific Research on Priority Area of Cancer Epidemiology.

Writing Committee Members for the JACC Study Group Dr. Akiko Tamakoshi (present chairperson of the study group), Hokkaido University Graduate School of Medicine; Drs. Mitsuru Mori and Fumio Sakauchi,
Sapporo Medical University School of Medicine; Dr. Yutaka Motohashi, Akita University School of Medicine;
Dr. Ichiro Tsuji, Tohoku University Graduate School of Medicine; Dr. Yoshikazu Nakamura, Jichi Medical
School; Dr. Hiroyasu Iso, Osaka University School of Medicine; Dr. Haruo Mikami, Chiba Cancer Center; Dr.
Michiko Kurosawa, Juntendo University School of Medicine; Dr. Yoshiharu Hoshiyama, Yokohama Soei
University; Dr. Naohito Tanabe, University of Niigata Prefecture; Dr. Koji Tamakoshi, Nagoya University

Graduate School of Health Science; Dr. Kenji Wakai, Nagoya University Graduate School of Medicine; Dr. Shinkan Tokudome, National Institute of Health and Nutrition; Dr. Koji Suzuki, Fujita Health University School of Health Sciences; Dr. Shuji Hashimoto, Fujita Health University School of Medicine; Dr. Shogo Kikuchi, Aichi Medical University School of Medicine; Dr. Yasuhiko Wada, Faculty of Nutrition, University of Kochi; Dr. Takashi Kawamura, Kyoto University Center for Student Health; Dr. Yoshiyuki Watanabe, Kyoto Prefectural University of Medicine Graduate School of Medical Science; Dr. Kotaro Ozasa, Radiation Effects Research Foundation; Dr. Tsuneharu Miki, Kyoto Prefectural University of Medicine Graduate School of Medical Science; Dr. Chigusa Date, School of Human Science and Environment, University of Hyogo; Dr. Kiyomi Sakata, Iwate Medical University; Dr. Yoichi Kurozawa, Tottori University Faculty of Medicine; Drs. Takesumi Yoshimura and Yoshihisa Fujino, University of Occupational and Environmental Health; Dr. Akira Shibata, Kurume University; Dr. Naoyuki Okamoto, Kanagawa Cancer Center; and Dr. Hideo Shio, Moriyama Municipal Hospital.

Author Contributions: HI and AT conceived and designed the study; JM, and KS drafted the plan for the data analyses; JM and TK conducted data analysis; SI and TK provided statistical expertise and interpreted the data; JM drafted the manuscript; HI and KS analyzed and interpreted the data, and critically revised the manuscript; JM, KS, and HI had primary responsibility for final content; and all authors were involved in interpretation of the results and revision of the manuscript and approved the final version of the manuscripts. JM, KS, and HI are guarantors.

**Copyright:** The corresponding author has the right to grant as behalf of all authors and does grant an exclusive licence (or non-exclusive for government employees) on the whole basis to the BMJ Publishing Group Ltd to allow this article (if accepted) to publish in BMJ editions and any other BMJPGL products and sublicences such use and exploit all subsidiary rights, as set out in our licence.

**Funding:** This study has been supported by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT) (MonbuKagaku-sho); Grants-in-Aid for

### **BMJ** Open

Scientific Research on Priority Areas of Cancer; and Grants-in-Aid for Scientific Research on Priority Areas of Cancer Epidemiology from MEXT (Nos. 61010076, 62010074, 63010074, 1010068, 2151065, 3151064, 4151063, 5151069, 6279102, 11181101, 17015022, 18014011, 20014026, 20390156, 26293138), and JSPS KAKENHI No.16H06277. This research was also supported by Grant-in-Aid from the Ministry of Health, Labour and Welfare, Health and Labor Sciences research grants, Japan (Comprehensive Research on Cardiovascular Disease and Lifestyle Related Diseases: H20-Junkankitou [Seishuu]-Ippan-013; H23-Junkankitou [Seishuu]-Ippan-005); an Intramural Research Fund (22-4-5) for Cardiovascular Diseases of National Cerebral and Cardiovascular Center; Comprehensive Research on Cardiovascular Diseases and Lifestyle Related Diseases (H26-Junkankitou [Seisaku]-Ippan-001) and H29-Junkankitou [Seishuu]-Ippan-003 and 20FA1002.

Competing interests: All authors have completed the ICMJE uniform disclosure form at

www.icmje.org/coi\_disclosure.pdf and declare: no support from any organisation for the submitted work; no financial relationships with any organisations that might have an interest in the submitted work in the previous three years; no other relationships or activities that could appear to have influenced the submitted work.

**Ethical approval:** This study was approved by Osaka University and Hokkaido University. The participants were provided informed consent to be involved in this epidemiological study. Individual informed consent was obtained from each participant in 36 out of the 45 study areas (written consent in 35 areas and oral consent in 1 area). In the remaining nine areas, group consent was obtained from each community representative.

**Transparency:** JM, KS, and HI affirm that the manuscript is an honest, accurate, and transparent account of the study being reported; that no important aspects of the study have been omitted; and that any discrepancies from the study as planned have been explained.

Data sharing: No additional data available.

### REFERENCES

- Collins AL, Glei DA, Goldman N. The role of life satisfaction and depressive symptoms in allcause mortality. *Psychology and aging* 2009;24(3):696-702. doi: 10.1037/a0016777
   [published Online First: 2009/09/11]
- Koivumaa-Honkanen H, Honkanen R, Viinamaki H, et al. Self-reported life satisfaction and 20year mortality in healthy Finnish adults. *American journal of epidemiology* 2000;152(10):983-91.
- Steptoe A. Happiness and Health. *Annual review of public health* 2019;40:339-59. doi: 10.1146/annurev-publhealth-040218-044150 [published Online First: 2019/01/03]
- Shirai K, Iso H, Ohira T, et al. Perceived level of life enjoyment and risks of cardiovascular disease incidence and mortality: the Japan public health center-based study. *Circulation* 2009;120(11):956-63. doi: 10.1161/CIRCULATIONAHA.108.834176
- Rozanski A, Bavishi C, Kubzansky LD, et al. Association of Optimism With Cardiovascular Events and All-Cause Mortality: A Systematic Review and Meta-analysis. *JAMA Netw Open* 2019;2(9):e1912200. doi: 10.1001/jamanetworkopen.2019.12200 [published Online First: 2019/09/29]
- 6. Tomioka K, Kurumatani N, Hosoi H. Relationship of Having Hobbies and a Purpose in Life With Mortality, Activities of Daily Living, and Instrumental Activities of Daily Living Among Community-Dwelling Elderly Adults. *Journal of epidemiology* 2016;26(7):361-70. doi: 10.2188/jea.JE20150153

|              | 2        |
|--------------|----------|
| 7. Tang M,   | 3<br>⊿   |
| nee          | 5        |
| nee          | 6<br>7   |
| the          | 8        |
|              | 9<br>10  |
| 8. Cohen R   | 11<br>12 |
| Car          | 13       |
|              | 14<br>15 |
| 10.          | 16<br>17 |
|              | 18       |
| 9. Mathews   | 19<br>20 |
| Wo           | 21<br>22 |
|              | 23       |
| 10. Shirai I | 24<br>25 |
| tore         | 26<br>27 |
| tem          | 27<br>28 |
| diff         | 29<br>30 |
|              | 31       |
| 11. Weiss    | 32<br>33 |
| wel          | 34<br>35 |
|              | 36       |
| 005          | 37<br>38 |
|              | 39<br>40 |
| 12. Sone T   | 41       |
| Ohs          | 42<br>43 |
| 10           | 44<br>45 |
| 10.          | 46       |
| 12 Sloopa    | 47<br>48 |
| 15. Sloane   | 49<br>50 |
| Per          | 51       |
| Dev          | 52<br>53 |
| - •          | 54<br>55 |
| 10.          | 56       |
|              | 57<br>58 |
|              | 59       |
|              | 60       |

Tang M, Wang D, Guerrien A. A systematic review and meta-analysis on basic psychological need satisfaction, motivation, and well-being in later life: Contributions of self-determination theory. *PsyCh journal* 2019 doi: 10.1002/pchj.293 [published Online First: 2019/06/10]

 Cohen R, Bavishi C, Rozanski A. Purpose in Life and Its Relationship to All-Cause Mortality and Cardiovascular Events: A Meta-Analysis. *Psychosomatic medicine* 2016;78(2):122-33. doi: 10.1097/PSY.00000000000274 [published Online First: 2015/12/03]

Mathews G. What Makes Life Worth Living?How Japanese and Americans Make Sense of Their Worlds. *Berkeley: University of California Press* 1996

- 0. Shirai K, Iso H, Fukuda H, et al. Factors associated with "Ikigai" among members of a public temporary employment agency for seniors (Silver Human Resources Centre) in Japan; gender differences. *Health and quality of life outcomes* 2006;4:12. doi: 10.1186/1477-7525-4-12
- Weiss RS, Bass SA, Heimovitz HK, et al. Japan's silver human resource centers and participant well-being. *Journal of cross-cultural gerontology* 2005;20(1):47-66. doi: 10.1007/s10823-005-3797-4
- 12. Sone T, Nakaya N, Ohmori K, et al. Sense of life worth living (ikigai) and mortality in Japan: Ohsaki Study. *Psychosomatic medicine* 2008;70(6):709-15. doi: 10.1097/PSY.0b013e31817e7e64

 Sloane E, Schrenker R. Conceptual Design and Resources for a General-Purpose Safety and Performance Verification and Validation Toolkit (V2T) for Life-Critical Wireless Medical Device Networks (WMDN). *Conf Proc IEEE Eng Med Biol Soc* 2005;1:178-81. doi: 10.1109/IEMBS.2005.1616371 [published Online First: 2007/02/07]

- 14. Roelfs DJ, Shor E, Davidson KW, et al. Losing life and livelihood: a systematic review and meta-analysis of unemployment and all-cause mortality. *Social science & medicine* 2011;72(6):840-54. doi: 10.1016/j.socscimed.2011.01.005 [published Online First: 2011/02/19]
- 15. Meneton P, Kesse-Guyot E, Mejean C, et al. Unemployment is associated with high cardiovascular event rate and increased all-cause mortality in middle-aged socially privileged individuals. *International archives of occupational and environmental health* 2015;88(6):707-16. doi: 10.1007/s00420-014-0997-7
- Gallo WT. Evolution of research on the effect of unemployment on acute myocardial infarction risk. Archives of internal medicine 2012;172(22):1737-8. doi:

10.1001/jamainternmed.2013.1835 [published Online First: 2012/11/21]

- Brenner MH. The impact of unemployment on heart disease and stroke mortality in European Union Countries. *EU publications* 2016 doi: 10.2767/81253
- Vanthomme K, Gadeyne S. Unemployment and cause-specific mortality among the Belgian working-age population: The role of social context and gender. *PloS one* 2019;14(5):e0216145. doi: 10.1371/journal.pone.0216145
- 19. Weden MM, Astone NM, Bishai D. Racial, ethnic, and gender differences in smoking cessation associated with employment and joblessness through young adulthood in the US. *Social science & medicine* 2006;62(2):303-16. doi: 10.1016/j.socscimed.2005.06.009 [published Online First: 2005/07/21]
- 20. Janlert U. Unemployment as a disease and diseases of the unemployed. *Scandinavian journal of work, environment & health* 1997;23 Suppl 3:79-83. [published Online First: 1997/01/01]

| 21. Backhans MC, Balliu N, Lundin A, et al. Unemployment Is a Risk Factor for Hospitalization         |
|-------------------------------------------------------------------------------------------------------|
| Due to Alcohol Problems: A Longitudinal Study Based on the Stockholm Public Health                    |
| Cohort (SPHC). Journal of studies on alcohol and drugs 2016;77(6):936-42. doi:                        |
| 10.15288/jsad.2016.77.936 [published Online First: 2016/11/01]                                        |
| 22. Hammarstrom A. Health consequences of youth unemploymentreview from a gender                      |
| perspective. Social science & medicine 1994;38(5):699-709.                                            |
| 23. Schaller J, Stevens AH. Short-run effects of job loss on health conditions, health insurance, and |
| health care utilization. Journal of health economics 2015;43:190-203. doi:                            |
| 10.1016/j.jhealeco.2015.07.003                                                                        |
| 24. Kim ES, Sun JK, Park N, et al. purpose in life and reduced incidence of stroke in older adults:   |
| 'The Health and Retirement Study'. Journal of psychosomatic research 2013;74(5):427-32.               |
| doi: 10.1016/j.jpsychores.2013.01.013 [published Online First: 2013/04/20]                            |
| 25. Tamakoshi A, Ozasa K, Fujino Y, et al. Cohort profile of the Japan Collaborative Cohort Study     |
| at final follow-up. <i>Journal of epidemiology</i> 2013;23(3):227-32.                                 |
| 26. Yasukawa S, Eguchi E, Ogino K, et al. "Ikigai", Subjective Wellbeing, as a Modifier of the        |
| Parity-Cardiovascular Mortality Association- The Japan Collaborative Cohort Study.                    |
| Circulation journal : official journal of the Japanese Circulation Society 2018;82(5):1302-           |
| 08. doi: 10.1253/circj.CJ-17-1201                                                                     |
| 27. Tanno K, Sakata K, Japan Collaborative Cohort Study for Evaluation of C. Psychological factors    |
| and mortality in the Japan Collaborative Cohort Study for Evaluation of Cancer (JACC).                |
| Asian Pacific journal of cancer prevention : APJCP 2007;8 Suppl:113-22.                               |
|                                                                                                       |
|                                                                                                       |

- 28. De Martinis M, Franceschi C, Monti D, et al. Inflammation markers predicting frailty and mortality in the elderly. *Experimental and molecular pathology* 2006;80(3):219-27. doi: 10.1016/j.yexmp.2005.11.004 [published Online First: 2006/02/08]
- 29. Harris TB, Ferrucci L, Tracy RP, et al. Associations of elevated interleukin-6 and C-reactive protein levels with mortality in the elderly. *The American journal of medicine* 1999;106(5):506-12. [published Online First: 1999/05/21]
- 30. Reuben DB, Cheh AI, Harris TB, et al. Peripheral blood markers of inflammation predict mortality and functional decline in high-functioning community-dwelling older persons. *Journal of the American Geriatrics Society* 2002;50(4):638-44. [published Online First: 2002/05/02]
- 31. Zilioli S, Slatcher RB, Ong AD, et al. purpose in life predicts allostatic load ten years later.
   Journal of psychosomatic research 2015;79(5):451-7. doi: 10.1016/j.jpsychores.2015.09.013
   [published Online First: 2015/11/04]
- 32. Giltay EJ, Geleijnse JM, Zitman FG, et al. Dispositional optimism and all-cause and cardiovascular mortality in a prospective cohort of elderly dutch men and women. *Archives* of general psychiatry 2004;61(11):1126-35. doi: 10.1001/archpsyc.61.11.1126 [published Online First: 2004/11/03]
- 33. Ostir GV, Markides KS, Peek MK, et al. The association between emotional well-being and the incidence of stroke in older adults. *Psychosomatic medicine* 2001;63(2):210-5. [published Online First: 2001/04/09]
- 34. Tanno K, Sakata K, Ohsawa M, et al. Associations of ikigai as a positive psychological factor with all-cause mortality and cause-specific mortality among middle-aged and elderly

Japanese people: findings from the Japan Collaborative Cohort Study. *Journal of psychosomatic research* 2009;67(1):67-75. doi: 10.1016/j.jpsychores.2008.10.018

- 35. Janlert U. Unemployment and blood pressure in Swedish building labourers. *Journal of internal medicine* 1992;231(3):241-6. doi: 10.1111/j.1365-2796.1992.tb00530.x [published Online First: 1992/03/01]
- 36. Ostir GV, Berges IM, Markides KS, et al. Hypertension in older adults and the role of positive emotions. *Psychosomatic medicine* 2006;68(5):727-33. doi:

10.1097/01.psy.0000234028.93346.38 [published Online First: 2006/10/03]

37. Kim ES, Strecher VJ, Ryff CD. Purpose in life and use of preventive health care services.
 Proceedings of the National Academy of Sciences of the United States of America
 2014;111(46):16331-6. doi: 10.1073/pnas.1414826111 [published Online First: 2014/11/05]



|                                    | Men         |              |              |                | Women       |              |              | _              |
|------------------------------------|-------------|--------------|--------------|----------------|-------------|--------------|--------------|----------------|
|                                    | Low         | Moderate     | High         | <b>P-Value</b> | Low         | Moderate     | High         | <b>P-Value</b> |
| No. at risk, n (%)                 | 2197(7.4)   | 12240(41.5)  | 15080(51.1)  |                | 3819(9.1)   | 20308(48.4)  | 17857(42.5)  |                |
| Age, years                         | 57.4        | 57.2         | 56.8         | < 0.001        | 58.1        | 57.7         | 56.8         | < 0.001        |
| Body Mass Index, kg/m <sup>2</sup> | 22.5        | 22.5         | 22.8         | < 0.001        | 23.1        | 22.8         | 23.1         | < 0.001        |
| Employment status, n (%)           |             |              |              | < 0.001        |             |              |              | < 0.001        |
| Employed                           | 560 (25.5)  | 4658 (38.1)  | 5362 (35.6)  |                | 385 (10.1)  | 2714 (13.4)  | 2550 (14.3)  |                |
| Self-employed                      | 423 (19.3)  | 3860 (31.5)  | 5669 (37.6)  |                | 367 (9.6)   | 3137 (15.4)  | 3321 (18.6)  |                |
| Part-time worker                   | 24 (1.1)    | 267 (2.2)    | 282 (1.9)    |                | 290 (7.6)   | 1987 (9.8)   | 1779 (10.0)  |                |
| Unemployed                         | 436 (19.8)  | 2262 (18.5)  | 1802 (11.9)  |                | 894 (23.4)  | 4364 (21.5)  | 2637 (14.8)  |                |
| Homemaker                          | 2 (0.1)     | 13 (0.1)     | 9 (0.1)      |                | 685 (17.9)  | 6201 (30.5)  | 4908 (27.5)  |                |
| Other                              | 752 (34.2)  | 1180 (9.6)   | 1956 (13)    |                | 1198 (31.4) | 1905 (9.4)   | 2662 (14.9)  |                |
| Education level, n (%)             |             |              |              | < 0.001        |             |              |              | < 0.001        |
| <16 years                          | 714 (48.0)  | 4465 (39.1)  | 4079 (30.2)  |                | 1329 (49.8) | 7686 (40.7)  | 4826 (30.6)  |                |
| 16-18 years                        | 556 (37.4)  | 5252 (46)    | 6515 (48.3)  |                | 1128 (42.3) | 9580 (50.7)  | 8874 (56.3)  |                |
| $\geq$ 19 years                    | 217 (14.6)  | 1712 (15)    | 2891 (21.4)  |                | 210 (7.9)   | 1639 (8.7)   | 2052 (13.0)  |                |
| Alcohol consumption, n (%)         |             |              |              | < 0.001        |             |              |              | < 0.001        |
| Never                              | 412 (19.6)  | 2225 (19.0)  | 2514 (17.3)  |                | 2691 (77.2) | 14305 (76.2) | 12042 (72.0) |                |
| Past                               | 221 (10.5)  | 694 (5.9)    | 738 (5.1)    |                | 97 (2.8)    | 294 (1.6)    | 283 (1.7)    |                |
| Current                            | 1468 (69.9) | 8814 (75.1)  | 11264 (77.6) |                | 697 (20.0)  | 4173 (22.2)  | 4408 (26.3)  |                |
| Smoking status, n (%)              |             |              |              |                |             |              |              | 0.007          |
| Never                              | 413 (19.6)  | 2322 (19.9)  | 3153 (21.8)  |                | 3053 (91.6) | 16664 (93.5) | 14943 (93.6) |                |
| Past                               | 507 (24.1)  | 2945 (25.2)  | 3627 (25.0)  |                | 68 (2.0)    | 253 (1.4)    | 214 (1.3)    |                |
| Current                            | 1186 (56.3) | 6416 (54.9)  | 7708 (53.2)  |                | 212 (6.4)   | 911 (5.1)    | 814 (5.1)    |                |
| Marital status, n (%)              |             |              |              | < 0.001        |             |              |              | < 0.001        |
| Living with a spouse               | 1708 (86.0) | 10358 (93.0) | 13424 (95.4) |                | 2530 (75.4) | 15317 (83.9) | 14081 (84.8) |                |
| Widowed                            | 127 (6.4)   | 391 (3.5)    | 368 (2.6)    |                | 620 (18.5)  | 2257 (12.4)  | 2009 (12.1)  |                |
| Divorced                           | 56 (2.8)    | 182 (1.6)    | 149 (1.1)    |                | 90 (2.7)    | 417 (2.3)    | 344 (2.1)    |                |
| Single                             | 95 (4.8)    | 210 (1.9)    | 134 (1)      |                | 114 (3.4)   | 276 (1.5)    | 176 (1.1)    |                |
| Sports activity time, n (%)        |             |              |              | < 0.001        |             |              |              | < 0.001        |
| never                              | 1705 (81.2) | 8431 (72.5)  | 9060 (62.6)  |                | 3105 (86.6) | 14951 (79.3) | 11876 (70.6) |                |
| 1-2 h/w                            | 213 (10.1)  | 1787 (15.4)  | 2807 (19.4)  |                | 272 (7.6)   | 2343 (12.4)  | 2803 (16.7)  |                |
| 3-4 h/w                            | 108 (5.1)   | 721 (6.2)    | 1302 (9.0)   |                | 129 (3.6)   | 851 (4.5)    | 1188 (7.1)   |                |
|                                    |             |              |              |                |             |              |              |                |

Table 1. Sex-specific, mean values and proportions of baseline characteristics according to the perceived levels of *Ikigai*.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

| 1                    | $\geq 5 \text{ h/w}$                | 73 (3.5)    | 687 (5.9)   | 1307 (9.0)  | <0.001  | 79 (2.2)    | 720 (3.8)    | 956 (5.7)    | < 0001  |
|----------------------|-------------------------------------|-------------|-------------|-------------|---------|-------------|--------------|--------------|---------|
| 2                    | never                               | 294 (18.8)  | 1354 (11.6) | 1307 (9 5)  | <0.001  | 390 (14 3)  | 1852 (97)    | 1221 (77)    | <.0001  |
| 3<br>4               | 0.5 h/day                           | 302 (19.3)  | 2268 (19.4) | 2453 (17.8) |         | 525 (19.3)  | 3444 (18.0)  | 2596 (16.4)  |         |
| 5                    | 0.5-1 h/day                         | 271 (17.3)  | 2339 (20.0) | 2788 (20.3) |         | 558 (20.5)  | 4198 (21.9)  | 3249 (20.5)  |         |
| 6                    | $\geq 1 \text{ h/day}$              | 695 (44.5)  | 5757 (49.1) | 7195 (52.4) |         | 1246 (45.8) | 9690 (50.5)  | 8777 (55.4)  |         |
| 7                    | Sleep duration, h/d                 | 7.6         | 7.5         | 7.4         | 0.009   | 7.2         | 7.1          | 7.1          | 0.008   |
| 8                    | Perceived mental stress, n (%)      |             |             |             | < 0.001 |             |              |              | < 0.001 |
| 9<br>10              | Low                                 | 378 (17.7)  | 1382 (11.4) | 3107 (20.9) |         | 541 (14.6)  | 2319 (11.6)  | 4300 (24.4)  |         |
| 11                   | Moderate                            | 1029 (48.1) | 8237 (68.2) | 8332 (55.9) |         | 1838 (49.8) | 13907 (69.8) | 10169 (57.6) |         |
| 12                   | High                                | 733 (34.3)  | 2451 (20.3) | 3458 (23.2) |         | 1315 (35.6) | 3699 (18.6)  | 3184 (18.0)  |         |
| 13                   | Sense of life enjoyment, n (%)      |             |             |             | < 0.001 |             |              |              | < 0.001 |
| 14                   | Low                                 | 417 (19.2)  | 399 (3.3)   | 193 (1.3)   |         | 775 (20.7)  | 686 (3.4)    | 184 (1.0)    |         |
| 15                   | Moderate                            | 965 (44.4)  | 9101 (75.0) | 5612 (37.5) |         | 1753 (46.7) | 15044 (75.2) | 5937 (33.5)  |         |
| 10                   | High                                | 230 (10.6)  | 2640 (21.7) | 8265 (55.2) |         | 315 (8.4)   | 4288 (21.4)  | 10234 (57.8) |         |
| 18                   | History of hypertension, n (%)      | 485 (24.7)  | 2305 (20.5) | 2698 (19.2) | 0.050   | 975 (28)    | 4107 (22.3)  | 3433 (20.8)  | 0.188   |
| 19                   | History of diabetes mellitus, n (%) | 153 (8.1)   | 729 (6.6)   | 895 (6.5)   | 0.888   | 197 (5.9)   | 735 (4.1)    | 566 (3.5)    | 0.062   |
| 20                   |                                     |             |             |             |         |             |              |              |         |
| 21                   |                                     |             |             |             |         |             |              |              |         |
| 22                   |                                     |             |             |             |         |             |              |              |         |
| 22<br>24             |                                     |             |             |             |         |             |              |              |         |
| 25                   |                                     |             |             |             |         |             |              |              |         |
| 28                   |                                     |             |             |             |         |             |              |              |         |
| 27                   |                                     |             |             |             |         |             |              |              |         |
| 248                  |                                     |             |             |             |         |             |              |              |         |
| 29<br>3 <del>0</del> |                                     |             |             |             |         |             |              |              |         |
| -3<br>31             |                                     |             |             |             |         |             |              |              |         |
| 32                   |                                     |             |             |             |         |             |              |              |         |
| 39                   |                                     |             |             |             |         |             |              |              |         |

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

|                            |       | Men                 |                     |                           | Women |                     |                     |                           |
|----------------------------|-------|---------------------|---------------------|---------------------------|-------|---------------------|---------------------|---------------------------|
|                            | Low   | Moderate            | High                | <b>P</b> <sub>Trend</sub> | Low   | Moderate            | High                | <b>P</b> <sub>Trend</sub> |
| All                        |       |                     |                     |                           |       |                     |                     |                           |
| No. at risk                | 2197  | 12240               | 15080               |                           | 3819  | 20308               | 17857               |                           |
| No. of person-years        | 32824 | 191424              | 244694              |                           | 61744 | 330980              | 298982              |                           |
| No. of deaths              | 251   | 1007                | 1135                |                           | 307   | 1129                | 851                 |                           |
| Age-adjusted HR (95%CI)    | 1.00  | 0.66 (0.58 to 0.76) | 0.57 (0.50 to 0.65) | <0.001                    | 1.00  | 0.75 (0.66 to 0.86) | 0.68 (0.60 to 0.78) | <0.001                    |
| Multivariable * HR (95%CI) | 1.00  | 0.80 (0.68 to 0.93) | 0.74 (0.64 to 0.87) | <0.001                    | 1.00  | 0.87 (0.75 to 1.00) | 0.88 (0.76 to 1.03) | 0.136                     |
| Employed                   |       |                     |                     |                           |       |                     |                     |                           |
| No. at risk                | 560   | 4658                | 5362                |                           | 385   | 2714                | 2550                |                           |
| No. of person-years        | 9479  | 80287               | 92997               |                           | 6695  | 48860               | 46328               |                           |
| No. of deaths              | 22    | 193                 | 192                 |                           | 7     | 43                  | 44                  |                           |
| Age-adjusted HR (95%CI)    | 1.00  | 0.92 (0.59 to 1.44) | 0.73 (0.47 to 1.14) | 0.051                     | 1.00  | 0.85 (0.38 to 1.89) | 0.89 (0.40 to 1.97) | 0.916                     |
| Multivariable * HR (95%CI) | 1.00  | 1.02 (0.63 to 1.63) | 0.80 (0.49 to 1.31) | 0.116                     | 1.00  | 0.82 (0.35 to 1.95) | 1.01 (0.41 to 2.48) | 0.679                     |
| Self-employed              |       |                     |                     |                           |       | · · · · · ·         |                     |                           |
| No. at risk                | 423   | 3860                | 5669                |                           | 367   | 3137                | 3321                |                           |
| No. of person-years        | 6347  | 61848               | 93546               |                           | 6025  | 53663               | 56797               |                           |
| No. of deaths              | 35    | 290                 | 425                 |                           | 9     | 113                 | 102                 |                           |
| Age-adjusted HR (95%CI)    | 1.00  | 0.76 (0.54 to 1.08) | 0.71 (0.50 to 1.00) | 0.120                     | 1.00  | 1.14 (0.58 to 2.25) | 0.98 (0.50 to 1.94) | 0.523                     |
| Multivariable * HR (95%CI) | 1.00  | 0.86 (0.60 to 1.24) | 0.85 (0.59 to 1.22) | 0.682                     | 1.00  | 1.30 (0.62 to 2.73) | 1.29 (0.60 to 2.76) | 0.782                     |
| Part-time worker           |       |                     |                     |                           |       |                     |                     |                           |
| No. at risk                | 24    | 267                 | 282                 |                           | 290   | 1987                | 1779                |                           |
| No. of person-years        | 336   | 4037                | 4344                |                           | 4941  | 34182               | 30244               |                           |
| No. of deaths              | 2     | 27                  | 24                  |                           | 7     | 28                  | 33                  |                           |
| Age-adjusted HR (95%CI)    | 1.00  | 0.78 (0.18 to 3.28) | 0.51 (0.12 to 2.20) | 0.287                     | 1.00  | 0.55 (0.24 to 1.25) | 0.73 (0.32 to 1.65) | 0.279                     |
| Multivariable * HR (95%CI) | 1.00  | 0.91 (0.17 to 4.76) | 0.70 (0.12 to 4.06) | 0.762                     | 1.00  | 0.88 (0.34 to 2.25) | 0.79 (0.30 to 2.04) | 0.866                     |
| Unemployed                 |       |                     |                     |                           |       |                     |                     |                           |
| No. at risk                | 436   | 2262                | 1802                |                           | 894   | 4364                | 2637                |                           |
| No. of person-years        | 4821  | 27595               | 23334               |                           | 11864 | 62898               | 38599               |                           |
| No. of deaths              | 84    | 368                 | 250                 |                           | 145   | 555                 | 306                 |                           |
| Age-adjusted HR (95%CI)    | 1.00  | 0.63 (0.50 to 0.80) | 0.48 (0.37 to 0.61) | <0.001                    | 1.00  | 0.70 (0.58 to 0.84) | 0.62 (0.51 to 0.76) | <0.001                    |
| Multivariable * HR (95%CI) | 1.00  | 0.74 (0.57 to 0.97) | 0.69 (0.52 to 0.93) | 0.044                     | 1.00  | 0.78 (0.64 to 0.95) | 0.77 (0.61 to 0.97) | 0.039                     |

Table 2. Sex-specific, age-adjusted, and multivariable hazard ratios (HRs) and 95% confidence intervals (CIs) of cardiovascular mortality according to the perceived levels of *Ikigai*, stratified by employment status.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

| Homomokor                  |       |                     |                     |        |       |                     |                      |       |
|----------------------------|-------|---------------------|---------------------|--------|-------|---------------------|----------------------|-------|
| No. at risk                | 2     | 13                  | 9                   |        | 685   | 6201                | 4908                 |       |
| No. of person-years        | 33    | 164                 | 137                 |        | 10963 | 100252              | 80823                |       |
| No. of deaths              | 0     | 0                   | 0                   |        | 46    | 266                 | 184                  |       |
| Age-adjusted HR (95%CI)    | -     | -                   | -                   | -      | 1.00  | 0.67 (0.49 to 0.91) | 0.57 (0.41 to 0.78)  | 0.003 |
| Multivariable * HR (95%CI) | -     | -                   | -                   | -      | 1.00  | 0.83 (0.59 to 1.17) | 0.84 (0.58 to 1.22)  | 0.576 |
| Other                      |       |                     |                     |        |       |                     |                      |       |
| No. at risk                | 752   | 1180                | 1956                |        | 1198  | 1905                | 2662                 |       |
| No. of person-years        | 11808 | 17493               | 30335               |        | 21257 | 31124               | 46191                |       |
| No. of deaths              | 108   | 129                 | 244                 |        | 93    | 124                 | 182                  |       |
| Age-adjusted HR (95%CI)    | 1.00  | 0.62 (0.48 to 0.80) | 0.67 (0.53 to 0.84) | <0.001 | 1.00  | 0.81 (0.62 to 1.06) | 0.83 (0.65 to 1.06)  | 0.253 |
| Multivariable * HR (95%CI) | 1.00  | 0.64 (0.47 to 0.87) | 0.76 (0.59 to 0.97) | 0.016  | 1.00  | 0.91 (0.64 to 1.29) | 1.00(0.76  to  1.31) | 0.813 |

\* Adjusted for age, body mass index, smoking status, alcohol consumption, sports activity, walking time, sleep duration, education level, employment status, marital status, sense of life enjoyment, perceived mental stress, medical history of hypertension, and diabetes mellitus.

|                            |       | Ikigai              |                     |                    |
|----------------------------|-------|---------------------|---------------------|--------------------|
|                            | Low   | Moderate            | High                | P <sub>Trend</sub> |
| Men                        |       |                     |                     |                    |
| At Risk                    | 436   | 2262                | 1802                |                    |
| Person-years               | 4821  | 27595               | 23334               |                    |
| No. of deaths              | 84    | 368                 | 250                 |                    |
| Multivariable HR           | 1.00  | 0.74 (0.57 to 0.97) | 0.69 (0.52 to 0.93) | 0.044              |
|                            | 79    | 358                 | 243                 |                    |
| Deaths within 1 y exclude  | 1.00  | 0.74 (0.56 to 0.97) | 0.68 (0.51 to 0.92) | 0.044              |
|                            | 73    | 343                 | 232                 |                    |
| Deaths within 2 y exclude  | 1.00  | 0.77 (0.58 to 1.02) | 0.71 (0.52 to 0.96) | 0.087              |
|                            | 67    | 318                 | 223                 |                    |
| Deaths within 3 y exclude  | 1.00  | 0.75 (0.56 to 1.01) | 0.71 (0.52 to 0.98) | 0.104              |
| -                          | 60    | 299                 | 210                 |                    |
| Deaths within 4 y exclude  | 1.00  | 0.78 (0.57 to 1.06) | 0.72 (0.52 to 1.01) | 0.157              |
|                            | 56    | 282                 | 201                 |                    |
| Deaths within 5 y exclude  | 1.00  | 0.75 (0.55 to 1.04) | 0.69 (0.49 to 0.98) | 0.115              |
| Women                      |       |                     |                     |                    |
| No. at risk                | 894   | 4364                | 2637                |                    |
| No. of person-years        | 11864 | 62898               | 38599               |                    |
| No. of deaths              | 145   | 555                 | 306                 |                    |
| Multivariable HR           | 1.00  | 0.78 (0.64 to 0.95) | 0.77 (0.61 to 0.97) | 0.039              |
|                            | 138   | 540                 | 299                 |                    |
| Deaths within 1 y excluded | 1.00  | 0.78 (0.64 to 0.96) | 0.78 (0.62 to 0.98) | 0.056              |
| ·                          | 134   | 526                 | 290                 |                    |
| Deaths within 2 y excluded | 1.00  | 0.79 (0.64 to 0.97) | 0.78 (0.61 to 0.98) | 0.061              |
| 2                          | 125   | 498                 | 281                 |                    |
| Deaths within 3 y excluded | 1.00  | 0.77 (0.62 to 0.96) | 0.78 (0.61 to 1.00) | 0.057              |
| 5                          | 113   | 480                 | 273                 |                    |
| Deaths within 4 y excluded | 1.00  | 0.81 (0.65 to 1.02) | 0.83 (0.65 to 1.08) | 0.193              |
|                            | 112   | 462                 | 267                 |                    |
| Deaths within 5 v excluded | 1.00  | 0.78 (0.62 to 0.97) | 0.80 (0.62 to 1.04) | 0.092              |

Table 3. Sex-specific, multivariable hazard ratios (HRs) and 95% confidence intervals (CIs) of cardiovascular mortality according to the perceived levels of *Ikigai* after exclusion of deaths occurred 1 to 5 years from the baseline among unemployed persons.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

\* Adjusted for age, body mass index, smoking status, alcohol consumption, sports activity, walking time, sleep duration, education level, employment status, marital status, sense of life enjoyment, perceived mental stress, medical history of hypertension, and diabetes mellitus.

## Table 4. Age- and sex-adjusted and multivariable hazard ratios (HRs) and 95 % confidence intervals (CIs) of mortality from cardiovascular diseases types according to the perceived levels of *Ikigai* among unemployed persons.

|                               | <b>.</b>                       |       | Ikigai                |                     |                    |
|-------------------------------|--------------------------------|-------|-----------------------|---------------------|--------------------|
|                               |                                | Low   | Moderate              | High                | P <sub>Trend</sub> |
|                               | No. at risk                    | 1330  | 6626                  | 4439                |                    |
|                               | No. of person-years            | 16684 | 90493                 | 61933               |                    |
| Total stroke                  | No. of deaths                  | 107   | 375                   | 242                 |                    |
|                               | Age-, sex-adjusted HR (95%CI)  | 1.00  | 0.58 (0.47 to 0.72)   | 0.51 (0.41 to 0.65) | <0.001             |
|                               | Multivariable * HR (95%CI)     | 1.00  | 0.72 (0.57 to 0.91)   | 0.74 (0.56 to 0.96) | 0.022              |
| Ischemic stroke               | No. of deaths                  | 37    | 157                   | 91                  |                    |
|                               | Age-, sex- adjusted HR (95%CI) | 1.00  | • 0.70 (0.49 to 1.00) | 0.54 (0.37 to 0.80) | 0.007              |
|                               | Multivariable * HR (95%CI)     | 1.00  | 0.82 (0.56 to 1.20)   | 0.80 (0.51 to 1.24) | 0.555              |
| Hemorrhagic stroke            | No. of deaths                  | 30    | 95                    | 67                  |                    |
|                               | Age-, sex- adjusted HR (95%CI) | 1.00  | 0.54 (0.36 to 0.82)   | 0.54 (0.35 to 0.83) | 0.008              |
|                               | Multivariable * HR (95%CI)     | 1.00  | 0.74 (0.47 to 1.19)   | 0.84 (0.49 to 1.42) | 0.425              |
| <b>Coronary heart disease</b> | No. of deaths                  | 43    | 196                   | 99                  |                    |
|                               | Age-, sex- adjusted HR (95%CI) | 1.00  | 0.75 (0.54 to 1.05)   | 0.51 (0.36 to 0.74) | <0.001             |
|                               | Multivariable * HR (95%CI)     | 1.00  | 0.77 (0.54 to 1.10)   | 0.64 (0.43 to 0.97) | 0.103              |
| Heart failure                 | No. of deaths                  | 43    | 187                   | 120                 |                    |
|                               | Age-, sex- adjusted HR (95%CI) | 1.00  | 0.73 (0.52 to 1.01)   | 0.65 (0.46 to 0.92) | 0.055              |
|                               | Multivariable * HR (95%CI)     | 1.00  | 0.90 (0.63 to 1.30)   | 1.01 (0.67 to 1.52) | 0.663              |

\* Adjusted for age, sex, body mass index, smoking status, alcohol consumption, sports activity, walking time, sleep duration, education level, employment status, marital status, sense of life enjoyment, perceived mental stress, medical history of hypertension, and diabetes mellitus.



#### Based on the STROBE cohort guidelines. **Instructions to authors** items listed below. explanation. observational studies. 0. For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

## Reporting checklist for cohort study.

Complete this checklist by entering the page numbers from your manuscript where readers will find each of the

Your article may not currently address all the items on the checklist. Please modify your text to include the missing information. If you are certain that an item does not apply, please write "n/a" and provide a short

Upload your completed checklist as an extra file when you submit to a journal.

In your methods section, say that you used the STROBE cohortreporting guidelines, and cite them as:

von Elm E, Altman DG, Egger M, Pocock SJ, Gotzsche PC, Vandenbroucke JP. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: guidelines for reporting

Page

|                        |            | Reporting Item                                                                                     | Number |
|------------------------|------------|----------------------------------------------------------------------------------------------------|--------|
| Title and abstract     |            | °Z                                                                                                 |        |
| Title                  | <u>#1a</u> | Indicate the study's design with a commonly used term in the title or the abstract                 | 1      |
| Abstract               | <u>#1b</u> | Provide in the abstract an informative and balanced summary of what<br>was done and what was found | 3-4    |
| Introduction           |            |                                                                                                    |        |
| Background / rationale | <u>#2</u>  | Explain the scientific background and rationale for the investigation being reported               | 5      |
| Objectives             | <u>#3</u>  | State specific objectives, including any prespecified hypotheses                                   | 6      |
| Methods                |            |                                                                                                    |        |
| Study design           | <u>#4</u>  | Present key elements of study design early in the paper                                            | 6-7    |
|                        | Form       | an a suinu an lu http://hmianan.hmi.com/sita/ahaut/guidalinas.yhtml                                |        |

| 1<br>2<br>3                                        | Setting                       | <u>#5</u>   | Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection                                                                                                                                                  | 6-7 |
|----------------------------------------------------|-------------------------------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 4<br>5<br>6<br>7                                   | Eligibility criteria          | <u>#6a</u>  | Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up.                                                                                                                                                          | 6-7 |
| 8<br>9<br>10<br>11                                 | Eligibility criteria          | <u>#6b</u>  | For matched studies, give matching criteria and number of exposed and unexposed                                                                                                                                                                                                  | 6-7 |
| 12<br>13<br>14<br>15<br>16                         | Variables                     | <u>#7</u>   | Clearly define all outcomes, exposures, predictors, potential<br>confounders, and effect modifiers. Give diagnostic criteria, if<br>applicable                                                                                                                                   | 7   |
| 17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25 | Data sources /<br>measurement | <u>#8</u>   | For each variable of interest give sources of data and details of<br>methods of assessment (measurement). Describe comparability of<br>assessment methods if there is more than one group. Give<br>information separately for for exposed and unexposed groups if<br>applicable. | 7   |
| 26<br>27                                           | Bias                          | <u>#9</u>   | Describe any efforts to address potential sources of bias                                                                                                                                                                                                                        | 7   |
| 28<br>29                                           | Study size                    | <u>#10</u>  | Explain how the study size was arrived at                                                                                                                                                                                                                                        | 7   |
| 30<br>31<br>32<br>33                               | Quantitative variables        | <u>#11</u>  | Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen, and why                                                                                                                                                    | 8   |
| 34<br>35<br>36<br>37                               | Statistical methods           | <u>#12a</u> | Describe all statistical methods, including those used to control for confounding                                                                                                                                                                                                |     |
| 38<br>39                                           | 8                             |             |                                                                                                                                                                                                                                                                                  |     |
| 40<br>41<br>42<br>43                               | Statistical methods           | <u>#12b</u> | Describe any methods used to examine subgroups and interactions                                                                                                                                                                                                                  | 8   |
| 44<br>45<br>46<br>47                               | Statistical methods           | <u>#12c</u> | Explain how missing data were addressed                                                                                                                                                                                                                                          | 8   |
| 48<br>49<br>50                                     | Statistical methods           | <u>#12d</u> | If applicable, explain how loss to follow-up was addressed                                                                                                                                                                                                                       | 8   |
| 52<br>53<br>54<br>55<br>56<br>57                   | Statistical<br>methods<br>8   | <u>#12e</u> | Describe any sensitivity analyses                                                                                                                                                                                                                                                |     |
| 58<br>59<br>60                                     | Results                       | For pe      | eer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml                                                                                                                                                                                                             |     |

| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8   | Participants     | <u>#13a</u> | Report numbers of individuals at each stage of study—eg numbers<br>potentially eligible, examined for eligibility, confirmed eligible,<br>included in the study, completing follow-up, and analysed. Give<br>information separately for for exposed and unexposed groups if<br>applicable. | 9        |
|----------------------------------------|------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 9<br>10                                | Participants     | <u>#13b</u> | Give reasons for non-participation at each stage                                                                                                                                                                                                                                           | 9        |
| 11<br>12<br>12                         | Participants     | <u>#13c</u> | Consider use of a flow diagram                                                                                                                                                                                                                                                             |          |
| 13<br>14<br>15                         | 27               |             |                                                                                                                                                                                                                                                                                            |          |
| 16<br>17<br>18<br>19<br>20<br>21       | Descriptive data | <u>#14a</u> | Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders. Give information separately for exposed and unexposed groups if applicable.                                                                          | 9, 21-22 |
| 23<br>24<br>25                         | Descriptive data | <u>#14b</u> | Indicate number of participants with missing data for each variable of interest                                                                                                                                                                                                            |          |
| 26<br>27<br>28                         | 6-7, 27          |             |                                                                                                                                                                                                                                                                                            |          |
| 29<br>30<br>31                         | Descriptive data | <u>#14c</u> | Summarise follow-up time (eg, average and total amount)                                                                                                                                                                                                                                    |          |
| 32<br>33                               | 9                |             |                                                                                                                                                                                                                                                                                            |          |
| 34<br>35<br>36<br>37<br>38             | Outcome data     | <u>#15</u>  | Report numbers of outcome events or summary measures over time.<br>Give information separately for exposed and unexposed groups if<br>applicable.                                                                                                                                          |          |
| 39<br>40                               | 9-10             |             |                                                                                                                                                                                                                                                                                            |          |
| 41<br>42<br>43<br>44<br>45<br>46<br>47 | Main results     | <u>#16a</u> | Give unadjusted estimates and, if applicable, confounder-adjusted<br>estimates and their precision (eg, 95% confidence interval). Make<br>clear which confounders were adjusted for and why they were<br>included                                                                          | 9-10     |
| 48<br>49<br>50<br>51                   | Main results     | <u>#16b</u> | Report category boundaries when continuous variables were categorized                                                                                                                                                                                                                      | 9        |
| 52<br>53<br>54                         | Main results     | <u>#16c</u> | If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period                                                                                                                                                                               |          |
| 56<br>57<br>58<br>59                   | 9-10             |             |                                                                                                                                                                                                                                                                                            |          |
| 60                                     |                  | For p       | eer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml                                                                                                                                                                                                                       |          |

| 1 Other analyses #17 Report other analyses done—eg analyses of subgrand interactions, and sensitivity analyses                                                                           | roups and 10                                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| 4<br>5 Discussion                                                                                                                                                                        |                                                 |
| $\frac{7}{8}$ Key results $\frac{\#18}{18}$ Summarise key results with reference to study ob                                                                                             | jectives 10                                     |
| <ul> <li>Limitations #19</li> <li>Discuss limitations of the study, taking into accoupted potential bias or imprecision. Discuss both direction of any potential bias.</li> </ul>        | Int sources of 11<br>on and magnitude           |
| <ul> <li>Interpretation #20 Give a cautious overall interpretation considering</li> <li>limitations, multiplicity of analyses, results from</li> <li>other relevant evidence.</li> </ul> | objectives, 10-11<br>similar studies, and       |
| Generalisability $\frac{\#21}{2}$ Discuss the generalisability (external validity) of                                                                                                    | the study results 11-12                         |
| 23 Other                                                                                                                                                                                 |                                                 |
| 24 Information<br>25                                                                                                                                                                     |                                                 |
| Funding #22 Give the source of funding and the role of the fundation study and, if applicable, for the original study on article is based                                                | ders for the present 13-14<br>which the present |
| The STROBE checklist is distributed under the terms of the Creative Common                                                                                                               | s Attribution License CC-BY.                    |
| <sup>33</sup> This checklist was completed on 29. November 2021 using <u>https://www.goodr</u>                                                                                           | eports.org/, a tool made by the                 |
| 34<br>35 <u>EQUATOR Network</u> in collaboration with <u>Penelope.ai</u>                                                                                                                 |                                                 |
| 36                                                                                                                                                                                       |                                                 |
| 38                                                                                                                                                                                       |                                                 |
| 39<br>40                                                                                                                                                                                 |                                                 |
| 41                                                                                                                                                                                       |                                                 |
| 42 43                                                                                                                                                                                    |                                                 |
| 44<br>45                                                                                                                                                                                 |                                                 |
| 46                                                                                                                                                                                       |                                                 |
| 47 48                                                                                                                                                                                    |                                                 |
| 49<br>50                                                                                                                                                                                 |                                                 |
| 51                                                                                                                                                                                       |                                                 |
| 52                                                                                                                                                                                       |                                                 |
|                                                                                                                                                                                          |                                                 |
| 55<br>54<br>55                                                                                                                                                                           |                                                 |
| 55<br>55<br>56                                                                                                                                                                           |                                                 |
| 53<br>54<br>55<br>56<br>57<br>58                                                                                                                                                         |                                                 |

## **BMJ Open**

## Purpose in life (Ikigai) and employment status in relation to cardiovascular mortality: the Japan Collaborative Cohort Study

| Journal:                             | BMJ Open                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Manuscript ID                        | bmjopen-2021-059725.R1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Article Type:                        | Original research                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Date Submitted by the Author:        | 11-May-2022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Complete List of Authors:            | Miyazaki, Junji; Osaka University, Public Health, Department of Social<br>Medicine, Graduate School of Medicine<br>Shirai, Kokoro; Osaka University, Public Health, Department of Social<br>Medicine, Graduate School of Medicine<br>Kimura, Takashi; Hokkaido University, Department of Public Health<br>Ikehara, Satoyo; Osaka University, Public Health, Department of Social<br>Medicine, Graduate School of Medicine<br>Tamakoshi, Akiko; Hokkaido University, Department of Public Health<br>Iso, Hiroyasu; Osaka University, Public Health, Department of Social<br>Medicine, Graduate School of Medicine |
| <b>Primary Subject<br/>Heading</b> : | Epidemiology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Secondary Subject Heading:           | Public health                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Keywords:                            | EPIDEMIOLOGY, OCCUPATIONAL & INDUSTRIAL MEDICINE, SOCIAL<br>MEDICINE, STROKE MEDICINE, Coronary heart disease < CARDIOLOGY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

SCHOLARONE<sup>™</sup> Manuscripts



I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

| 2<br>3<br>4    | 1  | TITLE                                                                                                                                                                            |
|----------------|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5<br>6         | 2  | Purpose in life (Ikigai) and employment status in relation to cardiovascular mortality: the Japan Collaborative                                                                  |
| 7<br>8<br>0    | 3  | Cohort Study                                                                                                                                                                     |
| 9<br>10<br>11  | 4  |                                                                                                                                                                                  |
| 12<br>13       | 5  | AUTHOR NAMES AND AFFILIATIONS                                                                                                                                                    |
| 14<br>15<br>16 | 6  | Junji Miyazaki <sup>1</sup> , Kokoro Shirai <sup>1</sup> , Takashi Kimura <sup>2</sup> , Satoyo Ikehara <sup>1</sup> , Akiko Tamakoshi <sup>2</sup> , Hiroyasu Iso <sup>*1</sup> |
| 17<br>17<br>18 | 7  |                                                                                                                                                                                  |
| 19<br>20       | 8  | <sup>1</sup> Public Health, Department of Social Medicine, Osaka University Graduate School of Medicine, 2-2                                                                     |
| 21<br>22<br>22 | 9  | Yamadaoka, Suita, Osaka, Japan                                                                                                                                                   |
| 25<br>24<br>25 | 10 | <sup>2</sup> Department of Public Health, Faculty of Medicine, Hokkaido University, Kita 8, Nishi 5, Kita-ku,                                                                    |
| 26<br>27       | 11 | Sapporo, Japan                                                                                                                                                                   |
| 28<br>29<br>30 | 12 |                                                                                                                                                                                  |
| 31<br>32       | 13 | CORRESPONDING AUTHOR                                                                                                                                                             |
| 33<br>34       | 14 | * Correspondence to Hiroyasu Iso Public Health, Department of Social Medicine, Osaka University Graduate                                                                         |
| 35<br>36<br>27 | 15 | School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565–0871, Japan. E-mail iso@pbhel.med.osaka-u.ac.jp                                                                              |
| 37<br>38<br>39 | 16 |                                                                                                                                                                                  |
| 40<br>41       | 17 | KEYWORDS                                                                                                                                                                         |
| 42<br>43       | 18 | purpose in life (Ikigai), employment status, cardiovascular disease, stroke, coronary heart disease, mortality,                                                                  |
| 44<br>45<br>46 | 19 | prospective study                                                                                                                                                                |
| 47<br>48       | 20 |                                                                                                                                                                                  |
| 49<br>50       | 21 | NUMBER OF TABLES                                                                                                                                                                 |
| 51<br>52<br>53 | 22 | One figure and four tables                                                                                                                                                       |
| 54<br>55       | 23 |                                                                                                                                                                                  |
| 56<br>57       | 24 | ORCID                                                                                                                                                                            |
| 58<br>59<br>60 | 25 | ID: 0000-0003-3634-6401                                                                                                                                                          |

| 1<br>2           |                                  |
|------------------|----------------------------------|
| <sup>3</sup> 26  |                                  |
| $\frac{5}{6}$ 27 | WORD COUNT                       |
| 7<br>8 28<br>9   | 237 words (abstract)             |
| 10 29<br>11      | 2,614 words (without references) |
| $^{12}_{13}$ 30  |                                  |
| 15<br>16         |                                  |
| 17<br>18         |                                  |
| 20<br>21         |                                  |
| 22<br>23         |                                  |
| 24<br>25<br>26   |                                  |
| 27<br>28         |                                  |
| 29<br>30<br>31   |                                  |
| 32<br>33         |                                  |
| 34<br>35<br>26   |                                  |
| 37<br>38         |                                  |
| 39<br>40         |                                  |
| 41<br>42<br>43   |                                  |
| 44<br>45         |                                  |
| 46<br>47<br>48   |                                  |
| 49<br>50         |                                  |
| 51<br>52<br>53   |                                  |
| 54<br>55         |                                  |
| 56<br>57         |                                  |
| 58<br>59<br>60   |                                  |
|                  |                                  |

#### Abstract Objectives: To investigate whether having a purpose in life (Ikigai) is associated with risk of cardiovascular disease mortality and whether the association varies by employment status. Design: Prospective cohort study Setting: Residents in 45 municipalities, Japan. 15 37 Participants: 29 517 men and 41 984 women aged 40 to 79 years, free of cardiovascular disease (CVD) and 17 38 cancer at baseline from 1988 to 1990. Primary outcome measures: CVD mortality Results: During the median follow-up of 19.1 years, 4 680 deaths (2 393 men and 2 287 women) from total 24 41 CVD were observed. Greater *Ikigai* was associated with a lower risk of CVD mortality, and the result was <sup>26</sup> 42 stronger for men than for women. Stratified by employment status, the inverse association was confined to unemployed persons. Among unemployed persons, the multivariable HRs of total CVD were higher for 31 44 moderate and high versus low levels of Ikigai. Multivariable HRs (95% CIs) were 0.74 (0.57 to 0.97) and 0.69 33 45 (0.52 to 0.93), P for trend < 0.044, respectively in men, and 0.78 (0.64 to 0.95) and 0.77 (0.61 to 0.97), P for trend = 0.039 in women. No association was observed among the employed, including part-time workers, self-38 47 employed, and homemakers for both men and women. Such an inverse association remained even after 40 48 excluding early deaths within five years from the baseline survey. <sup>42</sup> 49 Conclusion: Higher levels of Ikigai were associated with a lower risk of CVD mortality, especially for 45 50 unemployed men and women. 47 51

| 1<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |                                                                                                                      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----------------------------------------------------------------------------------------------------------------------|
| 2<br>3<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 52 | Article Summary                                                                                                      |
| 5<br>6<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 53 | Strengths and limitations of this study                                                                              |
| 7<br>8<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 54 | - Strengths included a population-based cohort study, a large sample size, and a long follow-up period.              |
| 10<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 55 | - Another strength was the adjustment for many confounding factors including lifestyle habits, social and            |
| 12<br>13<br>14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 56 | psychological factors, and past medical histories such as hypertension and diabetes mellitus.                        |
| 15<br>16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 57 | - Limitation was a self-administered single-item questionnaire on the purpose in life (Ikigai) to assess exposure at |
| 17       18       19       20       21       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       23       33       34       35       35       36       7       38       39       40       42       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44 | 58 | the baseline survey.                                                                                                 |

#### 59 Introduction

1 2 3

4 5

6 7

8

9 10

11 12

13 14

16

18 19

20 21

23

25

27 28

29 30

32

34 35

36 37

39

41

43 44

46

48 49

50 51

53

55

57 58

59 60

Recently, there has been growing evidence that positive psychological factors, such as life satisfaction, 60 happiness, life enjoyment, optimism, and purpose in life have been associated with favorable health outcomes, 61 62 including reduced risk of cardiovascular disease, in activities of daily living, cognitive impairment, and all-cause mortality.<sup>1-6</sup> A meta-analysis of 17 studies (mainly from the United States, Canada, and Europe) reported that 63 15 64 psychological factors, such as meaning in life, purpose of life, life satisfaction, positive affect, and self-esteem, 17 65 were considered essential components of well-being.<sup>7</sup> In another meta-analysis, high life purpose was associated 66 with a 17% lower risk of all-cause mortality and cardiovascular events such as myocardial infarction, cardiac <sub>22</sub> 67 death, and stroke.8

24 68 "Ikigai" is a Japanese concept similar to "purpose in life," "meaning of life," "life worth living," and <sup>26</sup> 69 "reason to live," which can be translated as "that which most makes one's life seem worth living".<sup>9</sup> In Japanese, 70 *Ikigai* is defined as a comprehensive concept related to life satisfaction, self-esteem, self-efficacy, morale, and cognitive evaluation of the meaning of one's life.<sup>10</sup> Ikigai involves more than enjoyment, pleasure, or happiness 31 71 33 72 and provides significance for one's value in life, including subjective motivation for a living.<sup>11</sup> In a previous 73 prospective cohort study of 43 391 Japanese adults over 7-years' follow-up, the presence of a sense of *Ikigai* was 38 74 associated with decreased risk of all-cause and cardiovascular mortality among middle-aged and elderly 40 75 Japanese men and women.<sup>12</sup> A panel study of 6 739 US adults aged 53 to 105 years over a four-year follow-up <sup>42</sup> 76 showed that a higher level of purpose in life was associated with a 22% reduced incidence of stroke after 45 77 adjustment for age, gender, race/ethnicity, and socioeconomic status.<sup>13</sup>

47 78 A meta-analysis of 42 cross-sectional and prospective cohort studies providing data on more than 20 79 million people showed that unemployment was associated with an increased risk of all-cause mortality, with a . 52 80 63% higher risk for those who experienced unemployment than those who did not.<sup>14</sup> Unemployment status was 54 81 associated with an increased incidence of cardiovascular events such as coronary heart disease and stroke 56 82 associated with.<sup>15-17</sup> A study based on a population-wide dataset of 3 084 137 Belgian individuals aged 25 to 59 83 at the 2001 census showed that unemployment status was associated with health problems such as

Page 7 of 30

| 2<br>3          | 0.4 |                                                                                                                                |
|-----------------|-----|--------------------------------------------------------------------------------------------------------------------------------|
| 4               | 84  | cardiovascular, endocrine, and psychiatric disorders. <sup>10</sup> According to a study of 297 construction workers           |
| 5<br>6<br>7     | 85  | followed for two years, the longer the unemployment, the greater rise in blood pressure levels. <sup>19</sup> Poor health is a |
| ,<br>8<br>9     | 86  | direct or indirect consequence of unemployment, and this causal relationship was mediated by health behaviors                  |
| 10<br>11        | 87  | such as tobacco or alcohol consumption. <sup>20-23</sup>                                                                       |
| 12<br>13        | 88  | No study, however, has focused on the impact of Ikigai on mortality risk by employment status. We                              |
| 14<br>15<br>16  | 89  | hypothesize that Ikigai positively impacts cardiovascular health even in an unemployed situation. We aimed to                  |
| 17<br>18        | 90  | test this hypothesis using a long-term follow-up of a large-scale prospective cohort study of Japanese adults.                 |
| 19<br>20        | 91  |                                                                                                                                |
| 21<br>22        | 92  | Methods                                                                                                                        |
| 23<br>24        | 93  | Study population                                                                                                               |
| 25<br>26<br>27  | 94  | The Japan Collaborative Cohort Study for the Evaluation of Cancer Risks (JACC study) enrolled residents in 45                  |
| 28<br>29        | 95  | area around Japan between 1988 and 1990. Participants were required to conduct self-administered                               |
| 30<br>31<br>32  | 96  | questionnaires about their lifestyle and previous medical history concerning cardiovascular disease (CVD) and                  |
| 33<br>34        | 97  | cancer at baseline. The details of the study procedure are described elsewhere. <sup>24</sup> Briefly, a total of 110 585      |
| 35<br>36        | 98  | subjects (46 395 men and 64 190 women) aged 40 to 79 years old participated in the JACC study at the baseline                  |
| 37<br>38<br>39  | 99  | survey. Among the participants, 7 692 were excluded due to a past history of CVD or cancer at baseline.                        |
| 40j<br>41       | L00 | Additionally, we excluded 31 392 excluded for 25 730 participants in areas with no questions about <i>Ikigai</i> and 5         |
| 42<br>43        | 101 | 662 participants who lacked information about Ikigai. Finally, 71 501 subjects (29 517 men and 41 984 women)                   |
| 44<br>45        | 102 | were eligible for inclusion in the analyses (Figure 1). Prior to the completion of the questionnaire, the                      |
| 40<br>47]<br>48 | 103 | participants were provided informed consent to be involved in this epidemiological study. Individual informed                  |
| 49<br>50        | 104 | consent was obtained from each participant in 36 out of the 45 study areas (written consent in 35 areas and oral               |
| 51<br>52        | L05 | consent in 1 area). In the remaining nine areas, group consent was obtained from each community                                |
| 53<br>54<br>55  | 106 | representative. Ethical approval for the present study was given by the ethical committees of Osaka University                 |
| 56j<br>57       | L07 | and Hokkaido University.                                                                                                       |
| 58<br>59        | 108 |                                                                                                                                |
| 60              |     |                                                                                                                                |

## 2 <sup>3</sup> 109 4 5 110 6 7 8 1 1 1 9 <sup>10</sup>112 11 12 13 13 14 15114 16 17115 18 <sup>19</sup>116 20 21 22<mark>117</mark> 23 24118 25 <sup>26</sup>119 27 28 29</sub>120 30 31121 32 <sup>33</sup>122 34 <sup>35</sup> 36</sub>123 37 38124 39 40125 41 <sup>42</sup>126 43 44 45127 46 47128 48 <sup>49</sup>129 50 <sup>51</sup> 52130 53 54131 55 56132 57 <sup>58</sup> 59</sub>133 60

### 9 Mortality surveillance

1

The date and cause of death for participants were determined by reviewing all death certificates from each area. According to the International Classification of Diseases, 10th revision, cause-specific mortality was defined within total CVD mortality (101 to 199). Type-specific CVD mortality was defined as 160.0 to 169.8 for total stroke, 120.0 to 125.5 for coronary heart disease, 150.0 to 150.9 for heart failure, and other CVDs. Total stroke was divided into three subtypes: cerebral infarction (163.0 to 163.9), hemorrhagic stroke (160.0 to 161.9), and stroke of undetermined type (162.0 to 162.9 and 164 to 169.8). From baseline until December 31, 2009, a total of 15 801 participants were censored because of death, and 3 986 were censored because they moved out of their original residential area; follow-up was terminated at the end of 1999 (four areas), 2003 (four areas), and 2008 (two areas). The median follow-up period was 19.1 years (interquartile range, 10.4 to 20.7).

### 20 Baseline Measurement

At baseline, we used a self-administered questionnaire to obtain information on age, body mass index (BMI) (calculated by dividing body weight in kilograms by height squared in meters), smoking status, alcohol consumption, sleep duration, walking time per day, sports activity time per week, education level, marital status, employment status, and psychological conditions such as *lkigai*, perceived mental stress, sense of life enjoyment, and medical history of hypertension and diabetes mellitus. *lkigai* was assessed using the question 'How much *lkigai* do you feel in your daily life?' and responses were assessed using a four-point Likert scale: 'low,' 'moderate,' 'high,' and 'very high.' We collapsed 'very high' into 'high' for the analyses, as did previous studies.<sup>25 26</sup> Other psychological conditions were evaluated by single-item questions using four points Likert scale.

431 Statistical analysis

For each participant, we calculated the person-years of follow-up from the baseline surveys between 1988 and 1990 to the first endpoint of death, moving from the community, or the end of 2009. Mortality rates for CVD Page 9 of 30

### **BMJ** Open

were estimated according to the perceived levels of *Ikigai* at baseline. We compared sex-specific and ageadjusted mean or prevalence of baseline risk characteristics according to perceived levels of *Ikigai* among participants using the linear regression or mantel-haenszel test.

The analysis used a Cox proportional hazards model to calculate sex-specific hazard ratios (HRs) and 95% confidence intervals (CIs) of CVD according to perceived levels of Ikigai at baseline and the risk of mortality from CVD at follow-up. The adjustment was done for age and then for other potential confounders: BMI (< 18.5, 18.5 to <25.0, 25.0 to 30.0, 30,0 to 35.0, and  $\geq$  35.0 kg/m<sup>2</sup>), smoking status (never, ex-smoker, and current smoker), alcohol consumption (never, ex-drinker, 1-20 and 20.0 g ethanol per day), sports activity time per week (almost never, 1–2, 3–4 and  $\geq$ 5 hour per week), walking time per day (almost never, 0.5, 0.6–0.9, and  $\geq 1$  hour per day), education levels (<13, 13–15, 16–18, and  $\geq 19$  years), marital status (living with a spouse, divorced, bereaved and single), sleep duration per day (<5, 5, 6, 7, 8, 9 and  $\geq$ 10 hour per day), perceived mental stress (low, moderate, high, very high), sense of life enjoyment (always, sometimes, moderate, never) and medical history of hypertension and diabetes (yes or no). Missing values for these covariates were treated as additional missing categories, and the model contained these dummy variables. Furthermore, the stratified analysis was performed for six categories of employment status; employed, selfemployed, part-time workers, homemakers, unemployed, and others. Homemakers were regarded as the category of employed because they were primarily women, and many of them were assumed to have motivation for children and housework in Japan. In addition, we conducted a sensitivity analysis to exclude those who died early and those who moved and were censored in the first five years of follow-up and the type-specific CVD analysis for total stroke, ischemic stroke, hemorrhagic stroke, stroke of undetermined type, coronary heart disease, heart failure, and other CVDs. To test for linear trends across the *Ikigai* categories for baseline risk characteristics and hazard ratios, and ordering variable of Ikigai (1: low, 2: moderate, 3: high) was used. Probability values for statistical significance were two-tailed, and a *P*-value <0.05 was regarded as statistically significant. The statistical analyses were carried out using SAS version 9.4 (SAS Institute Inc., Cary, NC, USA). <sup>58</sup>59158 **Patient and Public Involvement** 60

1 2

4 5

7

<sup>3</sup> 159 Patients and/or the public were not involved in the design, conduct, reporting, or dissemination plans of this 160 research. 6 8 161 9 <sup>10</sup>162 Results 11 12 13</sub>163 During a follow-up of 1 160 648 person-years, the deaths of 4 680 (men and women: 2 393 and 2 287) due to 14 15164 total CVD were documented. Other deaths from major CVD types were 2 053 (1 047 and 1 006) total strokes, 16 17165 716 (398 and 318) ischemic strokes, 739 (344 and 395) hemorrhagic strokes, 598 (305 and 293) strokes of 18 <sup>19</sup>166 20 undetermined type, 975 (550 and 425) coronary heart diseases, 792 (361 and 431) heart failures, and 860 (435 21 22<mark>167</mark> and 425) other CVDs. 23 24168 Table 1 shows the mean values or prevalence of cardiovascular risk factors and health behaviors at 25 <sup>26</sup>169 27 baseline according to Ikigai level. In both men and women, those with high Ikigai tended to have higher levels of 28 29</sub>170 the following factors: BMI, self-employed, higher education ( $\geq 16$  years), current alcohol consumption, never 30 31171 smoking, living with a spouse, sports activity ( $\geq 1-2$  h/week), walking time ( $\geq 1$  h/day), low perceived mental 32 <sup>33</sup>172 34 stress and high life enjoyment. Unlike men, women with high Ikigai tended to be employed or part-time <sup>35</sup> 36</sub>173 workers. 37 38174 Table 2 shows the sex-specific risk of mortality from total CVD according to the level of Ikigai, 39 40175 41 stratified by employment status. Men who had moderate and high *Ikigai* had a lower risk of mortality from total <sup>42</sup>176 43 CVD than those with low *Ikigai*. Multivariable HRs (95% CIs) were 0.80 (0.68 to 0.93) and 0.74 (0.64 to 0.87); 44 45<sup>1</sup>77 P for trend < 0.001, respectively. A similar inverse association was observed among unemployed men, 46 47178 multivariable HRs (95% CIs) were 0.74 (0.57 to 0.97) and 0.69 (0.52 to 0.93); P for trend = 0.044, respectively. 48 <sup>49</sup>179 50 Women who had moderate and high *Ikigai* levels tended to have a lower risk of mortality from total CVD than <sup>51</sup> 52<sup>1</sup>80 those with low *Ikigai*. But, tests for trend were not statistically significant: multivariable HRs (95% CI) were 53 54181 0.87 (0.75 to 1.00) and 0.88 (0.76 to 1.03); P for trend = 0.136, respectively. Among unemployed women, those 55 56182 57 who had moderate and high Ikigai had a lower risk of mortality from total CVD than those who had low Ikigai; <sup>58</sup> 59</sub>183 tests for trend were statistically significant: multivariable HRs (95% CI) were 0.78 (0.64 to 0.95) and 0.77 (0.61 60

| 2                             |                                                                                                                             |
|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| <sup>3</sup> 184<br>4         | to 0.97); $P$ for trend = 0.039, respectively. No associations were observed among the unemployed, including                |
| <sup>5</sup> <sub>6</sub> 185 | part-time workers, self-employed, and homemakers for both men and women.                                                    |
| /<br>8 186                    | Table 3 shows the sensitivity analysis in which we censored individuals who died and those who moved                        |
| 10 <u>1</u> 87<br>11          | during the first five years of follow-up, having excluded individuals who had an early death. The inverse                   |
| 12<br>13188                   | associations did not differ materially for both men and women.                                                              |
| 14<br>15189<br>16             | Table 4 shows the risk of mortality from CVD types according to the perceived levels of Ikigai among                        |
| 17 <u>1</u> 90<br>18          | the unemployed. Unemployed men and women with high Ikigai had lower risks of mortality from total stroke,                   |
| <sup>19</sup> 191<br>20       | stroke subtypes (ischemic stroke, hemorrhagic stroke, and stroke of determined type), coronary heart disease,               |
| 21<br>22192                   | heart failure, and other CVDs than those with low Ikigai. After adjusting for CVD risk factors, the inverse                 |
| 23<br>24193<br>25             | association remained statistically significant for total stroke, stroke of determined type, and coronary heart              |
| <sup>26</sup> 194<br>27       | disease.                                                                                                                    |
| 28<br>29 <sup>1</sup> 95      |                                                                                                                             |
| 30<br>31196<br>32             | Discussion                                                                                                                  |
| 33 <u>1</u> 97<br>34          | In a large prospective cohort study, higher levels of Ikigai were associated with a lower risk of mortality from            |
| <sup>35</sup><br>36198        | total CVD among unemployed men and women after adjustment for known cardiovascular risk factors, but such                   |
| 37<br>38199<br>39             | as inverse association was not observed for the employed. The lower risk of CVD mortality among the                         |
| 40200<br>41                   | unemployed was observed even after excluding early deaths within five years from the baseline survey.                       |
| 42<br>43<br>201               | Furthermore, the risk reduction was evident for total stroke and coronary heart disease among the unemployed                |
| 44<br>45202                   | people.                                                                                                                     |
| 46<br>47203<br>48             | The underlying biological mechanisms for the potential preventive effect of Ikigai on mortality from                        |
| <sup>49</sup> 204<br>50       | CVD remained unclear, but some reasons have been addressed. Elevated levels of inflammatory markers such                    |
| <sup>51</sup><br>52205        | as C-reactive protein and interleukin-6 were associated with an increased CVD risk. <sup>27-29</sup> A previous study using |
| 53<br>54206<br>55             | data from a 10-year panel survey of 985 adults aged 25 to 74 years residing in the United States showed that                |
| 55<br>56207<br>57             | people with a higher purpose in life had lower physiological function scores, calculated by summarizing                     |
| 58<br>59208<br>60             | biomarkers such as resting blood pressure, heart rate variability, low-density lipoprotein cholesterol, glycosylated        |

<sup>3</sup> 209 hemoglobin, plasma C-reactive protein, interleukin-6, urinary measures of epinephrine/norepinephrine and <sup>5</sup><sub>6</sub>210 cortisol levels.<sup>30</sup> Another study of 135 older women aged 61 to 91 years found that those with higher scores of 8 2 1 1 purpose in life had lower levels of the soluble IL-6 receptor, an inflammatory marker for stroke, coronary heart <sup>10</sup>212 11 disease as well as rheumatoid arthritis and Alzheimer's disease.<sup>31</sup>

1 2

4

7

9

12 13<sup>2</sup>13 Two other prospective cohort studies using 9.1-year follow-up data for 941 persons and 6-year follow-14 15214 up data for 2 478 persons showed that the risk reductions associated with positive psychological factors in all-16 17215 cause mortality and stroke incidence were stronger in men than in women.<sup>32,33</sup> A previous report of the JACC 18 19 20 study with a 12.5-year follow-up showed that men with higher Ikigai had a reduced risk of CVD mortality but 21 22217 not women.<sup>34</sup> We observed a similar inverse association of CVD mortality risk in the present study and extended 23 24218 25 26219 27 the evidence that the inverse association between Ikigai and CVD mortality risk was confined to unemployed men and women.

28 29<mark>2</mark>20 The present study has several strengths compared to previous studies. First, a population-based cohort 30 31221 study with a large sample size and a more extended follow-up period allowed us to assess the risk of 32 33222 34 cardiovascular mortality according to the perceived levels of *Ikigai*, stratified by employment status. Second, we <sup>35</sup> 36</sub>223 adjusted for many confounding factors including lifestyle habits, social and psychological factors, and past 37 38<sup>2</sup>24 medical histories such as hypertension and diabetes mellitus. There were some limitations to our study. First, 39 40225 41 42226 43 psychological factors such as Ikigai were evaluated by a self-administered single-item questionnaire. It has been noted that Ikigai encompasses not only eudaimonic well-being, i.e., well-being that pertains to internal virtue and 44 45227 pursuing human capacity<sup>35</sup>, but also aspects of hedonic well-being characterized by pleasure and satisfaction not 46 47228 necessarily resulting from a virtuous activity<sup>36</sup>. Unemployed persons with *Ikigai* were possibly likely to have 48 49229 50 available eudaimonic or hedonic well-being in their daily lives. However, the present study did not provide <sup>51</sup> 52230 information on the details of *Ikigai*. Second, the presence of illness and preclinical conditions may have 53 54231 influenced *Ikigai* at baseline, which could lead to reverse causality. Therefore, we excluded histories of CVD 55 56232 57 and cancer and also conducted a sensitivity analysis in which individuals who died or moved during the first five <sup>58</sup>233 years of follow-up were censored and found that the inverse association between Ikigai and the risk of CVD 60

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 13 of 30

#### **BMJ** Open

mortality remained unchanged. Lastly, although we adjusted for numerous potential confounders, some
unmeasured confounders, such as the usage of medical services, may still be present. A previous study using a
national panel study of 7 168 US adults showed that having a purpose in life was associated with a higher
likelihood of using health care services such as cholesterol tests, colonoscopies, mammogram/X-ray, pap smear,
and prostate examinations.<sup>37</sup>

### 0 Conclusion

We found that higher levels of *Ikigai* were associated with a lower risk of CVD mortality, specifically for unemployed men and women. Having *Ikigai* might be useful for the risk reduction of CVD mortality among the unemployed.

### 45 Acknowledgments

We express our sincere thanks to Drs. Kunio Aoki and Yoshiyuki Ohno, Professors Emeritus of the Nagoya
University School of Medicine and former chairpersons of the JACC Study. We are also greatly indebted to Dr.
Haruo Sugano, former Director of the Cancer Institute, Tokyo, who contributed greatly to the initiation of the
JACC Study; to Dr. Tomoyuki Kitagawa, Director Emeritus of the Cancer Institute of the Japanese Foundation
for Cancer Research and former project leader of the Grant-in-Aid for Scientific Research on Priority Area'
Cancer'; and to Dr. Kazao Tajima, Aichi Cancer Center, who was the previous project leader of the Grant-in-Aid
for Scientific Research on Priority Area of Cancer Epidemiology.
Writing Committee Members for the JACC Study Group Dr. Akiko Tamakoshi (present chairperson of the
study group), Hokkaido University Graduate School of Medicine; Drs. Mitsuru Mori and Fumio Sakauchi,
Sapporo Medical University Graduate School of Medicine; Dr. Yoshikazu Nakamura, Jichi Medical
School; Dr. Hiroyasu Iso, Osaka University School of Medicine; Dr. Yoshikazu Nakamura, Yokohama Soei

University; Dr. Naohito Tanabe, University of Niigata Prefecture; Dr. Koji Tamakoshi, Nagoya University
Graduate School of Health Science; Dr. Kenji Wakai, Nagoya University Graduate School of Medicine; Dr.
Shinkan Tokudome, National Institute of Health and Nutrition; Dr. Koji Suzuki, Fujita Health University School
of Health Sciences; Dr. Shuji Hashimoto, Fujita Health University School of Medicine; Dr. Shogo Kikuchi,
Aichi Medical University School of Medicine; Dr. Yasuhiko Wada, Faculty of Nutrition, University of Kochi;
Dr. Takashi Kawamura, Kyoto University Center for Student Health; Dr. Yoshiyuki Watanabe, Kyoto
Prefectural University of Medicine Graduate School of Medical Science; Dr. Kotaro Ozasa, Radiation Effects
Research Foundation; Dr. Tsuneharu Miki, Kyoto Prefectural University of Medicine Graduate School of Human Science and Environment, University of Hyogo; Dr.
Kiyomi Sakata, Iwate Medical University; Dr. Yoichi Kurozawa, Tottori University Faculty of Medicine; Drs.
Takesumi Yoshimura and Yoshihisa Fujino, University of Occupational and Environmental Health; Dr. Akira
Shibata, Kurume University; Dr. Naoyuki Okamoto, Kanagawa Cancer Center; and Dr. Hideo Shio, Moriyama
Municipal Hospital.

Author Contributions HI and AT conceived and designed the study; JM, and KS drafted the plan for the data analyses; JM and TK conducted data analysis; SI and TK provided statistical expertise and interpreted the data; JM drafted the manuscript; HI and KS analyzed and interpreted the data, and critically revised the manuscript; JM, KS, and HI had primary responsibility for final content; and all authors were involved in interpretation of the results and revision of the manuscript and approved the final version of the manuscripts. JM, KS, and HI are guarantors.

Funding This study has been supported by Grants-in-Aid for Scientific Research from the Ministry of
Education, Culture, Sports, Science and Technology of Japan (MEXT) (MonbuKagaku-sho); Grants-in-Aid for
Scientific Research on Priority Areas of Cancer; and Grants-in-Aid for Scientific Research on Priority Areas of
Cancer Epidemiology from MEXT (Nos. 61010076, 62010074, 63010074, 1010068, 2151065, 3151064,
4151063, 5151069, 6279102, 11181101, 17015022, 18014011, 20014026, 20390156, 26293138), and JSPS

Page 15 of 30

| 1<br>2                              |                                                                                                             |
|-------------------------------------|-------------------------------------------------------------------------------------------------------------|
| <sup>3</sup> 284<br>4               | KAKENHI No.16H06277. This research was also supported by Grant-in-Aid from the Ministry of Health,          |
| <sup>5</sup><br>6 285               | Labour and Welfare, Health and Labor Sciences research grants, Japan (Comprehensive Research on             |
| 7<br>8 286<br>9                     | Cardiovascular Disease and Lifestyle Related Diseases: H20-Junkankitou [Seishuu]-Ippan-013; H23-            |
| 10287<br>11                         | Junkankitou [Seishuu]-Ippan-005); an Intramural Research Fund (22-4-5) for Cardiovascular Diseases of       |
| 12<br>13 <sup>2</sup> 88            | National Cerebral and Cardiovascular Center; Comprehensive Research on Cardiovascular Diseases and          |
| 14<br>15289                         | Lifestyle Related Diseases (H26-Junkankitou [Seisaku]-Ippan-001) and H29-Junkankitou [Seishuu]-Ippan-003    |
| 17290<br>18                         | and 20FA1002.                                                                                               |
| <sup>19</sup> 291<br>20             | Competing interests None declared.                                                                          |
| 21<br>22292                         | Patient and public involvement Patients and/or the public were not involved in the design, or conduct, or   |
| 23<br>24293<br>25                   | reporting, or dissemination plans of this research.                                                         |
| <sup>26</sup> 294<br>27             | Patient consent for publication Not required.                                                               |
| 28<br>29295                         | Ethical approval This study was approved by the ethics committees of Hokkaido University, Hokkaido, Japan,  |
| 30<br>31296<br>32                   | and Osaka University, Osaka, Japan. number/ID 14285-6.                                                      |
| 33297<br>34                         | Provenance and peer review Not commissioned; externally peer reviewed.                                      |
| <sup>35</sup><br>36 <sup>2</sup> 98 | Data availability statement The raw/processed data required to reproduce these findings cannot be shared at |
| 37<br>38299                         | this time as the data also forms part of an ongoing study.                                                  |
| 40300<br>41                         |                                                                                                             |
| <sup>42</sup> 301<br>43             |                                                                                                             |
| 44<br>45 <sup>3</sup> 02            |                                                                                                             |
| 46<br>47303                         |                                                                                                             |
| 48<br>49304                         |                                                                                                             |
| 50<br>51<br>205                     |                                                                                                             |
| 52 <sup>505</sup><br>53             |                                                                                                             |
| 54306                               |                                                                                                             |
| 56307                               |                                                                                                             |
| 57<br>58,00                         |                                                                                                             |
| 59 <sup>308</sup>                   |                                                                                                             |
| 00                                  |                                                                                                             |

| 1<br>2                               |                                                                                                    |
|--------------------------------------|----------------------------------------------------------------------------------------------------|
| $\frac{3}{4}$ 309                    | REFERENCES                                                                                         |
| <sup>5</sup> 310<br>6311             | 1. Collins AL, Glei DA, Goldman N. The role of life satisfaction and depressive symptoms in all-   |
| 8 312<br>9                           | cause mortality. Psychol Aging 2009;24:696-702.                                                    |
| 10<br>11313<br>12                    | 2. Koivumaa-Honkanen H, Honkanen R, Viinamaki H, et al. Self-reported life satisfaction and 20-    |
| <sup>13</sup><br>14314<br>15         | year mortality in healthy Finnish adults. Am J Epidemiol 2000;152:983-91.                          |
| 16<br>17315<br>18<br>19              | 3. Steptoe A. Happiness and Health. Annu Rev Public Health 2019;40:339-59.                         |
| 20316<br>21                          | 4. Shirai K, Iso H, Ohira T, et al. Perceived level of life enjoyment and risks of cardiovascular  |
| <sup>22</sup> 317<br>23              | disease incidence and mortality: the Japan public health center-based study. Circulation           |
| 24<br>25 <sup>3</sup> 18<br>26<br>27 | 2009;120:956-63.                                                                                   |
| 28/<br>28/19<br>29                   | 5. Rozanski A, Bavishi C, Kubzansky LD, et al. Association of optimism with cardiovascular events  |
| <sup>30</sup> 320<br>31              | and all-cause mortality: a systematic review and meta-analysis. JAMA Netw Open                     |
| 32<br>33 <sup>3</sup> 21<br>34       | 2019;2:e1912200.                                                                                   |
| 35<br>36322<br>37                    | 6. Tomioka K, Kurumatani N, Hosoi H. Relationship of having hobbies and a purpose in life with     |
| 38323<br>39                          | mortality, activities of daily living, and instrumental activities of daily living among           |
| 40<br>41<br>324<br>42                | community-dwelling elderly adults. <i>J Epidemiol</i> 2016;26:361-70.                              |
| 43<br>44325<br>45                    | 7. Tang M, Wang D, Guerrien A. A systematic review and meta-analysis on basic psychological        |
| 46326<br>47                          | need satisfaction, motivation, and well-being in later life: Contributions of self-determination   |
| 48327<br>49<br>50                    | theory. <i>Psych J</i> 2020;9:5-33.                                                                |
| 51<br>52 <sup>3</sup> 28             | 8. Cohen R, Bavishi C, Rozanski A. Purpose in life and Its relationship to all-cause mortality and |
| 54829<br>55<br>56                    | cardiovascular events: a meta-analysis. Psychosom Med 2016;78:122-33.                              |
| <sup>57</sup> 330<br>58              | 9. Mathews G. What Makes Life Worth Living? How Japanese and Americans Make Sense of Their         |
| <sup>59</sup><br>60 <sup>3</sup> 31  | Worlds. Berkeley: University of California Press 1996                                              |

Page 17 of 30

1

| 2                               |                                                                                                            |
|---------------------------------|------------------------------------------------------------------------------------------------------------|
| <sup>3</sup> 332<br>4           | 10. Shirai K, Iso H, Fukuda H, et al. Factors associated with "Ikigai" among members of a public           |
| <sup>5</sup><br>6 333           | temporary employment agency for seniors (Silver Human Resources Centre) in Japan; gender                   |
| 7<br>8 334<br>9                 | differences. Health Qual Life Outcomes 2006;4:12.                                                          |
| 10                              |                                                                                                            |
| 11 <u>335</u><br>12             | 11. Weiss RS, Bass SA, Heimovitz HK, et al. Japan's silver human resource centers and participant          |
| 13<br>14 <sup>3</sup> 336<br>15 | well-being. J Cross Cult Gerontol 2005;20:47-66.                                                           |
| 16<br>1 <i>7</i> 337<br>18      | 12. Sone T, Nakaya N, Ohmori K, et al. Sense of life worth living (ikigai) and mortality in Japan:         |
| 19338<br>20                     | Ohsaki Study. Psychosom Med 2008;70:709-15.                                                                |
| 21                              |                                                                                                            |
| 23                              | 13. Kim ES, Sun JK, Park N, <i>et al.</i> Purpose in life and reduced incidence of stroke in older adults: |
| 24<br>25 <sup>3</sup> 40<br>26  | 'The Health and Retirement Study'. J Psychosom Res 2013;74:427-32.                                         |
| 27                              |                                                                                                            |
| 28841<br>29                     | 14. Roelfs DJ, Shor E, Davidson KW, <i>et al.</i> Losing life and livelihood: a systematic review and      |
| <sup>30</sup> 342<br>31         | meta-analysis of unemployment and all-cause mortality. Soc Sci Med 2011;72:840-54.                         |
| 32<br>33                        |                                                                                                            |
| <sub>34</sub> 343               | 15. Meneton P, Kesse-Guyot E, Mejean C, et al. Unemployment is associated with high                        |
| 35<br>36344<br>37               | cardiovascular event rate and increased all-cause mortality in middle-aged socially privileged             |
| 38345                           | individuals. Int Arch Occup Environ Health 2015;88:707-16.                                                 |
| 39<br>40                        |                                                                                                            |
| 40<br>41 <sub>346</sub>         | 16 Gallo WT Evolution of research on the effect of unemployment on acute myocardial infarction             |
| 42 <sup>5 + 0</sup><br>43       | 10. Gano w 1. Evolution of research on the effect of unemployment of acute myocardiar infarction           |
| 4 <u>4</u> 347                  | risk. Arch Intern Med 2012;172:1737-8.                                                                     |
| 45<br>46                        |                                                                                                            |
| 47348<br>48                     | 17. Brenner MH. The impact of unemployment on heart disease and stroke mortality in European               |
| 49349<br>50                     | Union Countries. EU publications 2016                                                                      |
| 52<br>53 <sup>3</sup> 50        | 18. Vanthomme K, Gadeyne S. Unemployment and cause-specific mortality among the Belgian                    |
| 54<br>55351<br>56<br>57<br>58   | working-age population: The role of social context and gender. <i>PLoS One</i> 2019;14:e0216145.           |
| 59<br>60                        |                                                                                                            |
|                                 |                                                                                                            |

| 2                                               |                                                                                                        |
|-------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| <sup>3</sup> 352<br>4                           | 19. Janlert U. Unemployment and blood pressure in Swedish building labourers. J Intern Med             |
| 5<br>6353<br>7                                  | 1992;231:241-6.                                                                                        |
| 。<br>9 354<br>10                                | 20. Weden MM, Astone NM, Bishai D. Racial, ethnic, and gender differences in smoking cessation         |
| 1 <i>1</i> 355<br>12                            | associated with employment and joblessness through young adulthood in the US. Soc Sci                  |
| <sup>13</sup> 356<br>14<br>15                   | <i>Med</i> 2006;62:303-16.                                                                             |
| 16<br>1 <i>7</i> 357<br>18                      | 21. Janlert U. Unemployment as a disease and diseases of the unemployed. Scand J Work Environ          |
| 19358<br>20<br>21                               | Health 1997;23 Suppl 3:79-83.                                                                          |
| <sup>22</sup> 359<br>23                         | 22. Backhans MC, Balliu N, Lundin A, et al. Unemployment is a risk factor for hospitalization due      |
| 24<br>25 <sup>3</sup> 60<br>26                  | to alcohol problems: a longitudinal study based on the Stockholm Public Health Cohort                  |
| 27361<br>28<br>29                               | (SPHC). J Stud Alcohol Drugs 2016;77:936-42.                                                           |
| <sup>30</sup> 362<br>31                         | 23. Hammarstrom A. Health consequences of youth unemploymentreview from a gender                       |
| <sup>32</sup><br>33 <sup>3</sup> 63<br>34<br>35 | perspective. Soc Sci Med 1994;38:699-709.                                                              |
| 3හි64<br>37                                     | 24. Tamakoshi A, Ozasa K, Fujino Y, et al. Cohort profile of the Japan Collaborative Cohort Study      |
| 38365<br>39<br>40                               | at final follow-up. <i>J Epidemiol</i> 2013;23:227-32.                                                 |
| <sup>41</sup> 366                               | 25. Yasukawa S, Eguchi E, Ogino K, et al. "Ikigai", subjective wellbeing, as a modifier of the parity- |
| 43<br>44367<br>45                               | cardiovascular mortality association- The Japan Collaborative Cohort Study. Circ J                     |
| 46368<br>47<br>48                               | 2018;82:1302-08.                                                                                       |
| <sup>49</sup> 369<br>50                         | 26. Tanno K, Sakata K. Psychological factors and mortality in the Japan Collaborative Cohort Study     |
| 51<br>52 <sup>3</sup> 70<br>53<br>54            | for Evaluation of Cancer (JACC). Asian Pac J Cancer Prev 2007;8:113-22.                                |
| 55371<br>56                                     | 27. De Martinis M, Franceschi C, Monti D, et al. Inflammation markers predicting frailty and           |
| <sup>57</sup> 372<br>58<br>59<br>60             | mortality in the elderly. Exp Mol Pathol 2006;80:219-27.                                               |

Page 19 of 30

1

| 2                                               |                                                                                                        |
|-------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| <sup>3</sup> 373<br>4                           | 28. Harris TB, Ferrucci L, Tracy RP, et al. Associations of elevated interleukin-6 and C-reactive      |
| 5<br>6374<br>7                                  | protein levels with mortality in the elderly. Am J Med 1999;106:506-12.                                |
| 8<br>9 375<br>10                                | 29. Reuben DB, Cheh AI, Harris TB, et al. Peripheral blood markers of inflammation predict             |
| <sup>11</sup> 376<br>12                         | mortality and functional decline in high-functioning community-dwelling older persons. J Am            |
| <sup>13</sup><br>14 <sup>3</sup> 77<br>15       | <i>Geriatr Soc</i> 2002;50:638-44.                                                                     |
| 16<br>17378<br>18                               | 30. Zilioli S, Slatcher RB, Ong AD, et al. Purpose in life predicts allostatic load ten years later. J |
| 19379<br>20<br>21                               | Psychosom Res 2015;79:451-7.                                                                           |
| <sup>22</sup> 380                               | 31. Friedman EM, Hayney M, Love GD, et al. Plasma interleukin-6 and soluble IL-6 receptors are         |
| 24<br>25 <sup>3</sup> 81<br>26<br>27            | associated with psychological well-being in aging women. <i>Health Psychol</i> 2007;26:305-13.         |
| 27<br>28382<br>29                               | 32. Giltay EJ, Geleijnse JM, Zitman FG, et al. Dispositional optimism and all-cause and                |
| <sup>30</sup> 383<br>31                         | cardiovascular mortality in a prospective cohort of elderly Dutch men and women. Arch Gen              |
| <sup>32</sup><br>33 <sup>3</sup> 84<br>34       | <i>Psychiatry</i> 2004;61:1126-35.                                                                     |
| 35<br>36385<br>37                               | 33. Ostir GV, Markides KS, Peek MK, et al. The association between emotional well-being and the        |
| <sup>38</sup> 386<br>39<br>40                   | incidence of stroke in older adults. <i>Psychosom Med</i> 2001;63:210-5.                               |
| <sup>41</sup><br>42 <sup>387</sup>              | 34. Tanno K, Sakata K, Ohsawa M, et al. Associations of ikigai as a positive psychological factor      |
| 43<br>44388<br>45                               | with all-cause mortality and cause-specific mortality among middle-aged and elderly                    |
| 46389<br>47                                     | Japanese people: findings from the Japan Collaborative Cohort Study. J Psychosom Res                   |
| <sup>48</sup> 390<br>49<br>50                   | 2009;67:67-75.                                                                                         |
| 51<br>52 <sup>3</sup> 91                        | 35. Ryff CD. Psychological well-being revisited: advances in the science and practice of eudaimonia.   |
| 53<br>54392<br>55<br>56<br>57<br>58<br>59<br>60 | Psychother Psychosom 2014;83:10-28.                                                                    |

| 1<br>2                                    |                                                                                                           |
|-------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| <sup>3</sup> 393<br>4                     | 36. Trudel-Fitzgerald C, Millstein RA, von Hippel C, et al. Psychological well-being as part of the       |
| 5<br>6 394                                | public health debate? Insight into dimensions, interventions, and policy. BMC Public Health               |
| 7<br>8 395                                | 2019;19:1712.                                                                                             |
| 9<br>10<br>11 <u>3</u> 96<br>12           | 37. Kim ES, Strecher VJ, Ryff CD. Purpose in life and use of preventive health care services. <i>Proc</i> |
| <sup>13</sup> 397<br>14                   | <i>Natl Acad Sci U S A</i> 2014;111:16331-6.                                                              |
| 15<br>16398                               |                                                                                                           |
| 17<br>18399<br>19<br>20<br>21<br>22<br>23 |                                                                                                           |
| 24<br>25                                  |                                                                                                           |
| 26<br>27                                  |                                                                                                           |
| 28<br>29                                  |                                                                                                           |
| 30<br>31<br>32                            |                                                                                                           |
| 32<br>33<br>34                            |                                                                                                           |
| 35<br>36                                  |                                                                                                           |
| 37<br>38                                  |                                                                                                           |
| 39<br>40                                  |                                                                                                           |
| 41<br>42<br>43                            |                                                                                                           |
| 43<br>44<br>45                            |                                                                                                           |
| 46<br>47                                  |                                                                                                           |
| 48<br>49                                  |                                                                                                           |
| 50<br>51                                  |                                                                                                           |
| 52<br>53                                  |                                                                                                           |
| 54<br>55<br>56                            |                                                                                                           |
| 57<br>58                                  |                                                                                                           |
| 59<br>60                                  |                                                                                                           |
|                                           |                                                                                                           |

### BMJ Open

|                                                |                        | Men          |                      |                           |             | Women                     |                      |                           |
|------------------------------------------------|------------------------|--------------|----------------------|---------------------------|-------------|---------------------------|----------------------|---------------------------|
|                                                | Low                    | Moderate     | High                 | <b>P</b> <sub>Trend</sub> | Low         | Moderate                  | High                 | <b>P</b> <sub>Trend</sub> |
| No. at risk, n (%)                             | 2197 (7.4)             | 12240 (41.5) | 15080 (51.1)         |                           | 3819 (9.1)  | 20308 (48.4)              | 17857 (42.5)         |                           |
| Age, years, mean (SD)                          | 57.4 (10.5)            | 57.2 (10.1)  | 56.8 (10.2)          | < 0.001                   | 58.1 (10.8) | 57.7 (10.0)               | 56.8 (9.9)           | < 0.001                   |
| Body Mass Index, kg/m <sup>2</sup> , mean (SD) | 22.5 (2.9)             | 22.5 (2.8)   | 22.8 (2.8)           | < 0.001                   | 23.1 (3.5)  | 22.8 (3.1)                | 23.1 (3.1)           | < 0.001                   |
| Employment status, n (%)                       | ~ /                    | ~ /          | ~ /                  | < 0.001                   |             | × ,                       | ~ /                  | < 0.001                   |
| Employed                                       | 560 (25.5)             | 4658 (38.1)  | 5362 (35.6)          |                           | 385 (10.1)  | 2714 (13.4)               | 2550 (14.3)          |                           |
| Self-employed                                  | 423 (19.3)             | 3860 (31.5)  | 5669 (37.6)          |                           | 367 (9.6)   | 3137 (15.4)               | 3321 (18.6)          |                           |
| Part-time worker                               | 24(1.1)                | 267 (2.2)    | 282 (1.9)            |                           | 290 (7.6)   | 1987 (9.8)                | 1779 (10.0)          |                           |
| Unemployed                                     | 436 (19.8)             | 2262 (18.5)  | 1802 (11.9)          |                           | 894 (23.4)  | 4364 (21.5)               | 2637 (14.8)          |                           |
| Homemaker                                      | 2(0.1)                 | 13 (0.1)     | 9 (0.1)              |                           | 685 (17.9)  | 6201 (30.5)               | 4908 (27.5)          |                           |
| Other                                          | 752 (34.2)             | 1180 (9.6)   | 1956 (13)            |                           | 1198 (31.4) | 1905 (9.4)                | 2662 (14.9)          |                           |
| Education level, n (%)                         | )                      |              |                      | < 0.001                   |             |                           | (,)                  | < 0.001                   |
| <16 years                                      | 714 (48.0)             | 4465 (39.1)  | 4079 (30.2)          |                           | 1329 (49.8) | 7686 (40.7)               | 4826 (30.6)          |                           |
| 16-18 years                                    | 556 (37 4)             | 5252(460)    | 6515 (48 3)          |                           | 1128 (42 3) | 9580 (50 7)               | 8874 (56 3)          |                           |
| > 19 years                                     | 217 (14.6)             | 1712 (15.0)  | 2891 (21.4)          |                           | 210 (7.9)   | 1639 (8 7)                | 2052(13.0)           |                           |
| Alcohol consumption n (%)                      | 217 (11.0)             | 1/12 (15.0)  | 2091 (21.1)          | <0.001                    | 210 (7.5)   | 1055 (0.7)                | 2002 (15.0)          | < 0.001                   |
| Never                                          | 412 (196)              | 2225 (19.0)  | 2514 (17 3)          | 0.001                     | 2691 (77.2) | 14305 (76.2)              | 12042 (72.0)         | 0.001                     |
| Past                                           | 221(10.5)              | 694 (5.9)    | 738 (5 1)            |                           | 97 (2.8)    | 294 (1.6)                 | 283 (17)             |                           |
| Current                                        | 1468 (69.9)            | 8814 (75.1)  | 11264 (77.6)         |                           | 697 (20.0)  | 4173(222)                 | 4408 (26 3)          |                           |
| Smoking status $n(\%)$                         | 1400 (09.9)            | 0014 (75.1)  | 11204 (77.0)         |                           | 0)7 (20.0)  | 4175 (22.2)               | 4400 (20.5)          | 0.007                     |
| Never                                          | 113 (19.6)             | 2322(10.0)   | 3153 (21.8)          |                           | 3053 (01.6) | 16664 (03 5)              | 1/10/13 (03.6)       | 0.007                     |
| Past                                           | 507(24.1)              | 2322(1).)    | 3627(21.0)           |                           | 68(20)      | 253(14)                   | 214(13)              |                           |
| Current                                        | 1186(563)              | 2743(23.2)   | 7708(53.2)           |                           | 212(6.4)    | 233(1.4)<br>011(5.1)      | 214(1.3)<br>814(5.1) |                           |
| Marital status $n(0/2)$                        | 1100 (30.3)            | 0410 (34.9)  | 7708 (33.2)          | <0.001                    | 212 (0.4)   | 911 (5.1)                 | 014 (5.1)            | <0.001                    |
| $\frac{1}{1000}$                               | 1709 (96 0)            | 10258 (02.0) | 12424 (05 4)         | <0.001                    | 2520 (75.4) | 15217(92.0)               | 11001 (01 0)         | ~0.001                    |
| Living with a spouse                           | 1/00(00.0)<br>127(6.4) | 10556 (95.0) | 13424 (93.4)         |                           | 2330(73.4)  | 13317(03.9)<br>2257(12.4) | 14001(04.0)          |                           |
| Widowed                                        | 127(0.4)               | 391(3.3)     | 508(2.0)             |                           | 020(18.3)   | 2237(12.4)                | 2009(12.1)           |                           |
| Divorced                                       | 50(2.8)                | 182(1.0)     | 149(1.1)<br>124(1.0) |                           | 90(2.7)     | 41/(2.3)                  | 344(2.1)             |                           |
| Single                                         | 95 (4.8)               | 210 (1.9)    | 134 (1.0)            | <0.001                    | 114 (3.4)   | 276 (1.5)                 | 1/0(1.1)             | <0.001                    |
| Sports activity time, n (%)                    | 1705 (01 0)            |              |                      | <0.001                    | 2105 (0( () | 14051 (70.2)              | 1107((70))           | < 0.001                   |
| Never                                          | 1705 (81.2)            | 8431 (72.5)  | 9060 (62.6)          |                           | 3105 (86.6) | 14951 (79.3)              | 118/6 (70.6)         |                           |
| 1-2 h/w                                        | 213 (10.1)             | 1/8/ (15.4)  | 2807 (19.4)          |                           | 272 (7.6)   | 2343 (12.4)               | 2803 (16.7)          |                           |
| 3-4 h/w                                        | 108 (5.1)              | 721 (6.2)    | 1302 (9.0)           |                           | 129 (3.6)   | 851 (4.5)                 | 1188 (7.1)           |                           |
| $\geq 5 \text{ h/w}$                           | 73 (3.5)               | 687 (5.9)    | 1307 (9.0)           |                           | 79 (2.2)    | 720 (3.8)                 | 956 (5.7)            |                           |
| Walking time, n (%)                            |                        |              |                      | < 0.001                   |             |                           |                      | <.0001                    |
|                                                |                        |              |                      |                           |             |                           |                      |                           |

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

| Never                                   | 294 (18.8)  | 1354 (11.6) | 1307 (9.5)  |         | 390 (14.3)  | 1852 (9.7)   | 1221 (7.7)   |         |
|-----------------------------------------|-------------|-------------|-------------|---------|-------------|--------------|--------------|---------|
| 0.5 h/day                               | 302 (19.3)  | 2268 (19.4) | 2453 (17.8) |         | 525 (19.3)  | 3444 (18.0)  | 2596 (16.4)  |         |
| 0.5-1 h/day                             | 271 (17.3)  | 2339 (20.0) | 2788 (20.3) |         | 558 (20.5)  | 4198 (21.9)  | 3249 (20.5)  |         |
| $\geq 1 \text{ h/day}$                  | 695 (44.5)  | 5757 (49.1) | 7195 (52.4) |         | 1246 (45.8) | 9690 (50.5)  | 8777 (55.4)  |         |
| Sleep duration, hour per day, mean (SD) | 7.6 (1.3)   | 7.5 (1.1)   | 7.4 (1.1)   | 0.009   | 7.2 (1.3)   | 7.1 (1.1)    | 7.1 (1.0)    | 0.008   |
| Perceived mental stress, n (%)          | ~ /         | ~ /         | × ,         | < 0.001 |             | ~ /          | ~ /          | < 0.001 |
| Low                                     | 378 (17.7)  | 1382 (11.4) | 3107 (20.9) |         | 541 (14.6)  | 2319 (11.6)  | 4300 (24.4)  |         |
| Moderate                                | 1029 (48.1) | 8237 (68.2) | 8332 (55.9) |         | 1838 (49.8) | 13907 (69.8) | 10169 (57.6) |         |
| High                                    | 733 (34.3)  | 2451 (20.3) | 3458 (23.2) |         | 1315 (35.6) | 3699 (18.6)  | 3184 (18.0)  |         |
| Sense of life enjoyment, n (%)          |             | ~ /         |             | < 0.001 |             | ~ /          | ~ /          | < 0.001 |
| Low                                     | 417 (19.2)  | 399 (3.3)   | 193 (1.3)   |         | 775 (20.7)  | 686 (3.4)    | 184 (1.0)    |         |
| Moderate                                | 965 (44.4)  | 9101 (75.0) | 5612 (37.5) |         | 1753 (46.7) | 15044 (75.2) | 5937 (33.5)  |         |
| High                                    | 230 (10.6)  | 2640 (21.7) | 8265 (55.2) |         | 315 (8.4)   | 4288 (21.4)  | 10234 (57.8) |         |
| History of hypertension, n (%)          | 485 (24.7)  | 2305 (20.5) | 2698 (19.2) | 0.050   | 975 (28.0)  | 4107 (22.3)  | 3433 (20.8)  | 0.188   |
| History of diabetes mellitus, n (%)     | 153 (8.1)   | 729 (6.6)   | 895 (6.5)   | 0.888   | 197 (5.9)   | 735 (4.1)    | 566 (3.5)    | 0.062   |
| SD : Standard deviation                 |             |             |             |         |             |              | · · ·        |         |
|                                         |             |             |             |         |             |              |              |         |
|                                         |             |             |             |         |             |              |              |         |
|                                         |             |             |             |         |             |              |              |         |
|                                         |             |             |             |         |             |              |              |         |
|                                         |             |             |             |         |             |              |              |         |
|                                         |             |             |             |         |             |              |              |         |

Table 2 Sex-specific, age-adjusted, and multivariable hazard ratios (HRs) and 95% confidence intervals (CIs) of total cardiovascular mortality according to the perceived levels of *Ikigai*, stratified by employment status.

|                            |       | Men                 |                     |                    |       | Women               |                     |                           |
|----------------------------|-------|---------------------|---------------------|--------------------|-------|---------------------|---------------------|---------------------------|
|                            | Low   | Moderate            | High                | P <sub>Trend</sub> | Low   | Moderate            | High                | <b>P</b> <sub>Trend</sub> |
| All                        |       |                     |                     |                    |       |                     |                     |                           |
| No. at risk                | 2197  | 12240               | 15080               |                    | 3819  | 20308               | 17857               |                           |
| No. of person-years        | 32824 | 191424              | 244694              |                    | 61744 | 330980              | 298982              |                           |
| No. of deaths              | 251   | 1007                | 1135                |                    | 307   | 1129                | 851                 |                           |
| Age-adjusted HR (95%CI)    | 1.00  | 0.66 (0.58 to 0.76) | 0.57 (0.50 to 0.65) | <0.001             | 1.00  | 0.75 (0.66 to 0.86) | 0.68 (0.60 to 0.78) | <0.001                    |
| Multivariable * HR (95%CI) | 1.00  | 0.80 (0.68 to 0.93) | 0.74 (0.64 to 0.87) | <0.001             | 1.00  | 0.87 (0.75 to 1.00) | 0.88 (0.76 to 1.03) | 0.136                     |
| Employed                   |       |                     |                     |                    |       |                     |                     |                           |
| No. at risk                | 560   | 4658                | 5362                |                    | 385   | 2714                | 2550                |                           |
| No. of person-years        | 9479  | 80287               | 92997               |                    | 6695  | 48860               | 46328               |                           |
| No. of deaths              | 22    | 193                 | 192                 |                    | 7     | 43                  | 44                  |                           |
|                            |       |                     |                     |                    |       |                     |                     |                           |

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

| 1        | Age-adjusted HR (95%CI)    | 1.00    | 0.92 (0.59 to 1.44)   | 0.73 (0.47 to 1.14)                        | 0.051    | 1.00  | 0.85 (0.38 to 1.89)                          | 0.89 (0.40 to 1.97)                        | 0.916  |
|----------|----------------------------|---------|-----------------------|--------------------------------------------|----------|-------|----------------------------------------------|--------------------------------------------|--------|
| 2        | Multivariable * HR (95%CI) | 1.00    | 1.02 (0.63 to 1.63)   | 0.80 (0.49 to 1.31)                        | 0.116    | 1.00  | 0.82 (0.35 to 1.95)                          | 1.01 (0.41 to 2.48)                        | 0.679  |
| 3        | Self-employed              |         |                       | · · · · ·                                  |          |       | · · · · ·                                    |                                            |        |
| 4        | No. at risk                | 423     | 3860                  | 5669                                       |          | 367   | 3137                                         | 3321                                       |        |
| 5        | No. of person-years        | 6347    | 61848                 | 93546                                      |          | 6025  | 53663                                        | 56797                                      |        |
| 6        | No. of deaths              | 35      | 290                   | 425                                        |          | 9     | 113                                          | 102                                        |        |
| /        | Age-adjusted HR (95%CI)    | 1 00    | 0.76 (0.54 to 1.08)   | 0.71 (0.50 to 1.00)                        | 0 1 2 0  | 1 00  | 1 14 (0 58 to 2 25)                          | 0.98 (0.50 to 1.94)                        | 0.523  |
| 0<br>0   | Multivariable * HR (95%CI) | 1.00    | 0.86 (0.60 to 1.24)   | 0.85 (0.59  to  1.22)                      | 0.682    | 1.00  | 1.30(0.62  to  2.73)                         | 1 29 (0 60 to 2 76)                        | 0.782  |
| 10       | Part-time workers          | 1.00    | 0.00 (0.00 to 1.2.)   | (0.02 (0.02) to 1.22)                      | 0.002    | 1.00  | 1.00 (0.02 to 2.70)                          |                                            | 0.702  |
| 11       | No at risk                 | 24      | 267                   | 282                                        |          | 290   | 1987                                         | 1779                                       |        |
| 12       | No of person-years         | 336     | 4037                  | 4344                                       |          | 4941  | 34182                                        | 30244                                      |        |
| 13       | No. of deaths              | 250     |                       | 24                                         |          | 7     | 28                                           | 30244                                      |        |
| 14       | A ge-adjusted HR (95%CI)   | 1 00    | 0.78 (0.18  to  3.28) | 0.51 (0.12  to  2.20)                      | 0 287    | 1 00  | 0.55 (0.24  to  1.25)                        | 0.73 (0.32  to  1.65)                      | 0 279  |
| 15       | Multivariable * HP (05%CI) | 1.00    | 0.78(0.10  to  3.28)  | 0.51(0.12  to  2.20)<br>0.70(0.12 to 4.06) | 0.267    | 1.00  | 0.33 (0.24  to  1.23)<br>0.88 (0.34 to 2.25) | 0.75(0.32  to  1.03)<br>0.79(0.30 to 2.04) | 0.277  |
| 16<br>17 | Homomoleors                | 1.00    | 0.91 (0.17 10 4.70)   | 0.70 (0.12 to 4.00)                        | 0.702    | 1.00  | 0.00 (0.34 to 2.23)                          | 0.77(0.50102.04)                           | 0.000  |
| 1/<br>10 | No. at rick                | 2       | 12                    |                                            |          | 695   | 6201                                         | 1008                                       |        |
| 10       | No. at IISK                | $2^{2}$ | 15                    | 127                                        |          | 10062 | 100252                                       | 4900                                       |        |
| 20       | No. of person-years        | 33      | 104                   | 137                                        |          | 10903 | 100232                                       | 00023<br>104                               |        |
| 21       | No. of deaths              | 0       | 0                     |                                            |          | 40    | 200                                          | 184                                        | 0.002  |
| 22       | Age-adjusted HR (95%CI)    | -       | -                     |                                            | <u> </u> | 1.00  | 0.67 (0.49 to 0.91)                          | 0.5/(0.41 to 0.78)                         | 0.003  |
| 23       | Multivariable * HR (95%CI) | -       | -                     | -                                          |          | 1.00  | 0.83 (0.59  to  1.17)                        | 0.84 (0.58  to  1.22)                      | 0.5/6  |
| 24       | Unemployed                 | 10.0    | 22.62                 | 1000                                       |          | 004   | 10.64                                        | 0.007                                      |        |
| 25       | No. at risk                | 436     | 2262                  | 1802                                       |          | 894   | 4364                                         | 2637                                       |        |
| 26<br>27 | No. of person-years        | 4821    | 27595                 | 23334                                      |          | 11864 | 62898                                        | 38599                                      |        |
| 27<br>28 | No. of deaths              | 84      | 368                   | 250                                        |          | 145   | 555                                          | 306                                        |        |
| 20       | Age-adjusted HR (95%CI)    | 1.00    | 0.63 (0.50 to 0.80)   | 0.48 (0.37 to 0.61)                        | <0.001   | 1.00  | 0.70 (0.58 to 0.84)                          | 0.62 (0.51 to 0.76)                        | <0.001 |
| 30       | Multivariable * HR (95%CI) | 1.00    | 0.74 (0.57 to 0.97)   | 0.69 (0.52 to 0.93)                        | 0.044    | 1.00  | 0.78 (0.64 to 0.95)                          | 0.77 (0.61 to 0.97)                        | 0.039  |
| 31       | Others                     |         |                       |                                            |          |       |                                              |                                            |        |
| 32       | No. at risk                | 752     | 1180                  | 1956                                       |          | 1198  | 1905                                         | 2662                                       |        |
| 33       | No. of person-years        | 11808   | 17493                 | 30335                                      |          | 21257 | 31124                                        | 46191                                      |        |
| 34       | No. of deaths              | 108     | 129                   | 244                                        |          | 93    | 124                                          | 182                                        |        |
| 35       | Age-adjusted HR (95%CI)    | 1.00    | 0.62 (0.48 to 0.80)   | 0.67 (0.53 to 0.84)                        | <0.001   | 1.00  | 0.81 (0.62 to 1.06)                          | 0.83 (0.65 to 1.06)                        | 0.253  |
| 30<br>27 | Multivariable * HR (95%CI) | 1.00    | 0.64 (0.47 to 0.87)   | 0.76 (0.59 to 0.97)                        | 0.016    | 1.00  | 0.91 (0.64 to 1.29)                          | 1.00 (0.76 to 1.31)                        | 0.813  |
| 57       |                            |         |                       | •                                          |          |       |                                              |                                            |        |

\* Adjusted for age, body mass index, smoking status, alcohol consumption, sports activity, walking time, sleep duration, education level, employment status, marital status, sense of life enjoyment, perceived mental stress, medical history of hypertension, and diabetes mellitus.

1

|                            |       | Ikigai              |                     |                           |
|----------------------------|-------|---------------------|---------------------|---------------------------|
|                            | Low   | Moderate            | High                | <b>P</b> <sub>Trend</sub> |
| Men                        |       |                     |                     |                           |
| At risk                    | 436   | 2262                | 1802                |                           |
| Person-years               | 4821  | 27595               | 23334               |                           |
| No. of deaths              | 84    | 368                 | 250                 |                           |
| Multivariable HR           | 1.00  | 0.74 (0.57 to 0.97) | 0.69 (0.52 to 0.93) | 0.044                     |
|                            | 79    | 358                 | 243                 |                           |
| Deaths within 1 y exclude  | 1.00  | 0.74 (0.56 to 0.97) | 0.68 (0.51 to 0.92) | 0.044                     |
| -<br>-                     | 73    | 343                 | 232                 |                           |
| Deaths within 2 y exclude  | 1.00  | 0.77 (0.58 to 1.02) | 0.71 (0.52 to 0.96) | 0.087                     |
| -                          | 67    | 318                 | 223                 |                           |
| Deaths within 3 y exclude  | 1.00  | 0.75 (0.56 to 1.01) | 0.71 (0.52 to 0.98) | 0.104                     |
| -                          | 60    | 299                 | 210                 |                           |
| Deaths within 4 y exclude  | 1.00  | 0.78 (0.57 to 1.06) | 0.72 (0.52 to 1.01) | 0.157                     |
| 2                          | 56    | 282                 | 201                 |                           |
| Deaths within 5 y exclude  | 1.00  | 0.75 (0.55 to 1.04) | 0.69 (0.49 to 0.98) | 0.115                     |
| Women                      |       |                     |                     |                           |
| No. at risk                | 894   | 4364                | 2637                |                           |
| No. of person-years        | 11864 | 62898               | 38599               |                           |
| No. of deaths              | 145   | 555                 | 306                 |                           |
| Multivariable HR           | 1.00  | 0.78 (0.64 to 0.95) | 0.77 (0.61 to 0.97) | 0.039                     |
|                            | 138   | 540                 | 299                 |                           |
| Deaths within 1 y excluded | 1.00  | 0.78 (0.64 to 0.96) | 0.78 (0.62 to 0.98) | 0.056                     |
| ,                          | 134   | 526                 | 290                 |                           |
| Deaths within 2 y excluded | 1.00  | 0.79 (0.64 to 0.97) | 0.78 (0.61 to 0.98) | 0.061                     |
| 5                          | 125   | 498                 | 281                 |                           |
| Deaths within 3 y excluded | 1.00  | 0.77 (0.62 to 0.96) | 0.78 (0.61 to 1.00) | 0.057                     |
|                            | 113   | 480                 | 273                 |                           |

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

| of 30                                                                |                                                                                         | BMJ Open                              |                                                     |                                 |        |
|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------------------------|---------------------------------|--------|
| Deaths within 4 y exe                                                | cluded 1.00                                                                             | 0.81 (                                | 0.65 to 1.02)                                       | 0.83 (0.65 to 1.08)             | 0.193  |
|                                                                      | 112                                                                                     |                                       | 462                                                 | 267                             |        |
| Deaths within 5 y exe                                                | cluded 1.00                                                                             | 0.78 (                                | 0.62 to 0.97)                                       | 0.80 (0.62 to 1.04)             | 0.092  |
| employment status, marital sta                                       | atus, sense of life enjoyment, perceived                                                | mental stress, n                      | nedical history of hyper                            | tension, and diabetes mellitus. |        |
| Table 4 Age- and sex-adjust         cardiovascular diseases accordio | ed and multivariable hazard ratios (I<br>ording to the perceived levels of <i>Ikiga</i> | HRs) and 95 %<br><i>i</i> among unemp | confidence intervals (<br>bloyed persons.<br>Ikigai | CIs) of mortality from type-sp  | ecific |
|                                                                      |                                                                                         | Low                                   | Moderate                                            | High                            | PTrend |
|                                                                      | No. at risk                                                                             | 1330                                  | 6626                                                | 4439                            | Trenu  |
|                                                                      | No. of person-years                                                                     | 16684                                 | 90493                                               | 61933                           |        |
| Total stroke                                                         | No. of deaths                                                                           | 107                                   | 375                                                 | 242                             |        |
|                                                                      | Age-, sex-adjusted HR (95%CI)                                                           | 1.00                                  | 0.58 (0.47 to 0.72)                                 | 0.51 (0.41 to 0.65)             | <0.001 |
|                                                                      | Multivariable * HR (95%CI)                                                              | 1.00                                  | 0.72 (0.57 to 0.91)                                 | 0.74 (0.56 to 0.96)             | 0.022  |
| Ischemic stroke                                                      | No. of deaths                                                                           | 37                                    | 157                                                 | 91                              |        |
|                                                                      | Age-, sex- adjusted HR (95%CI)                                                          | 1.00                                  | 0.70 (0.49 to 1.00)                                 | 0.54 (0.37 to 0.80)             | 0.007  |
|                                                                      | Multivariable * HR (95%CI)                                                              | 1.00                                  | 0.82 (0.56 to 1.20)                                 | 0.80 (0.51 to 1.24)             | 0.555  |
| Hemorrhagic stroke                                                   | No. of deaths                                                                           | 30                                    | 95                                                  | 67                              |        |
|                                                                      | Age-, sex- adjusted HR (95%CI)                                                          | 1.00                                  | 0.54 (0.36 to 0.82)                                 | 0.54 (0.35 to 0.83)             | 0.008  |
|                                                                      | Multivariable * HR (95%CI)                                                              | 1.00                                  | 0.74 (0.47 to 1.19)                                 | 0.84 (0.49 to 1.42)             | 0.425  |
| Stroke of                                                            | No. of deaths                                                                           | 40                                    | 123                                                 | 84                              |        |
| undetermined type                                                    |                                                                                         |                                       |                                                     |                                 |        |
|                                                                      | Age-, sex- adjusted HR (95%CI)                                                          | 1.00                                  | 0.51 (0.36 to 0.73)                                 | 0.47 (0.32 to 0.69)             | <0.001 |
|                                                                      | Multivariable * HR (95%CI)                                                              | 1.00                                  | 0.61 (0.41 to 0.90)                                 | 0.61 (0.39 to 0.96)             | 0.041  |
| Coronary heart disease                                               | No. of deaths                                                                           | 43                                    | 196                                                 | 99                              |        |
|                                                                      | Age-, sex- adjusted HR (95%CI)                                                          | 1.00                                  | 0.75 (0.54 to 1.05)                                 | 0.51 (0.36 to 0.74)             | <0.001 |

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

|               | Multivariable * HR (95%CI)     | 1.00 | 0.77 (0.54 to 1.10) | 0.64 (0.43 to 0.97) | 0.103 |
|---------------|--------------------------------|------|---------------------|---------------------|-------|
| Heart failure | No. of deaths                  | 43   | 187                 | 120                 |       |
|               | Age-, sex- adjusted HR (95%CI) | 1.00 | 0.73 (0.52 to 1.01) | 0.65 (0.46 to 0.92) | 0.055 |
|               | Multivariable * HR (95%CI)     | 1.00 | 0.90 (0.63 to 1.30) | 1.01 (0.67 to 1.52) | 0.663 |
| Other CVDs    | No. of deaths                  | 36   | 165                 | 95                  |       |
|               | Age-, sex- adjusted HR (95%CI) | 1.00 | 0.75 (0.52 to 1.08) | 0.60 (0.40 to 0.87) | 0.023 |
|               | Multivariable * HR (95%CI)     | 1.00 | 0.75 (0.51 to 1.11) | 0.64 (0.42 to 1.00) | 0.144 |

\* Adjusted for age, sex, body mass index, smoking status, alcohol consumption, sports activity, walking time, sleep duration, education level, employment status, marital status, sense of life enjoyment, perceived mental stress, medical history of hypertension, and diabetes mellitus.

**Figure legends** 

Figure 1 Flowchart for the selection of the study subjects.



## Reporting checklist for cohort study.

Based on the STROBE cohort guidelines.

## **Instructions to authors**

Complete this checklist by entering the page numbers from your manuscript where readers will find each of the items listed below.

Your article may not currently address all the items on the checklist. Please modify your text to include the missing information. If you are certain that an item does not apply, please write "n/a" and provide a short explanation.

Upload your completed checklist as an extra file when you submit to a journal.

In your methods section, say that you used the STROBE cohortreporting guidelines, and cite them as:

von Elm E, Altman DG, Egger M, Pocock SJ, Gotzsche PC, Vandenbroucke JP. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: guidelines for reporting observational studies.

|                        |                     |                                                                                                                                                                                                           | Page   |
|------------------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
|                        |                     | Reporting Item                                                                                                                                                                                            | Number |
| Title and abstract     |                     | Č,                                                                                                                                                                                                        |        |
| Title                  | <u>#1a</u>          | Indicate the study's design with a commonly used term in the title<br>or the abstract                                                                                                                     | 1      |
| Abstract               | <u>#1b</u>          | Provide in the abstract an informative and balanced summary of what was done and what was found                                                                                                           | 3      |
| Introduction           |                     |                                                                                                                                                                                                           |        |
| Background / rationale | <u>#2</u>           | Explain the scientific background and rationale for the investigation being reported                                                                                                                      | 5-6    |
| Objectives             | <u>#3</u>           | State specific objectives, including any prespecified hypotheses                                                                                                                                          | 6      |
| Methods                |                     |                                                                                                                                                                                                           |        |
| Study design           | <u>#4</u>           | Present key elements of study design early in the paper                                                                                                                                                   | 6-7    |
| Setting                | <u>#5</u><br>For pe | Describe the setting, locations, and relevant dates, including<br>periods of recruitment, exposure, follow-up, and data collection<br>er review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml | 6-7    |

Page 29 of 30

| 1<br>2<br>3                                        | Eligibility criteria          | <u>#6a</u>  | Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up.                                                                                                                                                                    | 6-7 |
|----------------------------------------------------|-------------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 4<br>5<br>6<br>7                                   | Eligibility criteria          | <u>#6b</u>  | For matched studies, give matching criteria and number of exposed and unexposed                                                                                                                                                                                                            | 6-7 |
| 8<br>9<br>10<br>11<br>12<br>12                     | Variables                     | <u>#7</u>   | Clearly define all outcomes, exposures, predictors, potential<br>confounders, and effect modifiers. Give diagnostic criteria, if<br>applicable                                                                                                                                             | 7   |
| 13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21 | Data sources /<br>measurement | <u>#8</u>   | For each variable of interest give sources of data and details of<br>methods of assessment (measurement). Describe comparability of<br>assessment methods if there is more than one group. Give<br>information separately for for exposed and unexposed groups if<br>applicable.           | 7   |
| 22<br>23                                           | Bias                          | <u>#9</u>   | Describe any efforts to address potential sources of bias                                                                                                                                                                                                                                  | 7   |
| 24<br>25                                           | Study size                    | <u>#10</u>  | Explain how the study size was arrived at                                                                                                                                                                                                                                                  | 7   |
| 26<br>27                                           | Quantitative                  | <u>#11</u>  | Explain how quantitative variables were handled in the analyses.                                                                                                                                                                                                                           | 8   |
| 28<br>29                                           | variables                     |             | If applicable, describe which groupings were chosen, and why                                                                                                                                                                                                                               |     |
| 30<br>31<br>32<br>33                               | Statistical methods           | <u>#12a</u> | Describe all statistical methods, including those used to control for confounding                                                                                                                                                                                                          | 7-8 |
| 34<br>35                                           | Statistical methods           | <u>#12b</u> | Describe any methods used to examine subgroups and interactions                                                                                                                                                                                                                            | 7-8 |
| 36<br>37<br>38                                     | Statistical methods           | <u>#12c</u> | Explain how missing data were addressed                                                                                                                                                                                                                                                    | 8   |
| 39<br>40                                           | Statistical methods           | <u>#12d</u> | If applicable, explain how loss to follow-up was addressed                                                                                                                                                                                                                                 | 8   |
| 41<br>42<br>43                                     | Statistical methods           | <u>#12e</u> | Describe any sensitivity analyses                                                                                                                                                                                                                                                          | 8   |
| 44<br>45                                           | Results                       |             |                                                                                                                                                                                                                                                                                            |     |
| 46<br>47<br>48<br>49<br>50<br>51<br>52<br>53       | Participants                  | <u>#13a</u> | Report numbers of individuals at each stage of study—eg numbers<br>potentially eligible, examined for eligibility, confirmed eligible,<br>included in the study, completing follow-up, and analysed. Give<br>information separately for for exposed and unexposed groups if<br>applicable. | 9   |
| 54<br>55                                           | Participants                  | <u>#13b</u> | Give reasons for non-participation at each stage                                                                                                                                                                                                                                           | 9   |
| 56<br>57<br>58                                     | Participants                  | <u>#13c</u> | Consider use of a flow diagram                                                                                                                                                                                                                                                             | 6   |
| 59<br>60                                           |                               | For pee     | er review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml                                                                                                                                                                                                                        |     |

| 1<br>2<br>3<br>4<br>5<br>6             | Descriptive data  | <u>#14a</u> | Give characteristics of study participants (eg demographic,<br>clinical, social) and information on exposures and potential<br>confounders. Give information separately for exposed and<br>unexposed groups if applicable. | 9, 20-21 |
|----------------------------------------|-------------------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 7<br>8<br>9<br>10                      | Descriptive data  | <u>#14b</u> | Indicate number of participants with missing data for each variable of interest                                                                                                                                            | 6        |
| 11<br>12<br>13                         | Descriptive data  | <u>#14c</u> | Summarise follow-up time (eg, average and total amount)                                                                                                                                                                    | 7        |
| 14<br>15<br>16<br>17<br>18             | Outcome data      | <u>#15</u>  | Report numbers of outcome events or summary measures over<br>time. Give information separately for exposed and unexposed<br>groups if applicable.                                                                          | 9        |
| 19<br>20<br>21<br>22<br>23<br>24<br>25 | Main results      | <u>#16a</u> | Give unadjusted estimates and, if applicable, confounder-adjusted<br>estimates and their precision (eg, 95% confidence interval). Make<br>clear which confounders were adjusted for and why they were<br>included          | 9-10     |
| 26<br>27<br>28                         | Main results      | <u>#16b</u> | Report category boundaries when continuous variables were categorized                                                                                                                                                      | 7-9      |
| 29<br>30<br>31<br>32                   | Main results      | <u>#16c</u> | If relevant, consider translating estimates of relative risk into<br>absolute risk for a meaningful time period                                                                                                            | 9-10     |
| 33<br>34<br>35<br>36                   | Other analyses    | <u>#17</u>  | Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses                                                                                                                             | 10       |
| 37<br>38                               | Discussion        |             |                                                                                                                                                                                                                            |          |
| 39<br>40<br>41                         | Key results       | <u>#18</u>  | Summarise key results with reference to study objectives                                                                                                                                                                   | 10       |
| 42<br>43<br>44<br>45<br>46             | Limitations       | <u>#19</u>  | Discuss limitations of the study, taking into account sources of<br>potential bias or imprecision. Discuss both direction and<br>magnitude of any potential bias.                                                          | 11-12    |
| 47<br>48<br>49<br>50<br>51             | Interpretation    | <u>#20</u>  | Give a cautious overall interpretation considering objectives,<br>limitations, multiplicity of analyses, results from similar studies,<br>and other relevant evidence.                                                     | 10-11    |
| 52<br>53<br>54                         | Generalisability  | <u>#21</u>  | Discuss the generalisability (external validity) of the study results                                                                                                                                                      | 11-12    |
| 55<br>56<br>57<br>58<br>59             | Other Information |             |                                                                                                                                                                                                                            |          |

| 1<br>2<br>3<br>4 | Funding          | <u>#22</u>          | Give the source of funding and the role of the funders for the<br>present study and, if applicable, for the original study on which<br>the present article is based | 13-14     |
|------------------|------------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| 5<br>6           | The STROBE cl    | necklist is dis     | stributed under the terms of the Creative Commons Attribution License                                                                                               | CC-BY.    |
| 7<br>8           | This checklist w | as completed        | on 29 November 2021 using https://www.goodreports.org/ a tool ma                                                                                                    | de by the |
| 9                | FOUATOR Net      | work in colla       | horation with Penelope ai                                                                                                                                           | ac of the |
| 10<br>11         |                  | <u>work</u> in cond | soluton with <u>renerope.ur</u>                                                                                                                                     |           |
| 12               |                  |                     |                                                                                                                                                                     |           |
| 13               |                  |                     |                                                                                                                                                                     |           |
| 14<br>15         |                  |                     |                                                                                                                                                                     |           |
| 15<br>16         |                  |                     |                                                                                                                                                                     |           |
| 17               |                  |                     |                                                                                                                                                                     |           |
| 18<br>10         |                  |                     |                                                                                                                                                                     |           |
| 20               |                  |                     |                                                                                                                                                                     |           |
| 21               |                  |                     |                                                                                                                                                                     |           |
| 22<br>23         |                  |                     |                                                                                                                                                                     |           |
| 23<br>24         |                  |                     |                                                                                                                                                                     |           |
| 25               |                  |                     |                                                                                                                                                                     |           |
| 26<br>27         |                  |                     |                                                                                                                                                                     |           |
| 28               |                  |                     |                                                                                                                                                                     |           |
| 29               |                  |                     |                                                                                                                                                                     |           |
| 30<br>31         |                  |                     |                                                                                                                                                                     |           |
| 32               |                  |                     |                                                                                                                                                                     |           |
| 33<br>34         |                  |                     |                                                                                                                                                                     |           |
| 35               |                  |                     |                                                                                                                                                                     |           |
| 36               |                  |                     |                                                                                                                                                                     |           |
| 37<br>38         |                  |                     |                                                                                                                                                                     |           |
| 39               |                  |                     |                                                                                                                                                                     |           |
| 40<br>41         |                  |                     |                                                                                                                                                                     |           |
| 41               |                  |                     |                                                                                                                                                                     |           |
| 43               |                  |                     |                                                                                                                                                                     |           |
| 44<br>45         |                  |                     |                                                                                                                                                                     |           |
| 46               |                  |                     |                                                                                                                                                                     |           |
| 47               |                  |                     |                                                                                                                                                                     |           |
| 48<br>49         |                  |                     |                                                                                                                                                                     |           |
| 50               |                  |                     |                                                                                                                                                                     |           |
| 51               |                  |                     |                                                                                                                                                                     |           |
| 5∠<br>53         |                  |                     |                                                                                                                                                                     |           |
| 54               |                  |                     |                                                                                                                                                                     |           |
| 55<br>56         |                  |                     |                                                                                                                                                                     |           |
| 57               |                  |                     |                                                                                                                                                                     |           |
| 58               |                  |                     |                                                                                                                                                                     |           |
| 59<br>60         |                  | For pe              | er review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml                                                                                                 |           |