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Model design 
Base model 
We use a deterministic compartmental model including six types of compartments that represent 
different states of infection and disease. The model uses the same conceptual approach and similar 
assumptions to previously published models (1–4). Here we describe the model structure before 
applying any stratification. A susceptible compartment (S) is used to represent individuals who have 
never been infected with Mycobacterium tuberculosis (M.tb). Latent TB infection (LTBI) is modelled 
using two successive compartments: early latent (E) and late latent (L) to capture the declining risk of 
disease progression over time from infection (5). The active disease compartment (I) represents 
individuals who have progressed to the active stage of TB disease. Diseased individuals who recover 
through self-cure progress directly to the recovered compartment (R). All diseased individuals who 
are detected are assumed to be started on treatment (compartment T). Treatment may result in cure 
(progression to R), relapse (return to I) or death. 

Non-TB-related mortality is modelled by applying death rates to all model compartments. In addition, 
disease-specific mortality is implemented by applying increased mortality rates to the active disease 
compartments (I and T). 

Reinfection occurs in the model in two different ways. First, latently infected individuals may be 
reinfected, with this process modelled using a flow from the late latent (L) to the early latent 
compartment (E). Second, individuals who have recovered from TB disease may be reinfected and 
return to the early latent compartment. The structure of our model allows for differential risk of 
infection for the currently and previously infected individuals, compared to the infection-naive 
individuals. 

Figure 1 (main text) represents the model structure. 

Stratification by organ status 
The model explicitly includes three types of TB clinical manifestations, based on the organ affected 
by the disease and the smear status. The three “organ categories” are smear-positive TB, smear-
negative pulmonary TB and extrapulmonary TB. The term “smear-negative TB” will be used to refer 
to “smear-negative pulmonary TB” hereafter. 

The stratification by organ status applies to the active disease compartments (I and T), and we assume 
differential disease fatality rates, infectiousness levels and detection rates by organ status. 

Stratification by age 
The model is stratified using five categories: 0-4, 5-14, 15-34, 35-49 and 50+ years old. We assume 
heterogeneous mixing by age using an age-specific contact rate matrix. Since no local estimates of 
contact patterns by age were available for the Marshall Islands, we used a contact survey conducted in 
the Fijian population and adjusted the estimates to account for age distribution differences between 
the two countries (6). The modelled average daily number of contacts that an individual aged 𝑖𝑖 has 
with individuals aged 𝑗𝑗 (denoted 𝑐𝑐𝑖𝑖𝑖𝑖) is calculated as:  



𝑐𝑐𝑖𝑖𝑖𝑖 = 𝑞𝑞𝑖𝑖𝑖𝑖 ×
𝜋𝜋𝑗𝑗
𝜅𝜅𝑗𝑗

 , 

where 𝑞𝑞𝑖𝑖𝑖𝑖 is the contact rate (homologous to 𝑐𝑐𝑖𝑖𝑖𝑖) obtained from the Fijian survey, 𝜋𝜋𝑗𝑗 is the proportion 
of the Fijian population aged 𝑗𝑗 and 𝜅𝜅𝑗𝑗 is the proportion of the Marshall Islands population aged 𝑗𝑗. 

The original Fijian matrix was calculated using the following age groups: 0-4, 5-14, 15-34, 35-54 and 
55+ years old. The adjusted matrix 𝑐𝑐𝑖𝑖𝑖𝑖 was then converted to match the model’s age groups by 
aggregating the contact rates across the relevant age groups and applying weighted averages based on 
the population age distribution. The code used to generate the contact matrix is available on Github 
(https://github.com/monash-emu/AuTuMN/blob/master/autumn/tools/inputs/social_mixing/build_synthetic_matrices.py). 

Stratification by location 
All model compartments are further stratified by location to explicitly represent the respective 
populations of the Majuro Atoll, the Ebeye Island and other islands. Population proportions by 
location were informed by the 2011 National Census. We assumed that individuals make 95% (80% 
in sensitivity analysis) of their contacts with persons living in the same geographic stratum. The 
remaining 5% (20% in sensitivity analysis) are distributed between the two other locations and the 
relative contribution of each of the other two regions calculated based on its population size. The three 
locations shared the same values for most model parameters, but we allowed for differential passive 
screening rates by location, and the interventions were only implemented in the Ebeye Atoll (ACF) 
and in the Majuro Atoll (ACF and LTBI screening). 

Table S1 summarises the different stratifications implemented in the model and highlights the key 
changes applied to the stratified parameters. 

 
Stratification Strata Significance to model 

Age 0-4 years old 

5-14 years old 

15-34 years old 

35-49 years old 

50 years and over 

• Risk of progression from latent to active TB varies with age. 
• Background mortality rates vary with age. 
• Age-specific infectiousness. 
• Diabetes prevalence varies with age. 
• Heterogenous mixing by age 
• BCG vaccine effect and coverage varies with age. 

Location Majuro 

Ebeye 

Other 

• Heterogenous mixing between the three geographical groups will simulate the 
impact of inter-island travel on the population effect of the interventions in 
Ebeye and Majuro. 95% (80% in sensitivity analysis) of social contacts occur 
with individuals from the same region. The remaining proportion of contacts 
was split between the other two regions, weighting for their respective 
population. 

• Case detection rates may vary between the regions 
• The rates of LTBI screening and active case finding vary by location 

Organ status Pulmonary 
smear-positive 

Pulmonary 
smear-negative 

Extrapulmonary 

• Case detection rates vary according to organ status. 
• Smear-positive TB has a higher level of infectiousness than smear-negative 

TB, and extrapulmonary TB is considered non-infectious. 

Table S1. Summary of model stratifications 

https://github.com/monash-emu/AuTuMN/blob/master/autumn/tools/inputs/social_mixing/build_synthetic_matrices.py


Births and deaths 
Births are modelled using time-variant crude birth rates that are multiplied by the modelled population 
size to determine the number of newborn individuals entering the model at each time. A time-variant 
and age-specific rate or non-TB-related mortality applies to all model compartments to simulate 
deaths from other causes than TB. We use estimates from the UN population division to inform the 
birth and mortality rates. No data specific to the Marshall Islands were available, so we used the crude 
birth rates and mortality rates by age of the Federated States of Micronesia. 

We also apply additional death rates to the compartments I and T to reflect mortality induced by TB 
disease. 

M.tb transmission 
We use different levels of susceptibility to infection for individuals who are currently latently infected 
with M.tb or have recovered from active TB, as compared to infection-naive individuals. The effect of 
BCG vaccination is captured by reducing the susceptibility to infection of individuals under the age of 
30 years old. We assume a 70% reduction in the susceptibility of BCG-vaccinated children under the 
age of 15 years old (7). A linear function is used to reflect the progressive loss of BCG immunity 
between the age of 15 and 30 years old. Figure S1 presents the profile of BCG immunity wane. The 
continuous wane profile is then automatically converted to a step function such that each model’s age 
band is associated with the average value of the wane function over the relevant interval. The 
susceptibility adjustment induced by BCG is also based on the country’s time-variant BCG coverage 
as reported by the WHO. The rest of this section describes the different infectiousness adjustments 
implemented in the model. 

 

Figure S1. Assumed wane profile of BCG efficacy. 
Green and grey lines represent estimates obtained from literature (7,8), while the red line shows the modelled vaccine effect. 
Dashed lines show estimates associated with non-significant efficacy. 

We assume that smear-negative TB is 25% as infectious as smear-positive TB, while extrapulmonary 
TB is modelled as a non-infectious disease state (9,10). 

Infectiousness is assumed higher for older individuals, and we use the sigmoidal function 𝑎𝑎𝑎𝑎𝑎𝑎 →
 1
1+𝑒𝑒−(𝑎𝑎𝑎𝑎𝑎𝑎−15) to model a progressive increase with age (11). The continuous age profile of 



infectiousness is then automatically converted to a step function, similarly to what was previously 
described for the immunity wane profile of BCG vaccination. 

Finally, individuals who are on treatment are assumed to be partially infectious, as infectiousness 
declines rapidly after treatment initiation. Infectiousness is multiplied by 0.08 for the treatment 
compartment compared to the untreated disease compartment to reflect the fact that individuals may 
remain infectious for two weeks out of the 26 weeks of a standard regimen.  

Progression parameters 
Progression from latent to active TB 
We use the estimates reported in Ragonnet et al. to inform the modelled dynamics of activation from 
latent to active TB (Table 2, main text) (5). These parameters vary by age, and a multiplier is used to 
incorporate uncertainty around the progression rates (5). 

Effect of diabetes 
The model is not stratified by diabetes status. Instead, we model the effect of diabetes type 2 by 
increasing the rates of progression from latent to active TB using age-specific multipliers. For each 
age group, the value of the diabetes-effect multiplier depends on the age-specific proportion of 
diabetic individuals and the relative rate of TB reactivation for diabetic individuals compared to non-
diabetic individuals (see Table 2, main text). The multiplier applied to the TB progression rates can be 
written 𝑚𝑚𝑖𝑖 = 𝑑𝑑𝑖𝑖 × 𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 1 − 𝑑𝑑𝑖𝑖, where 𝑑𝑑𝑖𝑖 is the proportion of diabetic individuals in the age-
group 𝑖𝑖 and 𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 is the relative rate of TB reactivation for diabetic individuals compared to non-
diabetic individuals.  

Diabetes prevalence was assumed to increase progressively to reach the values presented in Table 2 in 
2020 (main text) and was then assumed to be constant after that time in the base case analysis. 
However, we considered both a linear increase of 20% and a linear decrease of 20% by 2050 in 
sensitivity analyses. 

Natural history flows 
We use the estimates reported in Ragonnet et al. to model the rate of TB mortality in the absence of 
treatment and the rate of self-recovery (12). We use different rates of untreated TB mortality and self-
recovery for smear-positive TB compared to smear-negative TB. The TB mortality and self-recovery 
rates associated with extrapulmonary TB are assumed to be the same as those of smear-negative TB. 

Passive detection of active TB 
The detection rate is defined as the rate of progression from the active disease to the treatment 
compartment, as all detected individuals are assumed to be started on treatment at diagnosis in our 
model. This rate is calculated by multiplying the screening rate with the diagnostic test sensitivity. 
The screening rate can be interpreted as the reciprocal of the average time that diseased individuals 
take to seek care. The diagnostic sensitivity varies according to the organ status to reflect the relative 
differences in the difficulty to diagnose smear-negative TB and extrapulmonary TB, as compared to 
smear-positive TB. 

We use a time-variant function to model the screening rate in order to capture detection improvements 
over time. This process is modelled assuming a continuous increase in the screening rate through the 
following function: 

𝑡𝑡 → 0.5(tanh(𝑚𝑚(𝑡𝑡 − 𝑐𝑐) + 1) × 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, where 𝑐𝑐 is the time at which the curve inflects, 𝑚𝑚 is the value 
of the gradient at the inflection point (shape parameter), and 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 is the upper asymptote value. The 
parameters 𝑐𝑐, 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 and 𝑚𝑚 are varied during calibration, and Figure S2 presents the time-variant 
profile of screening rate obtained by sampling these parameters from their posterior joint distribution.  



 
Figure S2. Posterior estimate of the passive screening rate profile. The solid lines represent the median estimates. The 
shaded areas show the interquartile ranges (dark shade) and 95% credible intervals (light shade). 

Treatment outcomes 
Treated individuals can experience three different treatment outcomes: treatment success, relapse or 
death. The rate of treatment-induced recovery (𝜑𝜑) is set to the reciprocal of the duration of a 
completed treatment course. We then use the observed treatment success proportion (often referred to 
as “treatment success rate”) as model input. In our model, it is calculated from 𝑇𝑇𝑇𝑇𝑇𝑇 = 𝜑𝜑

𝜑𝜑+𝜌𝜌+𝜇𝜇𝑇𝑇+𝜇𝜇
, 

where 𝜌𝜌 is the relapse rate, 𝜇𝜇𝑇𝑇 is the excess mortality rate of individuals on TB treatment, and 𝜇𝜇 is the 
non-TB-related mortality rate. Finally, we calculate the respective values of 𝜌𝜌 and 𝜇𝜇𝑇𝑇 using the 
observed proportion of deaths among all negative treatment outcomes, denoted 𝜋𝜋. We have 𝜋𝜋 =
𝜇𝜇𝑇𝑇+𝜇𝜇

𝜌𝜌+𝜇𝜇𝑇𝑇+𝜇𝜇
 that we inject into the 𝑇𝑇𝑇𝑇𝑇𝑇 equation. After calculations, we obtain: 

𝜇𝜇𝑇𝑇 = 𝜋𝜋𝜋𝜋 1−𝑇𝑇𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇𝑇𝑇

− 𝜇𝜇 and 𝜌𝜌 = (𝜇𝜇𝑇𝑇 + 𝜇𝜇)(1
𝜋𝜋
− 1). 

Note that we need to verify 𝜑𝜑 ≥  𝜇𝜇
𝜋𝜋

× 𝑇𝑇𝑇𝑇𝑇𝑇
1−𝑇𝑇𝑇𝑇𝑇𝑇

 to ensure that 𝜇𝜇𝑇𝑇 ≥ 0. If this condition is not verified, 
which may be the case if both the treatment success rate and the rate of non-TB-related mortality are 
high, we force 𝜑𝜑 =  𝜇𝜇

𝜋𝜋
× 𝑇𝑇𝑇𝑇𝑇𝑇

1−𝑇𝑇𝑇𝑇𝑇𝑇
. 

Since the non-TB-related mortality rate varies by age, the values of the treatment-induced recovery 
(𝜑𝜑), relapse rate (𝜌𝜌) and mortality rate of individuals on TB treatment (𝜇𝜇𝑇𝑇) also vary by age. 

Modelled interventions 
Population-based screening and treatment of LTBI 
Mass LTBI screening and treatment is implemented as part of the intervention conducted in Majuro in 
2018. This is modelled by making latently infected individuals (from E and L) transition to the 
recovered compartment (R). The rate associated with these flows is obtained by multiplying the LTBI 
screening rate with the sensitivity of the LTBI test employed and the individual-level efficacy of 
preventive treatment. The LTBI screening rate is implemented as a time-variant parameter that is 
stratified by location. 

Active case finding 
Active case finding (ACF) is implemented to simulate the interventions linked to the detection of 
individuals with active TB implemented in Ebeye in 2017 and in Majuro in 2018. This is modelled by 
implementing an additional transition flow from compartment I to compartment T. The rate associated 
with this flow is obtained by multiplying the location-specific ACF screening rate with the sensitivity 
of the detection algorithm used for the ACF intervention. The ACF screening rate is implemented as a 
time-variant parameter. 



Calculation of the screening rates 
To simulate the interventions, we apply a positive rate of ACF and/or LTBI screening over the 
intervention periods. The screening rates are determined such that the modelled total proportion of the 
population screened corresponds to the true population proportion screened. The screening rate is set 
equal to −log (1− 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) for the year during which the intervention is implemented, where 
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is the total proportion of the population screened by the intervention. In the Ebeye Atoll, it 
was estimated that 85% of adult individuals (aged 15 years old and over) were screened for active TB. 
In the Majuro Atoll, 22,623 individuals out of a population of 27,797 (81%) were screened for both 
LTBI and active TB (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 81%). However, this proportion was then reduced to to account 
for incomplete screening completion (86.5% with TST reading) and for the fact that some individuals 
diagnosed with LTBI were not started on treatment (85% either not recommended for treatment or 
refused treatment). As a result, effective LTBI screening coverage among the latently infected 
population then fell to 59%. 

The screening rates obtained from the Majuro intervention was used to model the intervention 
scenarios involving country-wide screening repeated periodically. 

Model calibration 
Overall approach 
The model is calibrated using an adaptive Metropolis (AM) algorithm. We use the multidimensional 
Gaussian distribution with variable covariance matrix presented by Haario and colleagues to sample 
parameters from their posterior distributions (13). We ran seven independent AM chains to sample the 
calibrated parameters. We discarded the first 2000 iterations of each chain as burn-in and the 
algorithm was run such that more than 15,000 post-burn-in iterations were obtained for each chain. 
We then combined the samples of the seven chains to project epidemic trajectories over time.  

The likelihood function was derived from comparing model outputs to target data at each time point 
nominated for calibration. We used normal distributions centred on the model predictions, and the 
standard deviations of these distributions were manually calibrated to optimise sampling efficiency. 

Parameters’ prior distributions 
We use uniform prior distributions characterised by the intervals presented in Table 2 (main text) and 
Table S2 below.  

Calibration targets 
The following table summarises the calibration targets used to calculate the likelihood of the AM 
algorithm. 

  



Parameter Range 
Initial population size 200 - 800 
Transmission scaling factor 0.002 – 0.01 
Progression multiplier 0.5 - 2.0 
Screening profile (inflection time), year 2000.0 - 

2020.0 
Screening profile (shape) 0.07 - 0.1 
Screening profile (final rate), per year 0.4 - 0.55 
Relative rate of passive TB screening in Ebeye (ref. Majuro) 1.3 - 2.0 
Relative rate of passive TB screening in other islands (ref. Majuro) 0.5 - 1.5 
Relative rate of TB progression for diabetic individuals 2.0 - 5.0 
Relative risk of infection for individuals with latent infection (ref. Infection-naive) 0.2 - 0.5 
Relative risk of infection for individuals with history of infection (ref. Infection-
naive) 

0.2 - 1.0 

Efficacy of preventive treatment 0.75 - 0.85 
Relative screening rate following ACF interventions (ref. Before intervention) 1.0 - 1.5 
TB mortality (smear-positive), per year 0.335 - 0.449 
TB mortality (smear-negative), per year 0.017 - 0.035 
Self-cure rate (smear-positive), per year 0.177 - 0.288 
Self-cure rate (smear-negative), per year 0.073 - 0.209 

Table S2. Prior distribution ranges 

Variable Targeted value Source 

TB prevalence in Majuro in 2018 1366 per 100,000 persons Measured during intervention 

TB prevalence in Ebeye in 2017 755 per 100,000 persons Measured during intervention 

LTBI prevalence in Majuro in 2018 38% Measured during intervention, 
adjusted for test sensitivity. 

TB notifications in Majuro in  
• 2012 
• 2013 
• 2014 
• 2015 
• 2016 
• 2017 
• 2018 
• 2019 
• 2020 

 
• 91 
• 116 
• 115 
• 90 
• 119 
• 116 
• 376 
• 135 
• 96 

TB program 

TB notifications in Ebeye in 
• 2012 
• 2013 
• 2014 
• 2015 
• 2016 
• 2017 
• 2018 
• 2019 
• 2020 

 
• 44 
• 27 
• 30 
• 29 
• 53 
• 80 
• 30 
• 45 
• 39 

TB program 

Total population size in 2011 53158 2011 National Census 

Table S3. Calibration targets 



Posterior estimates of calibrated parameters 
Table S4 presents the posterior estimates obtained for the fitted parameters. The percentiles were 
obtained after combining the samples from the seven AM chains. 

Parameter 2.5th 
percentile 

Median 97.5th 
percentile 

Initial population size 333 414 519 
Transmission scaling factor 0.0038 0.0043 0.0057 
Progression multiplier 1.52 1.83 1.9 
Screening profile (inflection time), year 2010 2010 2010 
Screening profile (shape) 0.0709 0.0854 0.0994 
Screening profile (final rate), per year 0.414 0.522 0.55 
Relative rate of passive TB screening in Ebeye (ref. Majuro) 1.44 1.79 2 
Relative rate of passive TB screening in other islands (ref. 
Majuro) 0.534 1.02 1.48 
Relative rate of TB progression for diabetic individuals 3.99 4.98 4.99 
Relative risk of infection for individuals with latent infection 
(ref. infection-naive) 0.209 0.315 0.495 
Relative risk of infection for individuals with history of 
infection (ref. infection-naive) 0.221 0.501 0.97 
Efficacy of preventive treatment 0.754 0.808 0.849 
Relative screening rate following ACF interventions (ref. 
before intervention) 1.01 1.26 1.49 
TB mortality (smear-positive), per year 0.335 0.339 0.432 
TB mortality (smear-negative), per year 0.0171 0.0235 0.034 
Self-cure rate (smear-positive), per year 0.177 0.192 0.286 
Self-cure rate (smear-negative), per year 0.073 0.073 0.0731 

Table S4. Parameter posterior estimates 

Historical TB epidemic trajectory 
The model was initialised by seeding one infectious individual in 1800 in a fully-susceptible 
population. This approach allowed M.tb transmission to emerge naturally over the last two centuries 
until reaching the calibration targets in recent years. Figure S3 represents the historical epidemic 
trajectory. 

The model captured substantial uncertainty during the first 200 simulated years due to the absence of 
historical data for that period, but uncertainty is then refined for the most recent years. We simulated a 
progressive incidence increase until around 1900, followed by a nearly stable phase until around 
1950. The estimated TB incidence then increased again significantly due to the emergence of 
diabetes. The increasing incidence trend was estimated to peak and decline around 1990 as TB 
detection and BCG coverage increased.  

The TB mortality and LTBI prevalence trajectories followed that of incidence, whereas the modelled 
TB notifications only emerged after around 1970, which is a consequence of the modelled profile of 
case detection (see Figure S2). 



 
Figure S3. Historical epidemic trajectory projected by the model. The solid lines represent the median estimates. The 
shaded areas show the interquartile ranges (dark shade) and 95% credible intervals (light shade). 

Sensitivity analyses 
Considering various levels of future diabetes prevalence 
The results of our analysis considering different assumptions for the future trend of diabetes 
prevalence are shown in Figure S4. This analysis included the interventions previously conducted in 
Majuro and Ebeye and assumed that TB control would be similar to the current programmatic 
situation until 2050. We considered both a linear increase of 20% (red line and shade) and a linear 
decrease of 20% (green line and shade) in diabetes prevalence between 2020 and 2050 in this 
sensitivity analysis. 

 

 
Figure S4. Projected epidemic under status-quo scenario considering different future trends for diabetes prevalence. 
The dashed line represents the base case median estimate associated with a constant future diabetes prevalence, maintained 
at the same level as in 2020. The green (resp. red) line shows the median projection associated with a 20% decrease (resp. 
increase) in diabetes prevalence by 2050. The shades represent the interquartile ranges. 



Considering alternate values for the sensitivity of LTBI screening 
We assumed a sensitivity of 75% for LTBI screening in our base-case analysis. In a sensitivity 
analysis, we conducted simulations considering LTBI screening sensitivity values ranging from 50% 
to 90%. Figure S5 shows the main epidemic indicators under the status-quo scenario including the 
2017-2018 interventions, without repeated screening in the future. 

 

Figure S5. Projected epidemic under status-quo scenario considering different values of LTBI screening sensitivity. 
This analysis considered the “status-quo” scenario including the 2017-2018 interventions. We used the maximum likelihood 
estimates obtained during calibration (i.e. the best fitted run) to inform the parameters used in this analysis.   
 
Using a different assumption for the effect of BCG vaccination 
There remains uncertainty around the nature of the protective effect of BCG vaccination. In the base-
case analysis, BCG was assumed to protect against M.tb infection such that the transmission rate 
governing the transition between the S compartment and the E compartment was affected by BCG. In 
a sensitivity analysis, we assumed that BCG does not prevent infection, but only reduces the risk of 
mortality in individuals with active TB. We used the same approach as in the base-case analysis to 
characterise BCG efficacy by age and BCG coverage over time (see “M.tb transmission” section).  

Figures S6 and S7 present the same outputs as in the main text regarding the effect of the 2017-2018 
interventions and that of periodic interventions repeated in the future, respectively, this time 
considering the alternate assumption for BCG effect. 

 



 
Figure S6. Projected effect of the active screening interventions implemented in 2017 and 2018, assuming BCG only 
reduces the risk of death from TB. 
The solid lines represent the median estimates. The shaded areas show the interquartile ranges (dark shade) and 95% credible 
intervals (light shade) projected in the absence of any intervention (pink) and under a scenario including the interventions 
implemented in 2017-2018 in Majuro and Ebeye (blue). 



 

Figure S7. Projected effect of periodic community-wide interventions, assuming BCG only reduces the risk of death 
from TB. 
The solid lines represent the median estimates, and the shaded areas show the interquartile credible ranges. The “status-quo” 
scenario is represented in blue in all panels. The left column of panels presents scenarios including nationwide active case 
finding (ACF) repeated every two years (purple) or every five years (orange) or every ten years (green). The right column of 
panels presents nationwide ACF scenarios combined with mass latent infection screening and treatment, repeated every two 
years (purple) or five years (red). The light and dark grey dots show the 2025 milestones and the 2035 targets, respectively, 
according to the End TB Strategy. 

Assuming that passive case detection has been constant since 1980 
Although TB case detection has undoubtedly increased over time due to improvements in TB control, 
the profile of this scale-up remains uncertain. Including available data on active TB prevalence (in 
2017-2018) and TB notifications in our model calibration process allowed estimation of the rate of 
passive screening for the most recent years. However, in the absence of any TB prevalence data 
before 2017 we had to make assumptions regarding the historical scale-up profile of passive 
screening. In particular, we allowed the inflection time (i.e. the time when improvements in passive 
screening were the fastest) to vary between 2000 and 2020 in the base-case analysis, based on 
discussions with the country TB program. Such recent case detection improvements were partly 
responsible for the projected decline in the epidemic trajectory, even under the counterfactual scenario 
where active screening interventions were excluded. 

In a sensitivity analysis, we considered an alternate assumption regarding the passive case detection 
profile. We assumed that improvements in passive screening occurred before 1980 and that the 
passive screening rate remained constant thereafter. This was done by reusing the same approach 
presented in the Passive detection of active TB section, while fixing the value of the shape parameter 
(𝑚𝑚 = 0.2) and the inflection time (𝑐𝑐 = 1960), whereas the final value of passive screening rate 
(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓) remained automatically calibrated. Figure S8 represents the posterior estimate of the passive 
screening profile obtained in this sensitivity analysis. 



 

Figure S8. Posterior estimate of the passive screening rate profile under the alternate assumption regarding detection 
scale-up over time. The solid lines represent the median estimates. The shaded areas show the interquartile ranges (dark 
shade) and 95% credible intervals (light shade). 
 

Figures S9 and S10 present the same outputs as in the main text regarding the effect of the 2017-2018 
interventions and that of periodic interventions repeated in the future, respectively, this time 
considering the alternate passive screening profile. 



 

Figure S9. Projected effect of the active screening interventions implemented in 2017 and 2018, assuming an alternate 
profile of passive case detection over time. 
The solid lines represent the median estimates. The shaded areas show the interquartile ranges (dark shade) and 95% credible 
intervals (light shade) projected in the absence of any intervention (pink) and under a scenario including the interventions 
implemented in 2017-2018 in Majuro and Ebeye (blue). 

 



 

Figure S10. Projected effect of periodic community-wide interventions, assuming an alternate profile of passive case 
detection over time. 
The solid lines represent the median estimates, and the shaded areas show the interquartile credible ranges. The “status-quo” 
scenario is represented in blue in all panels. The left column of panels presents scenarios including nationwide active case 
finding (ACF) repeated every two years (purple) or every five years (orange) or every ten years (green). The right column of 
panels presents nationwide ACF scenarios combined with mass latent infection screening and treatment, repeated every two 
years (purple) or five years (red). The light and dark grey dots show the 2025 milestones and the 2035 targets, respectively, 
according to the End TB Strategy. 

Assuming more inter-island mixing 
In the base-case analysis, we assumed that a typical Marshall Islands inhabitant has 95% of his/her 
inter-personal contacts with individuals living on his/her own island. The remaining 5% would be 
contacts with individuals living on other islands. In a sensitivity analysis, we modified this 
assumption to consider 80% of contacts occurring within the same island group and 20% with 
individuals from other island groups, with the same assumption concerning the distribution of these 
contacts across the other two islands.  

Figures S11 and S12 present the results assuming increased inter-island mixing. 



 

Figure S11. Projected effect of the active screening interventions implemented in 2017 and 2018, assuming increased 
mixing between the different islands. 
The solid lines represent the median estimates. The shaded areas show the interquartile ranges (dark shade) and 95% credible 
intervals (light shade) projected in the absence of any intervention (pink) and under a scenario including the interventions 
implemented in 2017-2018 in Majuro and Ebeye (blue). 

 



 

Figure S12. Projected effect of periodic community-wide interventions, assuming increased mixing between the 
different islands. 
The solid lines represent the median estimates, and the shaded areas show the interquartile credible ranges. The “status-quo” 
scenario is represented in blue in all panels. The left column of panels presents scenarios including nationwide active case 
finding (ACF) repeated every two years (purple) or every five years (orange) or every ten years (green). The right column of 
panels presents nationwide ACF scenarios combined with mass latent infection screening and treatment, repeated every two 
years (purple) or five years (red). The light and dark grey dots show the 2025 milestones and the 2035 targets, respectively, 
according to the End TB Strategy. 

  



Benefit risk of active screening interventions 
Table S5 includes the same findings as Figure 6 (main text) in a tabular format. 

Scenario TB disease episodes 
averted by 2050 

TB deaths averted 
by 2050 

Individuals treated for 
LTBI by 2050 

Serious adverse 
events by 2050 

Reference: no screening counterfactual 

Status-quo 
including 2017-
2018 
interventions 

1948 (1173-2742) 643 (370-949) 5807 (5261-6370) 93 (84-102) 

Reference: status-quo including 2017-2018 interventions 

Screening every 
10 years 

2511 (1816-3534) 616 (397-993) 14354 (12498-17366) 230 (200-278) 

Screening every 5 
years 

3187 (2293-4825) 772 (492-1362) 17205 (14862-20814) 275 (238-333) 

Screening every 2 
years 

3793 (2714-5996) 918 (578-1622) 18391 (15869-21339) 294 (254-341) 

Table S5. TB disease episodes and TB deaths averted compared to total number of preventive treatment courses and 
serious adverse events by 2050.  
Median estimates and 95% credible intervals (in brackets). Cumulative numbers estimated between 2017 and 2050. 

Projected impact of periodic interventions (log scale) 
The projected epidemics under the different intervention scenarios are presented in the main text 
(Figure 4). Here below, the same outputs are represented on a log scale in order to visualise better 
whether the interventions considered could achieve the pre-elimination target by 2050. 

 
Figure S13. Projected effect of periodic community-wide interventions (log-scale). 
The solid lines represent the median estimates, and the shaded areas show the interquartile ranges. The “status-quo” scenario 
is represented in blue in all panels. The left column presents scenarios including nationwide active case finding (ACF) 
repeated every two years (purple), every five years (orange), or every ten years (green). The right column presents scenarios 
including nationwide ACF combined with mass latent infection screening and treatment, repeated every two years (purple) 
or five years (red). The light and dark grey dots show the 2025 milestones and the 2035 targets, respectively, according to 
the End TB Strategy. The horizontal dashed lines represent the pre-elimination threshold defined by the WHO as a TB 
incidence of 1 per-100,000-persons-per-year. 
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