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1 λ-dependent potential terms

1.1 Biasing and pH-dependent potentials

To enhance sampling at the physically relevant states in the λ-dynamics simulations, we

introduce a biasing potential of the form:

V bias
i (λ) =− k

[
exp

(
−(λ− 1− b)2

2a2

)
+ exp

(
−(λ+ b)2

2a2

)]
+ d

[
exp

(
−(λ− 0.5)2

2s2

)]
+ 0.5w

((
1− erf[r(λ+m)]

)
+
(
1 + erf[r(λ− 1−m)]

))
(S1)

After providing a value for the barrier height, the eight parameters k, a, b, d, s, w, r and

m, are determined in an iterative fashion, as in Donnini et. al.1 Parameters for the default

barrier of 7.5 kJ/mol and a barrier of 5.0 kJ/mol are listed in Table S1. The blue curves in

Figure S1 illustrate the potential with a barrier of 7.5 kJ/mol.

We also emphasize here, that the iterative procedure to obtain parameters k, a, b, d, s, w,

r and m reported in the paper by Donnini et. al,1 differed from the one actually used in both

the previous and current implementations. Here, were describe the difference. Parameters

d, s, w, r, and m were calculated in the exact same manner, as described in the original

paper,1 however, the parameters k, a, and b were computed differently. Initially, k was set to

half of the desired barrier height, a to 0.05, and b to -0.1. Next, parameters k, a, and b were

iteratively modified until the terminate conditionals, introduced further, were not satisfied.

The iteration loop was organised as follows:

1. The local minimum depth k is updated, so that the total barrier height corresponds to

the desired value:

k + = h/2 + Minλ(V
bias(λ)), (S2)

where h is the desired barrier height
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2. The local minimum position b is adjusted:

b + = 0.01x0, (S3)

where x0 is the average position of λ:

x0 =

∑
λ<0.5

V bias<0

λ exp(−V bias(λ))

∑
λ<0.5

V bias<0

exp(−V bias(λ))
(S4)

3. The local minimum width a is adjusted:

a / = 1 + 0.01
σ − σ0

σ0

, (S5)

where σ is the dispersion of λ:

σ =

√√√√√√√√
∑

λ<0.5
V bias<0

(λ− x0)2 exp(−V bias(λ))

∑
λ<0.5

V bias<0

exp(−V bias(λ))
(S6)

and σ0 is the desired dispersion of λ, which is set to 0.02.

The iterations are repeated until both Abs(x0) < ϵ and Abs
(

σ−σ0

σ0

)
< ϵ are not satisfied.

The difference with the original routine, described by Donnini et. al,1 is in the require-

ment for V bias < 0 in equations for x0 and σ. This requirement is essential for the biasing

potential to converge to the desired shape. Additionally, if the desired barrier is smaller than

0.45 kJ/mol, it is always forced to zero.
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The pH-dependent potential used in this work is

V pH(λi) = RT ln(10) [pKa,i − pH]
1

1 + exp(−2k1(λi − 1 + x0s)
, if pH > pKa

V pH(λi) = RT ln(10) [pKa,i − pH]
1

1 + exp(−2k1(λi − x0))
, if pH ≤ pKa, (S7)

where k1 and x0 depend on the parameters r and a of biasing potential (Equation S1). Here,

we use k1 = 2.5r and x0 = 2a. This pH potential, as well as the combination with the biasing

potential is plotted in Figure S1 for two pH values

Table S1: Parameters for the double well biasing potential for barrier heights 5.0 kJ/mol
and 7.5 kJ/mol.

k a b d s w r m
barrier 5.0 kJ/mol 3.1889 0.0363 0.0044 2.50 0.30 1000.0 13.5 0.2019
barrier 7.5 kJ/mol 4.7431 0.0435 0.0027 3.75 0.30 1000.0 13.5 0.2019

Figure S1: Combination of biasing and pH potentials at pH=3.0 (left) and pH=5.0 (right),
when pKa=4.0. The blue profile shows the biasing potential V bias (Equation S1) with a bar-
rier height of 7.5 kJ/mol. The red profile shows the pH-dependent potential V pH (Equation
S7). The yellow profile shows the sum of the two potentials V total = V bias + V pH

1.2 Partial charges of atoms in different protonation states

Default partial charges for the atoms in the side chains of Asp, Glu, and His were used

to model the electrostatic interactions of these residues in their different protonation states
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for constant pH simulations with both the CHARMM36 and Martini 2.0 force fields. These

charges are provided via a separate coefficients.dat file that contains for each amino acid

a list of atoms with their charges in the various protonation states. This file is included in

the supplementary archive SI_constant_ph_gromacs.zip.

1.3 Correction potential V MM

The quantum mechanical contributions to proton binding that are missing from classical

molecular mechanics force fields are compensated for by a correction potential V MM. To

propagate λ-coordinates we only need the gradients of this potential with respect to the λ-

coordinates. Analytical expressions for these gradients are obtained as polynomial fits to the

derivatives of the reference free energy along the charge interpolation path. Below we provide

the details for the fitting of ∂V MM/∂λ for both the single-site and multisite representations

of a titratable residue.

1.3.1 Correction potential for single site representation

If the single site representation is used, V MM is obtained as follows: First, the trajectory

averages of ⟨∂V
∂λ

⟩λ are computed at various values of λ between -0.1 and 1.1. In our imple-

mentation, we can accumulate ⟨∂V
∂λ

⟩λ at fixed values of λ by setting the fictitious mass of

the λ-particle to zero. Subsequently, ∂V MM/∂λ is obtained as a polynomial fit to the ⟨∂V
∂λ

⟩λ

values.

1.3.2 Correction potential for multisite representation

The correction potential for the multisite representation with n protonation states is obtained

by performing a multi-dimensional fit to the trajectory averages of ⟨ ∂V
∂λk

⟩
(λ

(α)
1 ,λ

(α)
2 ,...,λ

(α)
n )

. The

Ngrid grid points (λ
(α)
1 , λ

(α)
2 , ..., λ

(α)
n ) for 1 ≤ α ≤ Ngrid, are selected under the constraint

n∑
j=1

λ
(α)
j = 1, (S8)
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We represent the correction potential by a (k + 1)th order polynomial

V MM(λ1, λ2, ..., λn) =
k+1∑
t=0

 ∑
∑n

i=1 pi=t
pi≥0

ap1,p2,...,pn

n∏
i=1

(λi)
pi

 (S9)

where pi indicates the power of λi. The derivative of this polynomial with respect to λj is

of order k:

∂V MM

∂λj

(λ1, λ2, ..., λn) =
k+1∑
t=1


∑

∑n
i=1 pi=t

pi,i̸=j≥0
pj≥1

pjap1,p2,...,pn (λj)
pj−1

n∏
i=1
i ̸=j

(λi)
pi

 (S10)

Because of the constraint (Equation S8), we can substitute λn = 1−
∑n−1

1 λi to get

∂V MM

∂λj

(λ1, λ2, ..., λn) =



k+1∑
t=1

 ∑∑n
i=1 pi=t

pi,i̸=j≥0
pj≥1

pjap1,p2,...,pn (λj)
pj−1

n−1∏
i=1
i ̸=j

(λi)
pi

(
1−

∑n−1
r=1 λr

)pn
 , if k ̸= n

k+1∑
t=1

 ∑∑n
i=1 pi=t

pi,i<n≥0
pn≥1

{
pnap1,p2,...,pn

(
1−

∑n−1
r=1 λr

)pn−1
(

n−1∏
i=1

(λi)
pi

)} , if k = n

=
k∑

t=0

 ∑
∑n−1

i=1 qi=t
qi≥0

bt,jq1,q2,...,qn−1

n−1∏
i=1

(λi)
qi

 (S11)
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where we have introduced the coefficients bt,jq1,q2,...,qn−1
as short-hand notations for the linear

combinations of ap1,p2,...,pn :

bt,jq1,q2,...,qn−1
=

r=k+1∑
r=0

 ∑
∑n

i=1 pi=r

mt,j,q1,...,qn−1
p1,p2,...,pn

ap1,p2,...,pn

 (S12)

where mt,j,q1,...,qn−1
p1,p2,...,pn

are the expansion coefficients obtained by contracting the terms between

brackets in Equation S11. To simplify notation, we write expression S12 in matrix form:

b = Ma, (S13)

where

M =



mk,1,k,0,...,0
k+1,0,...,0 mk,1,k,0,...,0

k,1,...,0 · · · mk,1,k,0,...,0
k,0,...,0 · · · mk,1,k,0,...,0

0,0,...,0

mk,1,k−1,1,...,0
k+1,0,...,0 mk,1,k−1,1,...,0

k,1,...,0 · · · mk,1,k−1,1,...,0
k,0,...,0 · · · mk,1,k−1,1,...,0

0,0,...,0

...
... . . . ...

mk−1,1,k−1,0,...,0
k+1,0,...,0 mk−1,1,k−1,0,...,0

k,1,...,0 · · · mk−1,1,k−1,0,...,0
k,0,...,0 · · · mk−1,1,k−1,0,...,0

0,0,...,0

...
... . . . ...

m0,n,0,0,...,0
k+1,0,...,0 m0,n,0,0,...,0

k,1,...,0 · · · m0,n,0,0,..,0
k,0,...,0 · · · m0,n,0,0,...,0

0,0,...,0


(S14)

and a = (ak+1,0,...,0, ak,1,...,0, ..., a0,0,...,0)
T .

The best multi-dimensional fit for ∂V MM/∂λk is obtained by finding the coefficients

bt,jq1,q2,...,qn−1
that minimize the squared deviation between the ∂V MM(λ1, ..., λn)/∂λk and the

average value of ⟨∂V/∂λk⟩(λ(α)
1 ,λ

(α)
2 ,...,λ

(α)
n )

over all grid points α (i. e., (λ(α)
1 , λ

(α)
2 , ..., λ

(α)
n ) ):

b̂ = argmin
b

S(b) (S15)

where b =
(
bk,1k,0,...,0, b

k,1
k−1,1,...,0, ..., b

k,1
0,0,...,k, b

k−1,1
k−1,0,...,0, b

k−1,1
k−2,1,...,0, ..., b

k−1,1
0,0,...,k−1, ..., b

0,n
0,0,...,0

)T

, b̂ is the

optimal solution, and S(b) is the sum of squared differences between ∂V MM/∂λj and the
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value of ⟨∂V/∂λj⟩(λ(α)
1 ,λ

(α)
2 ,...,λ

(α)
n )

at the grid points:

S(b) =
n∑

j=1

∑
i

〈
∂V

∂λj

〉
(λ

(α)
1 ,λ

(α)
2 ,...,λ

(α)
n )

−
∑

∑n−1
l=1 ql<=k

bk,jq1,q2,...,qn−1

n−1∏
l=1

(λ
(α)
l )ql

2

(S16)

With the average values of ⟨ ∂V
∂λj

⟩
(λ

(α)
1 ,λ

(α)
2 ,...,λ

(α)
n )

at the grid points obtained from the trajec-

tories, the residual sum of squares S(b) can be cast in matrix notation:

S(b) = ∥f −Xb∥2 , (S17)

where ∥...∥ denotes the Euclidean norm, and f and X are:

f =



⟨ ∂V
∂λ1

⟩(
λ
(1)
1 ,λ

(1)
2 ,...,λ

(1)
n

)
⟨ ∂V
∂λ1

⟩(
λ
(2)
1 ,λ

(2)
2 ,...,λ

(2)
n

)
...

⟨ ∂V
∂λ1

⟩(
λ
(Ngrid)
1 ,λ

(Ngrid)
2 ,...,λ

(Ngrid)
n

)

⟨ ∂V
∂λ2

⟩(
λ
(1)
1 ,λ

(1)
2 ,...,λ

(1)
n

)
⟨ ∂V
∂λ2

⟩(
λ
(2)
1 ,λ

(2)
2 ,...,λ

(2)
n

)
...

⟨ ∂V
∂λ2

⟩(
λ
(Ngrid)
1 ,λ

(Ngrid)
2 ,...,λ

(Ngrid)
n

)
...

⟨ ∂V
∂λn

⟩(
λ
(1)
1 ,λ

(1)
2 ,...,λ

(1)
n

)
⟨ ∂V
∂λn

⟩(
λ
(2)
1 ,λ

(2)
2 ,...,λ

(2)
n

)
...

⟨ ∂V
∂λn

⟩(
λ
(Ngrid)
1 ,λ

(Ngrid)
2 ,...,λ

(Ngrid)
n

)



X =



Xsingle 0 0 · · · 0

0 Xsingle 0 · · · 0

...
...

... . . . ...

0 0 0 · · · Xsingle


(S18)

9



Here, 0 is a 0-filled matrix with the same dimensions as Xsingle, which is defined by:

Xsingle =



Λ1
1 Λ2

1 · · · Λnc
1

Λ1
2 Λ2

2 · · · Λnc
2

...
... . . . ...

Λ1
Ngrid Λ2

Ngrid · · · Λnc

Ngrid


, (S19)

where Λj
α is the value of

∏n−1
l=1 (λ

(α)
l )ql at α-th grid point for j-th element of the set of powers

ql. The polynomial representing the ∂V MM/∂λk in Equation S11 is a linear combination of

nc

∏n−1
l=1 (λ

(α)
l )ql terms. Each of these terms is defined by a combination of powers ql and

each set of powers fulfills the inequality:

n−1∑
l=1

ql ≤ k, ql ≥ 0, l ∈ {1, 2, . . . , n− 1}

However, there can be combinations of k and n for which the coefficients bt,jq1,q2,...,qn−1
are

linearly dependent and the rank of M is smaller than the number of rows in M (Equa-

tion S13). In such situations, the total number of linearly independent combinations of the

coefficients bt,jq1,q2,...,qn−1
is rank(M). For the nc ∗ n− rank(M) linear combinations, we have

∑
i

ϵliMij = (0, 0, ..., 0), (S20)

where l is an index for each of the nc ∗ n − rank(M) linearly dependent combinations with

1 ≤ l ≤ nc ∗ n − rank(M); and ϵli are the expansion coefficients for these combinations. In

matrix notation

QTM = 0, (S21)

with Q the full-rank matrix of the coefficients ϵli. If rank(Q) = 0, there are no linear depen-

dencies between the coefficients bt,jq1,q2,...,qn−1
and the solution for the optimization problem
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S15 is obtained as

b̂ =
(
XTX

)−1
XT f , (S22)

where XTX is considered invertible,2 which will always be the case if the number of grid

points (Ngrid) is sufficiently large for a given maximum order of the polynomial. If rank(Q) >

0, the optimization in S15 transforms into a constrained estimation. From equations S13

and S21 the constraints on the estimator b can be written as

QTb =



0

0

...

0


(S23)

and the solution for optimal estimator is given by2

b̂ = R
(
RTXTXR

)−1
RTX−1f , (S24)

where R is a matrix such that RTQ = 0 and rank [(Q R)] = nc ∗ n. R is obtained by

computing the basis set of complement space of Q.

1.3.3 Coefficients for Asp, Glu and His

The procedure for obtaining the gradients of force field free energy associated with depro-

tonation of the amino acids in their reference states is explained in the Methods section of

the main text. The coefficients obtained by applying the fitting procedures described above

to these gradients are provided as input and are listed in coefficients.dat file that is

included in the supporting archive SI_constant_ph_gromacs.zip.
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Figure S2: Titration curves for tripeptide Asp using ∂V MM/∂λ coefficients obtained for
pentaAsp (on the left) and triAsp (on the right). Dots show the fraction of deprotonated
acid from CpHMD simulations, and dashed lines are the theoretical curve for reference
pKa = 3.65.

1.3.4 Using tripeptides as reference compounds

In this work, we performed both the thermodynamic integration runs for obtaining V MM and

the test simulations for tripeptides, whereas the experimental reference pKa values for the

amino acids were obtained for pentapeptides.3,4 We validated this choice by computing also

the titration curve for the Asp tripeptide using coefficients obtained from thermodynamic

integration runs on a pentapeptide system. As shown in Figure S2, the titration curves are

virtually identical, suggesting that the correction potentials obtained from the calibration

runs on the tripeptides, are transferable.
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2 Effect of Lennard-Jones potential

In this work, we interpolated the charges between protonation states, but not the Lennard-

Jones parameters. The motivation for this choice is twofold: First, while implementing

the interpolations is conceptually straightforward, re-organizing GROMACS to realize such

interpolations is very time-consuming. Second, the contribution to the proton affinity due

to changes in the Lennard-Jones interactions between the protonation states is much smaller

than the contribution from the Coulomb interactions.5 Therefore, we consider it a reasonable

approximation to neglect the effect of the changes in Lennard-Jones parameters.

To verify the validity of this approximation for the two force fields used in this work,

we computed the change in free energy associated with the deprotonation of Asp in the

tripeptide test system and of Asp-59 in Cardiotoxin V. To test the influence of the various

interactions, we performed thermodynamic integration (TI) runs, in which we interpolated:

1. all interactions, including bonded, Coulomb and Lennard-Jones interactions

2. only the electrostatic interactions

3. the electrostatic and Lennard-Jones interactions

4. the electrostatic and bonded interactions

Because in the Martini 2.0 force field, the bonded interactions do not change upon deproto-

nation, we only compared 2 and 3 for Martini.

We interpolated the interactions in 21 equidistant steps between λ = 0 and λ = 1.

Each step was simulated for 51 ns, of which the first nanosecond was used for equilibration

and hence discarded from the analysis. We used Bennett’s acceptance ratio method6 to

extract the free energies. In Figure S3, we plot ∆∆G, defined as the difference between the

free energy differences (∆G) associated with deprotonating Asp in the protein and in the

peptide, for the four TI runs. While the contribution of interpolating the Lennard-Jones to

the ∆∆G values is below 10% for both the CHARMM36 AA and Martini 2.0 CG force field,
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the contribution of interpolating also the bonded interactions is of the same order but of

opposing sign. We, therefore, conclude that for the force fields used in this work neglecting

the interpolation of both bonded and Lennard-Jones interactions and only interpolate the

charges, provides a sufficiently accurate description of the effect of the environment on the

proton affinities.

Figure S3: Difference between the free energy difference associated with deprotonation of as-
partic acid in cardiotoxin V and in the tripeptide (i.e., ∆∆G), for both the AA CHARMM36
and CG Martini force fields, when interpolating all interactions, only Coulomb interactions,
Coulomb plus Lennard-Jones interactions, and Coulomb plus bonded interactions.
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3 Titrations using single site representation

The all-atom titration simulations presented in the main text were performed with the multi-

site representation for all amino acids. While for His the multisite representation is necessary,

the Asp and Glu side chains could have been modeled with the singe-site representation as

well. To demonstrate that this choice is not relevant for the results of the simulations,

we repeated the titration simulations with the single-site representation for the tripeptides,

keeping all other simulation parameters the same. Comparing the titration curves obtained

with the single-site representation in Figure S4 to the curves obtained with the multisite

representation in Figure 3 of the main text, we conclude that both representations yield

identical results.

Figure S4: Titration curves of tripeptides Glu and Asp in water, using AA CHARMM36
force field in the single site representation. Charge constraints, in combination with 20
buffer particles were used to keep the box neutral in all simulations. Dots show the fraction
of frames in which the residue is deprotonated, and the dashed lines represent the fits to
the Henderson-Hasselbalch equation. From these fits the pKa values were estimated and
included inside the graphs.
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4 Comparison of HEWL pKa values to previous calcula-

tions

The scatter plot in Figure S5 compares the calculated pKa values for HEWL obtained in

this work to those obtained by others,7,8 as well as to experiment.9

Figure S5: Correlation between the experimental and calculated pKa for the HEWL protein.
Red circles show the results obtained with our implementation. Blue circles are the results
published by Shen et.al .7 Green circles are results published by Brooks et.al .8 Experimental
pKa values were taken from Webb et al.9
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5 Convergence of computed pKa values

To monitor the convergence of the predicted pKa values in cardiotoxin V and HEWL, we

computed the cumulative average of the pKa values (figure S6 and S8) and Sdeprot (figure S7

and S9) at different pH values as a function of simulation time window. The time window

over which Sdeprot and pKa were averaged was increased from 5 to 50 ns in steps of 5 ns. The

results, averaged over the replicas, are shown in Figures S6-S7 for Cardiotoxin and S8-S9 for

HEWL.

Within 50 ns all pKa values, as well as Sdeprot at high, average, and low pH values level off,

indicating convergence. Because Sdeprot converges slower than the pKa values, convergence of

the latter is no proof that the simulations are converged. The slow convergence of protonation

states of Asp52-Glu35 pair in HEWL has been observed by others, who also discussed the

origin for the slow convergence as well.7,10

Figure S6: Time evolution of the cumulative pKa values in cardiotoxin V.
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Figure S7: Time evolution of the cumulative average of Sdeprot in cardiotoxin V at different
pH values.

Figure S8: Time evolution of the cumulative pKa values in HEWL.
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Figure S9: Time evolution of the cumulative average of Sdeprot in HEWL at different pH
values.
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6 Structural analysis of proteins at different pH

6.1 Cardiotoxin V

The effect of pH on the structure of cardiotoxin V is moderate. Overall, the protein is

stable over the whole pH range, and no major conformational changes are observed (figure

S10,S11).

Figure S10: RMSD of cardiotoxin V with respect to average structure at low, average and
high pH. RMSD was computed for Cα atoms.
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Figure S11: RMSF of cardiotoxin V residues with respect to average structure at low, average
and high pH. RMSF was computed for Cα atoms.
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6.2 HEWL

The effect of pH on the structure of HEWL is moderate. Overall, the protein is stable over

the whole pH range, and no major conformational changes are observed (figure S12,S13).

The major effect of pH on the structure is observed in loops formed by residues 40-50 and

65-75. The flexibility of these loops increases with decreasing pH. These trends are in line

with previous findings for HEWL and have been discussed in detail elsewhere.10

Figure S12: RMSD of HEWL with respect to average structure at low, average and high pH.
RMSD was computed for Cα atoms.
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Figure S13: RMSF of HEWL residues with respect to average structure at low, average and
high pH. RMSF was computed for Cα atoms.
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7 Residue hydration as a function of pH

To determine if there is correlation between the protonation state and the solvent exposure of

a residue, we monitored the number of water molecules interacting with the residue sidechain.

In Figures S14 and S15 we plot the average number of water molecules that are within 0.3 nm

(as measured from the water oxygen atom) from the amino acid sidechain, as a function of

pH. These hydration values were obtained as averages over the trajectories of all replicas of

each pH value. For Asp and Glu, the hydration increases with pH, while for His the hydration

decreases with pH. With the exception of Asp48 and Asp66 in HEWL, the hydration curves

correlate nicely with the titration curves. These observations suggest that exposure to water

has an important effect on the proton affinity of a residue. Because Asp48 and Asp66

are buried within the hydrophobic core of HEWL, access to water is restricted. Instead, we

observe that upon deprotonation, these residues form more hydrogen bonds with the protein,

as shown in Figure S16.

Figure S14: Average number of water molecules within 0.3 nm radius from the residue side
chain for cardiotoxin V.
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Figure S15: Average number of water molecules within 0.3 nm radius from the residue side
chain for HEWL.
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Figure S16: Average number of hydrogen bonds with the rest of protein formed by the side
chains of Asp48 and Asp66 of HEWL.
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8 Charge interpolation for coupled sites

In the main text, we demonstrated that for "chemically", or topologically uncoupled sites,

the gradient of the Coulomb energy with respect to the λk coordinates can be evaluated

directly from the electrostatic potential if rather than interpolating the Coulomb potential

functions linearly, we interpolate the charges linearly instead. Here, we demonstrate that

this is also true for chemically coupled sites within the multisite representation.

In the multisite representation, the interpolated charge on an atom i is

qi =
∑
k

(
(1− λk)q

0
i + λkq

k
i

)
(S25)

where the sum runs over all λk-groups that contribute to the charge of that atom. Thus,

the total electrostatic interaction of this atom with the other atoms in the system does not

depend on the value of a single, but on the values of multiple λk coordinates.

The total λ-dependent electrostatic energy for a system with Ng titratable residues, l,

each of which with nl atoms, and described by νl λk coordinates coupled within the multisite

representation, is:

Vcoul(R,λ) = V rest-rest(R) + V g-rest(R,λ) + V g-g(R,λ) + V g(R,λ) (S26)

This electrostatic potential has contributions from (i) interactions between atoms that are

not part of any titratable residue, V rest-rest ; (ii) interactions between the nl atoms that are

part of titratable residue l, and the atoms that are not part of any titratable residue, V g-rest;

(iii) interactions between atoms that belong to different titratable residues, V g-g; and (iv)

interactions between atoms within the same titratable residue, V g. The first contribution is

independent of λk, and is not considered further.

Substituting the expression for the total charge on the atoms (Equation S25), in the
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second contribution yields:

V g-rest(R,λ) =
∑Ng

l

∑nl

i

∑nrest
j

∑νl
k

((1−λk)q
0
i +λkq

k
i )qj

4πϵ0rij

=
∑Nλ−groups

k

∑nk

i

∑nrest
j

((1−λk)q
0
i +λkq

k
i )qj

4πϵ0rij
= V λ-rest(R,λ)

(S27)

where Nλ−groups =
∑Ng

l=1 νl is the total number of λ-groups in the system, which is equivalent

to Nsites used in the main text. Because, in contrast to the single-site representation, in

which the λ-coordinate connects two protonation states, each protonation state requires a

separate λ-coordinate in the multisite representation, Nλ−groups can be larger than Nsites.

For example, the histidine side chain has two sites (Nδ and Nϵ), but is described by three

λ-groups. After the substitution, the expression for V g−rest is identical to V λ−rest in equation

16 of the main text.

Substituting the expression for the total charge on the atoms (Equation S25) also in the

contribution describing the interactions between atoms that are part of different titratable

residues, yields:

V g-g(R,λ) =
∑Ng

l

∑Ng
m;m̸=l

∑nl

i

∑nm

j

∑νl
k

∑νm
t

[(1−λk)q
0
i +λkq

k
i ][(1−λt)q0j+λtqtj]

4πϵ0rij

=
∑Nλ−groups

k

∑Nλ−groups
t,gl(λk )̸=gm(λt)

∑nk

i

∑nt

j

((1−λk)q
0
i +λkq

k
i )((1−λt)q0j+λtqtj)

4πϵ0rij

= V λ-λ, different groups(R,λ),

(S28)

with gl(λk) denoting the l-th titratable residue, which has λk-coordinate under the multisite

constraint. Typically gl(λk) constitutes a residues with νl protonation states. Here we

have again replaced the combined sums over the Ng and ν by sums over Nλ−groups. The

superscript "λ-λ, different groups" indicates that the Coulomb potential is computed with

the interpolated charges of atoms that belong to two different groups, thus not within the

same residue.
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The last contribution to interaction energy S26 is due to the interactions between the

atoms of a residue, V g(R,λ) . Substituting equation S25 yields:

V g(R,λ) = 1
2

∑Ng
l

∑nl

i

∑nl

j

∑νl
k [(1−λk)q

0
i +λkq

k
i ]
∑νl

t [(1−λt)q0j+λtqtj]
4πϵ0rij

= 1
2

∑Ng
l

∑nl

i

∑nl

j

∑νl
k

[(1−λk)q
0
i +λkq

k
i ][(1−λk)q

0
j+λkq

k
j ]

4πϵ0rij

+
∑Ng

l

∑nl

i

∑nl

j

∑νl
k

∑νm
t,t̸=k

[(1−λk)q
0
i +λkq

k
i ][(1−λt)q0j+λtqtj]

4πϵ0rij

= V λ(R,λ) + V λ-λ, same group(R,λ),

(S29)

Here, the superscript "λ-λ, same group" indicates that we compute the Coulomb interac-

tions between atoms belonging to the same group, or residue, using the interpolated charges.

Because

V λ-λ, different groups(R,λ) + V λ-λ, same group(R,λ) = V λ-λ(R,λ)

the final expression for total electrostatic interaction energy when the multisite representation

is used to model chemically coupled sites, is the same as for the uncoupled case (Equation 16

in the main text):

Vcoul(R,λ) = V rest-rest(R) + V g-rest(R,λ) + V g-g(R,λ) + V g(R,λ)

= V rest-rest(R) + V λ-rest(R,λ) + V λ-λ, different groups(R,λ)

+V λ-λ, same group(R,λ) + V λ(R,λ)

= V rest-rest(R) + V λ-rest(R,λ) + V λ-λ(R,λ) + V λ(R,λ)

(S30)

29



References

(1) Donnini, S.; Ullmann, R. T.; Groenhof, G.; Grubmüller, H. Charge-neutral constant

pH molecular dynamics simulations using a parsimonious proton buffer. Journal of

chemical theory and computation 2016, 12, 1040–1051.

(2) Amemiya, T. Advanced Econometrics ; Harvard University Press, 1985.

(3) Thurlkill, R. L.; Grimsley, G. R.; Scholtz, J. M.; Pace, C. N. pK values of the ionizable

groups of proteins. Protein science 2006, 15, 1214–1218.

(4) Tanokura, M. 1H-NMR study on the tautomerism of the imidazole ring of histidine

residues: I. Microscopic pK values and molar ratios of tautomers in histidine-containing

peptides. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular En-

zymology 1983, 742, 576–585.

(5) Bürgi, R.; Kollman, P. A.; van Gunsteren, W. F. Simulating proteins at constant pH:

An approach combining molecular dynamics and Monte Carlo simulation. Proteins:

Structure, Function, and Bioinformatics 2002, 47, 469–480.

(6) Bennett, C. H. Efficient estimation of free energy differences from Monte Carlo data.

Journal of Computational Physics 1976, 22, 245–268.

(7) Huang, Y.; Chen, W.; Wallace, J. A.; Shen, J. All-atom continuous constant pH molecu-

lar dynamics with particle mesh Ewald and titratable water. Journal of chemical theory

and computation 2016, 12, 5411–5421.

(8) Goh, G. B.; Hulbert, B. S.; Zhou, H.; Brooks III, C. L. Constant pH molecular dynamics

of proteins in explicit solvent with proton tautomerism. Proteins: structure, function,

and bioinformatics 2014, 82, 1319–1331.

(9) Webb, H.; Tynan-Connolly, B. M.; Lee, G. M.; Farrell, D.; O’Meara, F.; Sønder-

gaard, C. R.; Teilum, K.; Hewage, C.; McIntosh, L. P.; Nielsen, J. E. Remeasuring

30



HEWL pKa values by NMR spectroscopy: Methods, analysis, accuracy, and implica-

tions for theoretical pKa calculations. Proteins: Structure, Function, and Bioinformat-

ics 2011, 79, 685–702.

(10) Swails, J. M.; Roitberg, A. E. Enhancing conformation and protonation state sampling

of hen egg white lysozyme using pH replica exchange molecular dynamics. Journal of

chemical theory and computation 2012, 8, 4393–4404.

31


