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Supplementary Text  

Technical details of the Propelling Action for Test And Treat (PATAT) model  

PATAT is a stochastic agent-based model designed to investigate the use and impact of 

antigen-detecting rapid diagnostic tests (Ag-RDT) in controlling COVID-19 outbreaks in 

low-middle income countries.1,2 The computational flow of a PATAT simulation is 

summarised as follows: First, an age-structured population of agents is created. Close contact 

networks are subsequently created based on the given demographic data. The simulation is 

then initialised and iterates over a given period of time where each time step corresponds to a 

day. The operations during each timestep encompass updating the disease progression of 

infected individuals, the status of isolated/quarantined agents, application of community 

testing strategies and computation of transmission events within contact networks. 

  

Population demography 

Using input demographic data which includes information such as population age and sex 

distribution, household composition, employment and schooling rates, PATAT generates a 

population of individuals who are linked by a series of underlying contact network settings 

where transmission may occur. These contact network settings include households, schools, 

workplaces, regular mass gatherings (i.e. church) as well as random community contacts. 

  

Household 

PATAT randomly generates a Poisson distribution of household sizes based on the given 

mean household size. A reference individual (e.g. head of the household) above an assumed 

prime adult age (e.g. years) is first randomly assigned to each household. To account for 

multigenerational households, the remaining household members are then randomly sampled 

multinomially by the input age distribution of households. Although PATAT does not 

explicitly model the geolocation of agents, households are ordered to implicitly approximate 

neighbourhood proximity. 

  

Schools 

PATAT distinguishes between elementary and secondary schools. For each education level, 

schooling children are randomly sampled from the population based on given enrolment rates 

and gender parity. Class sizes are then randomly drawn from a Poisson distribution based on 

the input mean class size while constrained by the number of schooling children attending the 



same grade (i.e. age; a class include only students studying the same grade). Schools are 

created by random allotment of classes such that (1) all schools will have equitable 

distributions of classes of all grades for the given education level and (2) the total number of 

students approximately equals to the expected school size. Classes are then populated by 

schooling agents such that (1) agents of proximally ordered households will tend to attend the 

same school and (2) children of the same grade (age) from identical households will not be 

assigned to the same class even though they may attend the same school. School teachers are 

then randomly drawn from the employed prime adult population based on the input teacher-

to-student ratio and are assumed to have contact with each other during school days. Each 

class is randomly assigned to one teacher.   

  

Workplaces 

PATAT generates both formal and informal workplace contact networks based on separate 

employment rates. Youth (15-19 years) employment is also considered in the potential 

workforce. The distinction between formal and informal settings is made as mean employee 

contact rates likely differ between them. Furthermore, workplace distribution of Ag-RDTs for 

community testing is assumed to be feasible for formal employment entities only. Unlike 

schools, PATAT does not explicitly model for workplaces but sets up contact matrices 

between employed individuals who would be in regular contact at work. As such, different 

number of formal and informal mean number of work contacts must be provided by the user 

and sizes of workplace contact network are randomly drawn from a Poisson distribution. An 

employed agent would only be associated with one workplace contact network. 

  

Mass gatherings (Religious gathering) 

High-density mass gatherings are considered in the model in the form of contacts among 

church congregations. The size of a church is assumed to follow a Normal distribution with 

user’s given mean and variance. PATAT assumes that all members of a household will visit a 

church together every Sunday. Other than close contacts with each other, each household 

member would also have a random number of close contacts from other households that 

attend the same church. This random contact number is drawn from a Gamma distribution 

with user’s given shape and scale parameters. Churches are also ordered such that proximally 

ordered households in the same neighbourhood would visit the same church.  

  

Random community 



PATAT assumes that every agent within a given age range would have a random number of 

contacts with the community daily, drawn from a Poisson distribution with a mean defined by 

the user.  

  

Disease progression 

PATAT implements a SEIRD epidemic model where the simulated population is 

distinguished between five compartments: susceptible, exposed (i.e. infected but is not 

infectious yet; latent phase), infected (which include the presymptomatic infectious period for 

symptomatic agents), recovered and dead. The infected compartments are further stratified by 

their presented symptoms, including asymptomatic, presymptomatic, symptomatic mild or 

severe. All symptomatic agents will also first undergo an infectious presymptomatic period 

after the exposed latent period. They will either develop mild symptoms who will always 

recover from the disease or experience severe infection which could either lead to death or 

recovery. PATAT uses age-structured SARS-CoV-2 disease severity and mortality 

probabilities (Extended Data Table 1). As a simplification, PATAT currently assumes that all 

agents presenting severe symptoms will be hospitalized and removed from the population. 

  

The total duration of infection since exposure depends on the symptoms presented by the 

patient and is comprised of different phases (i.e. latent, asymptomatic, presymptomatic, 

onset-to-recovery/death). The time period of each phase is drawn can be found in Extended 

Data Table 1.  

  

Within-host viral dynamics 

For each infected agent, PATAT explicitly simulates their viral load trajectory of cycle 

threshold (Ct) values over the course of their infection using a stochastic model modified 

from the one previously developed by Quilty et al.3 A baseline Ct value (𝐶𝑡#$%&'()&) of 40 is 

established upon exposure. The infected agent becomes infectious upon the end of the latent 

period and their Ct value is assumed to be ≤ 30. A peak Ct value is then randomly drawn 

from a normal distribution (Extended Data Table 1). Peak Ct is assumed to occur upon 

symptom onset for symptomatic agents and one day after the latent period for asymptomatic 

individuals. Cessation of viral shedding (i.e. return to 𝐶𝑡#$%&'()&) occurs upon recovery or 

death. PATAT assumes that the transition rate towards peak Ct value should not be 

drastically different to that when returning to baseline upon cessation (i.e. there should be no 



sharp increase to baseline Ct value after gradual decrease to peak Ct value or vice versa). As 

such, the time periods of the different phases of infection are randomly drawn from the same 

quintile of their respective sample distribution. The viral load trajectory is then simulated by 

fitting a cubic Hermite spline to the generated exposed (𝑡&-./%&0, 𝐶𝑡#$%&'()&), latent (𝑡'$1&)1 , 

𝐶𝑡'$1&)1 = 30), peak (𝑡.&$3 , 𝐶𝑡.&$3) and cessation values (𝑡4&5/6&4&0/0&$18 , 𝐶𝑡#$%&'()&). The 

slope of the fitted curve is assumed to be zero for all of them except during 𝑡'$1&)1where its 

slope is assumed to be 91:;<=>91?<@;ABC;
1:;<=>1;D:E@;F

. PATAT then uses the fitted trajectory to linearly 

interpolate the viral load transmissibility factor (𝑓'/$0,() of an infectious agent 𝑖 assuming that 

they are twice as transmissible at peak Ct value (i.e. 𝑓'/$0 = 2) relative to when they first 

become infectious (i.e. Ct value = 30; 𝑓'/$0 = 1).  

 

Antiviral treatment  

For individuals who were treated with antivirals that were deemed to result in severe disease, 

we performed a Bernoulli trial with the probability of averting severe disease (i.e. percentage 

risk reduction to severe disease outcomes), provided that they are currently in the 

presymptomatic phase or are experiencing mild disease. If the Bernoulli trial succeed, we 

would re-simulate their disease progression and within host viral dynamics using the 

procedures above but now under the assumption that they would develop only mild disease 

and conditioning that the maximum viral load is lower than before. Changes will only be 

made to the upcoming phases of disease progression from the current phase of infection.  

  

Transmissions 

When an infectious agent 𝑖 comes into contact with a susceptible individual 𝑗, the probability 

of transmission (𝑝14$)%N(%%(/),((,P)) is given by: 

 

𝑝14$)%N(%%(/),((,P) = 𝛽 × 𝛷( × 𝑓5 × 𝑓$%UN.,( × 𝑓'/$0,( × 𝑓(NNV)(1U,P × 𝑓%V%5&.1(#'(1U,P × 𝜌( × 𝜌P 

 

where 𝛽 is the base transmission probability per contact, 𝛷( is the overdispersion factor 

modelling individual-level variation in secondary transmissions (i.e. superspreading events), 

𝑓5  is a relative weight adjusting 𝛽 for the network setting 𝑐 where the contact has occurred, 

𝑓$%UN.,( is the assumed relative transmissibility factor if infector 𝑖 is asymptomatic, 

𝑓(NNV)(1U,P measures the immunity level of susceptible 𝑗 against the transmitted virus (i.e. 



𝑓(NNV)(1U,P = 1 if completely naïve; 𝑓(NNV)(1U,P = 0  if fully protected), 𝑓%V%5&.1(#'(1U,P  is the 

age-dependent susceptibility of 𝑗, 𝜌( and 𝜌P are the contact rates of infector 𝑖 and susceptible 

𝑗 respectively.   

  

𝛷(is randomly drawn from a negative binomial distribution with mean of 1.0 and shape 

parameter of 0.45.4 As evidence have been mixed as to whether asymptomatic agents are less 

transmissible, we conservatively assume there is no difference relative to symptomatic 

patients (i.e. 𝑓$%UN.,( = 1). The age-structured relative susceptibility values 𝑓%V%5&.1(#'(1U,P are 

derived from odds ratios reported by Zhang et al.5 (Extended Data Table 1).  

  

𝛽 is determined by running initial test simulations with a range of values on a naïve 

population with no interventions that would satisfy the target basic reproduction number 𝑅Z 

as computed from the resulting exponential growth rate and distribution of generation 

intervals.6 𝑓5  is similarly calibrated during these test runs such that the transmission 

probabilities in households, workplaces, schools, and all other community contacts are 

constrained by a relative weighting of 10:2:2:1.7   

 

Testing by Ag-RDT 

Unlike PCR which is highly sensitive due to prior amplification of viral genetic materials, the 

sensitivity of Ag-RDT depends on the viral load of the tested patient. While the specificity of 

Ag-RDT is assumed to be 98.9%, its sensitivity depends on the Ct values of the tested 

infected agent: Ct > 35 (0%); 35 – 30 (20.9%); 29 – 25 (50.7%); Ct ≤ 24 (95.8%).8 

  

Testing by Ag-RDT may either occur via symptomatic testing at healthcare facilities or 

healthcare provided community testing. First, a symptomatic agent may opt to go into self-

isolation upon symptom onset prior to being tested, as decided by a Bernoulli trial with 

probability 𝑝%&'^>(%/'$1(/) . Regardless if they were self-isolated, after 𝜏0&'$U,%UN.>1&%1  days 

from symptom onset, the symptomatic agent may then decide to get tested with a Bernoulli 

probability of 𝑝%UN.>1&%1 that inversely correlates with the distance between the agent’s 

household and the nearest HCF (Extended Data Table 1). PATAT assumes that agents who 

have decided against symptomatic testing (i.e. failed Bernoulli trial) or received negative test 

results will not seek symptomatic testing again.  

 



For community testing in schools, given that teachers may act as inter-connecting agents 

linking between various classes, any available Ag-RDTs will always first be distributed to 

teachers in a school before they are distributed to students.   

 

Isolation and quarantine 

We assumed that agents would change their behaviour when (1) they start to present 

symptoms and go into self-isolation (10% compliance assumed, 71% endpoint adherence)9; 

(2) they test positive and are isolated for 10 days (50% compliance assumed, 86% endpoint 

adherence)9; or (3) they are household members (without symptoms) of positively-tested 

agents and are required to be in quarantine for 14 days (50% compliance assumed, 28% 

endpoint adherence)9. Once an agent goes into isolation/quarantine, we linearly interpolate 

their probability of adherence to stay in isolation/quarantine over the respective period. Given 

the lack of infrastructure and resources to set up dedicated isolation/quarantine facilities in 

many low-middle income countries, we assumed that all isolated and quarantined individuals 

would do so at home. Although they have no contact with agents outside of their home, we 

assumed that they would maintain 90% contact rate with household members.  

 

Model Validation 

To validate our model, we compared our simulation results against actual reported cases and 

deaths in Lusaka, Zambia between 25 December 2020 and 24 March 2021. Zambia was 

experiencing a second wave of infections as a result of the Beta variant.10  Actual confirmed 

case and death tallies were retrieved from the Zambia COVID-19 Dashboard 

(https://www.arcgis.com/apps/dashboards/3b3a01c1d8444932ba075fb44b119b63). During 

this time, Zambia was performing ~40 tests/100,000 people/day11. We assumed that initial 𝑅& 

~ 2.0 and simulated a 90-day epidemic wave under the aforementioned testing rate for 

1,000,000 individuals using the demography parameters for Zambia (Extended Data Table 1) 

and performed 10 independent simulations using PATAT. We multiplied the estimated mean 

number of reported (i.e. diagnosed) cases and deaths from our simulations by three to 

proportionally scale up the results for three million people, the approximate population size 

in Lusaka, Zambia. Our simulation results fit well against both actual reported case and death 

counts (Mean absolute difference = ~290 (case counts), 8 (deaths); Extended Data Fig. 12).  

  



Extended Data Figures  

 
Extended Data Fig. 1: Demography of simulated countries. (a) Age distribution stratified 
in 5-year bins. (b) Heatmap showing frequency of contacts between individuals of different 
age groups in 5-year bins averaged across all contact networks generated by the PATAT 
simulation model. 
  



 
Extended Data Fig. 2: Impact of oral antiviral therapy on infections in low- and middle-
income countries. No restrictions on access to symptomatic testing at clinics (i.e. all 
symptomatic individuals who sought testing at clinics would receive one if in stock) and 
high-risk household contacts of test-positive individuals were not tested. All eligible high-
risk individuals (i.e. ≥60 years of age or an adult ≥18 years with a relevant comorbidity) 
who tested positive were given a course of oral antivirals. Line plots (left 𝑦-axis) show the 
percentage change in total infections relative to no distribution of antivirals under different 
levels of mean test availability (different shades of color) after a 90-day Omicron BA.1-like 
epidemic wave in a population of 1,000,000 individuals with (a) 10%, (b) 50%, and (c) 90% 
vaccination coverage for different epidemic intensities (measured by the initial instantaneous 
reproduction number (𝑅1); 𝑥-axis). Bar plots (right 𝑦-axis) show the number of infections in 
each corresponding scenario. The dotted outline of each bar shows the number of infections 
of each scenario if no antivirals were distributed. 
  



 
Extended Data Fig. 3: Transmissions attributed to infectors of different disease and risk 
status. (a) Bar plots show the mean proportion of transmissions events attributed to each type 
of infector (with standard deviation error bars), averaged across all simulated scenarios 
regardless if oral antivirals were distributed. (b) Line plots show the ratio of high-risk (i.e. 
≥60 years of age or an adult ≥18 years with a relevant comorbidity) to low-risk infectors 
averaged across all testing rates for different epidemic intensity (measured by instantaneous 
reproduction number 𝑅1).   
  



 
Extended Data Fig. 4: Impact of oral antiviral therapy on deaths in low- and middle-
income countries. No restrictions on access to symptomatic testing at clinics (i.e. all 
symptomatic individuals who sought testing at clinics would receive one if in stock) and 
high-risk household contacts of test-positive individuals were not tested. All eligible high-
risk individuals (i.e. ≥60 years of age or an adult ≥18 years with a relevant comorbidity) 
who tested positive were given a course of oral antivirals. Line plots (left 𝑦-axis) show the 
percentage change in deaths relative to no distribution of antivirals under different levels of 
mean test availability (different shades of color) after a 90-day Omicron BA.1-like epidemic 
wave in a population of 1,000,000 individuals with (a) 10%, (b) 50%, and (c) 90% 
vaccination coverage for different epidemic intensities (measured by the initial instantaneous 
reproduction number (𝑅1); 𝑥-axis). Bar plots (right 𝑦-axis) show the number of deaths in each 
corresponding scenario. The dotted outline of each bar shows the number of deaths of each 
scenario if no antivirals were distributed.  



 
Extended Data Fig. 5: Impact of oral antiviral therapy on infections in low- and middle-
income countries. No restrictions on access to symptomatic testing at clinics (i.e. all 
symptomatic individuals who sought testing at clinics would receive one if in stock). High-
risk household contacts of test-positive individuals were given antigen rapid diagnostic tests 
to self-test for three consecutive days. All eligible high-risk individuals (i.e. ≥60 years of age 
or an adult ≥18 years with a relevant comorbidity) who tested positive, including high-risk 
household contacts who tested positive, were given a course of oral antivirals. Line plots (left 
𝑦-axis) show the percentage change in total infections relative to no distribution of antivirals 
under different levels of mean test availability (different shades of color) after a 90-day 
Omicron BA.1-like epidemic wave in a population of 1,000,000 individuals with (a) 10%, (b) 
50%, and (c) 90% vaccination coverage for different epidemic intensities (measured by the 
initial instantaneous reproduction number (𝑅1); 𝑥-axis). Bar plots (right 𝑦-axis) show the 
number of infections in each corresponding scenario. The dotted outline of each bar shows 
the number of infections of each scenario if no antivirals were distributed. 
  



 
Extended Data Fig. 6: Impact of oral antiviral therapy on severe cases in low- and 
middle-income countries. No restrictions on access to symptomatic testing at clinics (i.e. all 
symptomatic individuals who sought testing at clinics would receive one if in stock). High-
risk household contacts of test-positive individuals were given antigen rapid diagnostic tests 
to self-test for three consecutive days. All eligible high-risk individuals (i.e. ≥60 years of age 
or an adult ≥18 years with a relevant comorbidity) who tested positive, including high-risk 
household contacts who tested positive, were given a course of oral antivirals. Line plots (left 
𝑦-axis) show the percentage in severe cases relative to no distribution of antivirals under 
different levels of mean test availability (different shades of color) after a 90-day Omicron 
BA.1-like epidemic wave in a population of 1,000,000 individuals with (a) 10%, (b) 50%, 
and (c) 90% vaccination coverage for different epidemic intensities (measured by the initial 
instantaneous reproduction number (𝑅1); 𝑥-axis). Bar plots (right 𝑦-axis) show the number of 
infections in each corresponding scenario. The dotted outline of each bar shows the number 
of severe cases of each scenario if no antivirals were distributed. 
  



 
Extended Data Fig. 7: Impact of oral antiviral therapy on deaths in low- and middle-
income countries. No restrictions on access to symptomatic testing at clinics (i.e. all 
symptomatic individuals who sought testing at clinics would receive one if in stock). High-
risk household contacts of test-positive individuals were given antigen rapid diagnostic tests 
to self-test for three consecutive days. All eligible high-risk individuals (i.e. ≥60 years of age 
or an adult ≥18 years with a relevant comorbidity) who tested positive, including high-risk 
household contacts who tested positive, were given a course of oral antivirals. Line plots (left 
𝑦-axis) show the percentage change in deaths relative to no distribution of antivirals under 
different levels of mean test availability (different shades of color) after a 90-day Omicron 
BA.1-like epidemic wave in a population of 1,000,000 individuals with (a) 10%, (b) 50%, 
and (c) 90% vaccination coverage for different epidemic intensities (measured by the initial 
instantaneous reproduction number (𝑅1); 𝑥-axis). Bar plots (right 𝑦-axis) show the number of 
infections in each corresponding scenario. The dotted outline of each bar shows the number 
of deaths of each scenario if no antivirals were distributed. 
  



 
Extended Data Fig. 8: Impact of oral antiviral therapy on infections when restricting 
symptomatic testing at clinics to high-risk individuals only in low- and middle-income 
countries. High-risk household contacts of test-positive individuals were not tested. All 
eligible high-risk individuals (i.e. ≥60 years of age or an adult ≥18 years with a relevant 
comorbidity) who tested positive were given a course of oral antivirals. Line plots (left 𝑦-
axis) show the percentage change in total infections relative to no distribution of antivirals 
under different levels of mean test availability (different shades of color) after a 90-day 
Omicron BA.1-like epidemic wave in a population of 1,000,000 individuals with (a) 10%, (b) 
50%, and (c) 90% vaccination coverage for different epidemic intensities (measured by the 
initial instantaneous reproduction number (𝑅1); 𝑥-axis). Bar plots (right 𝑦-axis) show the 
number of infections in each corresponding scenario. The dotted outline of each bar shows 
the number of infections of each scenario if no antivirals were distributed. 
  



 
Extended Data Fig. 9: Impact of oral antiviral therapy on deaths when restricting 
symptomatic testing at clinics to high-risk individuals only in low- and middle-income 
countries. High-risk household contacts of test-positive individuals were not tested. All 
eligible high-risk individuals (i.e. ≥60 years of age or an adult ≥18 years with a relevant 
comorbidity) who tested positive were given a course of oral antivirals. Line plots (left 𝑦-
axis) show the percentage change in deaths relative to no distribution of antivirals under 
different levels of mean test availability (different shades of color) after a 90-day Omicron 
BA.1-like epidemic wave in a population of 1,000,000 individuals with (a) 10%, (b) 50%, 
and (c) 90% vaccination coverage for different epidemic intensities (measured by the initial 
instantaneous reproduction number (𝑅1); 𝑥-axis). Bar plots (right 𝑦-axis) show the number of 
deaths in each corresponding scenario. The dotted outline of each bar shows the number of 
deaths of each scenario if no antivirals were distributed. 
  



 
Extended Data Fig. 10: Impact of oral antiviral therapy in a high-income country 
(Netherlands). No restrictions on access to symptomatic testing at clinics (i.e. all 
symptomatic individuals who sought testing at clinics would receive one if in stock). High-
risk household contacts of clinic-provided test-positive individuals are given antigen rapid 
diagnostic tests to self-test for three consecutive days. Over-the-counter antigen rapid 
diagnostic tests (Ag-RDTs) are assumed to be widely available. As such, we assumed that 
only 10% of symptomatic individuals would seek clinical testing directly while 80% of those 
who opted not to seek clinic-provided testing would perform self-testing using over-the-
counter Ag-RDTs. All high-risk individuals who tested positive through self-testing would 
seek reflexive testing at clinics on the same day. All eligible high-risk individuals (i.e. ≥60 
years of age or an adult ≥18 years with a relevant comorbidity) who tested positive at clinics, 
either directly or through reflexive testing, were given a course of oral antivirals. Line plots 
(left 𝑦-axis) show the percentage change in (a) total infections, (b) severe cases and (c) 
deaths relative to no distribution of antivirals under different clinical testing rates (different 
shades of color) after a 90-day Omicron BA.1-like epidemic wave in a population of 
1,000,000 individuals 80% vaccination coverage for different epidemic intensities (measured 
by the initial instantaneous reproduction number (𝑅1); 𝑥-axis). Bar plots (right 𝑦-axis) show 
the number of severe cases in each corresponding scenario. The dotted outline of each bar 
shows the number of severe cases of each scenario when no antivirals were distributed.  



 
Extended Data Fig. 11: Reflexive testing delay after self-testing with over-the-counter 
antigen rapid diagnostic tests (Ag-RDTs). Line plot shows the proportion of high-risk 
symptomatic individuals that would miss the treatment window of oral antivirals if they had 
sought reflexive testing at clinics n days late after performing a self-test using over-the-
counter Ag-RDTs. These individuals would have averted severe disease outcomes if they 
were prescribed oral antivirals on the same day as their self-test. These results were obtained 
from simulating a 90-day Omicron BA.1-like epidemic wave in a population of 1,000,000 
individuals in the Netherlands. We assumed that over-the-counter Ag-RDTs are widely 
available such that most (80%) symptomatic individuals who did not seek clinic-provided 
testing directly would instead perform a self-test using over-the-counter Ag-RDTs. Only 
high-risk individuals who tested positive using self-tests are assumed to seek reflexive testing 
at clinics to be prescribed the antivirals.  
 
  



 
Extended Data Fig. 12: Model validation. We compared the mean number of reported cases 
(blue line, top panel) and deaths (red line, bottom panel) estimated by our simulations (10 
simulations in total) against the actual case and death counts (black lines) in Lusaka, Zambia 
during the second wave of infections between 25 December 2020 and 24 March 2021. Actual 
case and death counts were retrieved from the Zambia COVID-19 Dashboard 
(https://www.arcgis.com/apps/dashboards/3b3a01c1d8444932ba075fb44b119b63). The blue 
and red shaded regions in each plot denotes the standard deviation of reported cases (top 
panel) and deaths (bottom panel) respectively.  
 
  



Extended Data Tables  

Extended Data Table 1: Variables and parameters used in PATAT. 
 

Parameter Values/Distribution Source 

Population demography 

Total population size 1,000,000  

Mean household size Brazil, Georgia: 3.3 

Zambia: 5.0 

Netherlands: 2.1 

12–15 

Age structure (in bins of 5 years) Brazil: [0.072, 0.078, 0.090, 0.089, 0.090, 0.090, 0.083, 
0.073, 0.068, 0.062, 0.053, 0.043, 0.034, 0.025, 0.020, 
0.013, 0.009, 0.004, 0.002, 0.001] 

Georgia: [0.013, 0.057, 0.071, 0.064, 0.055, 0.058, 0.065, 
0.073, 0.070, 0.065, 0.063, 0.062, 0.069, 0.064, 0.053, 
0.039, 0.024, 0.025, 0.006, 0.006] 

Zambia: [0.161, 0.165, 0.157, 0.101, 0.083, 0.068, 0.057, 
0.051, 0.042, 0.030, 0.024, 0.015, 0.016, 0.009, 0.008, 
0.005, 0.006, 0.002, 0.000, 0.000] 

Netherlands: [0.049, 0.051, 0.054, 0.058, 0.064, 0.064, 
0.065, 0.061, 0.059, 0.062, 0.073, 0.072, 0.066, 0.058, 
0.054, 0.041, 0.026, 0.015, 0.006, 0.002] 

12,13,15,16 

Minimum prime adult age 20 years Assumed  

Proportion of women 51% (Brazil, Zambia), 52% (Georgia), 50% (Netherlands) 15–18 

Minimum working age 15 years (Brazil, Georgia, Zambia), 16 years (Netherlands) 15–18 

Employment rate Brazil: 73% (male), 53% (female) 

Georgia: 77% (male), 82% (female) 

Zambia: 39% (male), 23% (female) 

Netherlands: 75% (male), 68% (female) 

15–18 

Formal employment rate  Brazil: 90% (male), 90% (female) 

Georgia: 64% (male), 74% (female) 

Zambia: 36% (male), 24% (female) 

Netherlands: 81% (male), 88% (female) 

15–18 

Schooling rate Brazil: 97% (Primary), 83% (Secondary) 

Georgia: 98% (Primary), 95% (Secondary)  

Zambia: 79% (Primary), 40% (Secondary) 

Netherlands: 99% (Primary), 92% (Secondary) 

12,13,19,20 

School gender parity Brazil: 0.97 (Primary), 0.98 (Secondary) 

Georgia: 1.00 (Primary and secondary) 

Zambia: 1.00 (Primary), 0.90 (Secondary) 

Netherlands: 1.00 (Primary and secondary) 

12,13,19,20 

Religious gathering participation 
rate 

Brazil: 41%  

Georgia: 13% 

Zambia: 70%  

Netherlands: NA (Assumed) 

21 



Mean employment contacts (formal) 20 Assumed  

Mean employment contacts 
(informal) 

5 Assumed  

Mean class size Brazil: 20 (Primary), 26 (Secondary) 

Georgia: 20 (Primary and Secondary) 

Zambia: 37 (Primary and secondary) 

Netherlands: 25 (Primary and secondary, assumed) 

12,22,23 

Mean school size Brazil: 500 (Primary), 400 (Secondary) (Assumed) 

Georgia: 135 (Primary and secondary) 

Zambia: 700 (Primary and secondary, assumed) 

Netherlands: 224 (Primary), 1442 (Secondary) 

15,16 

Student-teacher ratio Brazil: 20 (Primary), 17 (Secondary) 

Georgia: 8 (Primary and secondary) 

Zambia: 42 (Primary and secondary) 

Netherlands: 12 (Primary), 15 (Secondary) 

12,24 

Mean religious gathering size (s.d.) Brazil, Georgia: 200 (100) 

Zambia: 500 (100) 

Netherlands: NA 

Assumed 

Mean random contacts in religious 
gathering per person 

10 Assumed  

Mean random community contacts 
per day 

10 Assumed 

SARS-CoV-2 transmissions related parameters  

Age-structured relative susceptibility 
(in bins of 5 years) 

[0.34, 0.34, 0.67, 0.67, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 
1.00, 1.00, 1.00, 1.00, 1.24, 1.24, 1.47, 1.47, 1.47, 1.47] 

5,7 

Age-structured probability of 
becoming symptomatic (in bins of 5 
years) 

[0.50, 0.50, 0.55,  0.55, 0.60, 0.60, 0.65, 0.65, 0.70, 0.70, 
0.75, 0.75, 0.80, 0.80, 0.85, 0.85, 0.90, 0.90, 0.90, 0.90] 

25,26 

Age-structured probability of 
developing severe disease (in bins 
of 5 years) 

[0.00050, 0.00050, 0.00165, 0.00165, 0.00720, 0.00720, 
0.02080, 0.02080, 0.03430, 0.03430, 0.07650, 0.07650, 
0.13280, 0.13280, 0.20655, 0.20655, 0.24570, 0.24570, 
0.24570, 0.24570] 

25,26 

Age-structured probability of death 
(in bins of 5 years) 

[0.00002, 0.00002, 0.00002, 0.00002, 0.00010, 0.00010, 
0.00032, 0.00032, 0.00098, 0.00098, 0.00265, 0.00265, 
0.00766, 0.00766, 0.02439, 0.02439, 0.08292, 0.08292, 
0.16190, 0.16190] 

9,27 

Latent period (days) Omicron BA.1: Lognormal (4.0, 1.3) 7,28–30 

Pre-symptomatic period (days) Omicron BA.1: Lognormal (1.8, 1.7) 7,28,30 

Period between symptom onset and 
severe disease (days) 

Lognormal (6.6, 4.9) 28 

Period between severe disease and 
death (days) 

Lognormal (8.6, 6.7) 28 

Recovery period for symptomatic 
agents with mild disease (days) 

Omicron BA.1: Lognormal (5.35, 0.37*) 30,31 

Recovery period for asymptomatic 
agent (days) 

Omicron BA.1: Lognormal (5.35, 0.37*) 30,31 

Recovery period of agents with 
severe disease (days) 

Lognormal (18.1, 6.3) 25 



Peak Ct values Omicron BA.1: Normal (23.3, 0.58*) 30 

Cross-immunity to variant virus after 
infection by extant virus 

Omicron BA.1: 20% 32,33 

Severity (chance of hospitalization) 
of variant relative to extant virus 

Omicron BA.1: 40% 34 

Testing parameters  

Delay in visiting healthcare facility 
for symptomatic testing (days) 

Lognormal (1.0, 0.5) Assumed 

Ag-RDT specificity  0.989 8 

Isolation/quarantine parameters  

Isolation period 10 days  

Quarantine period  14 days  

Self-isolation period  10 days  

Reduction in contact rates under 
isolation/quarantine (in order of 
households, schools, workplaces, 
religious gathering and random 
community) 

[10%, 100%, 100%, 100%, 100%]  

*Standard deviation values inferred from 95% confidence interval computed in reference.  
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