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SUMMARY
Chromosome alignment to the spindle equator is a hallmark of mitosis thought to promote chromosome
segregation fidelity in metazoans. Yet chromosome alignment is only indirectly supervised by the spindle as-
sembly checkpoint (SAC) as a byproduct of chromosome bi-orientation, and the consequences of defective
chromosome alignment remain unclear. Here, we investigated how human cells respond to chromosome
alignment defects of distinct molecular nature by following the fate of live HeLa cells after RNAi-mediated
depletion of 125 proteins previously implicated in chromosome alignment. We confirmed chromosome align-
ment defects upon depletion of 108/125 proteins. Surprisingly, in all confirmed cases, depleted cells
frequently entered anaphase after a delay with misaligned chromosomes. Using depletion of prototype pro-
teins resulting in defective chromosome alignment, we show that misaligned chromosomes often satisfy the
SAC and directly missegregate without lagging behind in anaphase. In-depth analysis of specific molecular
perturbations that prevent proper kinetochore-microtubule attachments revealed that misaligned chromo-
somes that missegregate frequently result in micronuclei. Higher-resolution live-cell imaging indicated
that, contrary to most anaphase lagging chromosomes that correct and reintegrate the main nuclei, mis-
aligned chromosomes are a strong predictor of micronuclei formation in a cancer cell model of chromosomal
instability, but not in non-transformed near-diploid cells. We provide evidence supporting that intrinsic dif-
ferences in kinetochore-microtubule attachment stability on misaligned chromosomes account for this
distinct outcome. Thus, misaligned chromosomes that satisfy the SAC may represent a previously over-
looked mechanism driving chromosomal/genomic instability during cancer cell division, and we unveil ge-
netic conditions predisposing for these events.
INTRODUCTION

Chromosome alignment in human cells relies on the concerted

action of motor-dependent and -independent mechanisms,

which are determined by chromosome positioning at nuclear en-

velope breakdown (NEB), the establishment of end-on or lateral

kinetochore-microtubule interactions and specific tubulin post-

translational modifications.1–8 Despite its key role in promoting

mitotic fidelity,9–11 chromosome alignment is only indirectly

supervised by the spindle assembly checkpoint (SAC), which

monitors the establishment of end-on kinetochore-microtubule
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attachments required for chromosome bi-orientation and regu-

lates the metaphase-anaphase transition.12,13 It is therefore

widely assumed that, under physiological conditions, cells only

enter anaphase once all chromosomes align and bi-orient.14–22

However, chromosome alignment may occur independently of

end-on kinetochore-microtubule attachments and chromosome

bi-orientation,5,23,24 and conditions exist in which vertebrate cells

may enter anaphase in the presence of misaligned chromo-

somes.25 Additionally, misaligned chromosomes generated after

functional perturbation of the kinetochore-associated CENP-E/

Kinesin-7 in primary mouse fibroblasts and human HeLa cells in
uthor(s). Published by Elsevier Inc.
creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1. Schematic illustration of the high-

content analysis of chromosome alignment

defects

Different steps between protocol optimization and

automated live-cell imaging of 125 different RNAi

conditions against genes previously implicated in

chromosome congression.
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culture, aswell as in regenerating hepatocytes in vivo, did not pre-

vent anaphase onset in approximately 25%, 40%, and 95% of

cell divisions, respectively, resulting in missegregation and aneu-

ploidy.26–28 Importantly, as opposed to massive aneuploidy that

renders cells unviable and has a tumor suppressing effect,29,30

gain/loss of just one or few chromosomes that are unable to com-

plete alignment represents a real threat to chromosomal stability

and has been shown to contribute to tumorigenesis in vivo.31

Thus, understanding how human cells respond to chromosome

alignment defects and determining what happens to an enduring

misaligned chromosome remain fundamental unanswered ques-

tions with strong clinical implications.

RESULTS

A broad range of chromosome alignment defects
directly lead to missegregation
To systematically inquire how human cells respond to chromo-

some alignment defects of distinct molecular nature, we used

siRNAs to knockdown 125 different proteins previously impli-

cated in this process (Data S1, S2, and S3), combined with

high-content live-cell microscopy in human HeLa cells stably ex-

pressing histone H2B-GFP (to visualize chromosomes) and

a-tubulin-mRFP (to visualize mitotic spindles) (Figure 1) (see

also http://chromosomecongression.i3s.up.pt). Control cells un-

derwent consecutive rounds of mitosis and completed chromo-

some alignment in 23 ± 8 min (mean ± SD, n = 7,229 cells), indi-

cating no relevant phototoxicity. In contrast, experimental
Current Biolo
perturbation of chromosome alignment

led to three main mitotic phenotypes: (1)

cells that entered anaphase after a delay

in completing chromosome alignment

(R2 SD in control-depleted cells), (2)

cells that entered anaphase without

completing chromosome alignment, and

(3) cells that died without completing

chromosome alignment (Figures 2A and

2B). In some cases (ILK, septin-7, Aki,

HIP1r, ANKRD53, ASB7, NuMA,

CENP-U, CEP164, CDCA4, and MCAK),

we were unable to detect any significant

defect in chromosome alignment under

our experimental conditions (Data S1),

while others (Shp2, GAK, CEP72,

CEP90, CENP-H, and Mis12) turned out

to be off-targets (Figure S1) and were

not pursued further. Interestingly, upon

depletion of several Augmin complex

subunits,32 CLASPs33 or the Ska com-

plex,34 among others, a fraction of cells
was also unable to maintain chromosome alignment after

completing congression to the spindle equator and showed

signs that resembled cohesion fatigue and/or loss of spindle

pole integrity (Figures S2A and S2B). Not surprisingly, defective

chromosome alignment was often associated with a significant

mitotic delay, indicating a functional SAC whose timely satisfac-

tion was nevertheless compromised (Figures 2B and S3). More-

over, the severity of the observed chromosome alignment de-

fects varied extensively, suggesting that certain proteins, such

as CENP-E, several cytoplasmic Dynein subunits, members of

the KNL1, Mis12, and Ndc80 (KMN) network,35 the Ska com-

plex,34 and the Augmin complex,32 are more crucial for this pro-

cess than others (Figure 2B). However, less penetrant pheno-

types due to sub-optimal protein depletion cannot be

excluded. Most relevant, and regardless of the underlying mo-

lecular nature, cells frequently entered anaphasewithmisaligned

chromosomes that often missegregated.

Mild, yet penetrant, chromosome alignment defects are
compatible with mitotic progression and cell viability
Next, we investigated how the extent of chromosome alignment

defects impacts cell viability during and after mitosis (Figures 3A

and 3B). We found a strong positive correlation between the pro-

pensity of cells to die inmitosis and the time they spent in mitosis

due to chromosome alignment defects (Figures 3B–3D). A posi-

tive, yet weaker correlationwas also observed between the likeli-

hood of cells to die in the subsequent interphase and the time

they spent in mitosis due to chromosome alignment defects
gy 32, 4240–4254, October 10, 2022 4241
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Figure 2. A broad range of chromosome align-

ment defects directly lead to missegregation

(A) Examples of time-lapse sequences illustrating the

three main mitotic phenotypes observed. Arrows indicate

chromosomes at the poles in cells exhibiting chromo-

some alignment defects. Pixels were saturated for

optimal visualization of misaligned chromosomes. Scale

bars, 5 mm. Time, h:min.

(B) Quantification of congression phenotypes in control

(siScramble) and siRNA-depleted cells. At least 2 inde-

pendent experiments per condition were performed.

The total number of cells analyzed for each condition is

indicated in Data S1. *p% 0.05, **p% 0.01, ***p% 0.001,

****p% 0.0001; ns, not significantly different from control;

Fisher’s exact two-tailed test; # highlights a possible off-

target associated with siRNA oligo 1 against HURP.
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(Figures 3B, 3E, and 3F). In one particular case (NUP107 RNAi),

most cells died in the subsequent interphase likely due to a well-

established role in nuclear pore complex assembly and func-

tion.36 Interestingly, a direct comparison between CENP-E-

depleted (with mild, yet highly penetrant chromosome alignment

problems) and Ndc80-depleted cells (with severe, but less pene-

trant chromosome alignment problems), revealed a clear link be-

tween the extent of chromosome alignment defects and cell

death, either in mitosis or in the subsequent interphase

(Figures S4A–S4B0). Importantly, conditions such as CENP-E

or Kif18a depletion, in which cells entered anaphase with only

one or few misaligned chromosomes, and/or a less compact

metaphase plate,10 were compatible with mitotic progression

and cell viability (Figure 3B), thereby representing a threat to

chromosomal stability.

Cells with misaligned chromosomes enter anaphase
after satisfying the spindle assembly checkpoint
In contrast to cells that satisfy the SAC, human cells undergoing

mitotic slippage37 upon complete microtubule depolymerization

with nocodazole retain the SAC proteins, Mad1, Mad2, and

BubR1 at kinetochores and very slowly degrade cyclin B1 due

to residual APC/C activity.38–40 To distinguish between these

possibilities, we used live imaging in HeLa cells stably express-

ing Mad2-GFP to monitor the status of the SAC in control- or

CENP-E-depleted cells that entered anaphase with one or few

misaligned chromosomes at very high frequency after a mitotic

delay (Figure 2B; see also Maia et al.27 and Tanudji et al.28). As

expected, in cells treated with a control siRNA Mad2-GFP accu-

mulated at kinetochores during prometaphase and gradually

disappeared as chromosomes bi-oriented and aligned at the

metaphase plate, being undetectable at kinetochores when cells

entered anaphase (Figure 4A; Video S1). Likewise, Mad2-GFP

accumulated exclusively at the kinetochores from those few

chromosomes that never completed alignment after CENP-E

depletion, becoming undetectable before anaphase onset and

throughout anaphase (Figure 4A; Video S1). To obtain a more

quantitative picture, we used immunofluorescence in fixed

HeLa cells to measure the fluorescence of the SAC protein

Mad1 relative to CENP-C (a constitutive kinetochore compo-

nent) on misaligned chromosomes after CENP-E depletion in

early anaphase (Figure 4B). We found that, in striking contrast

to misaligned chromosomes during prometaphase where

Mad1 signal was clearly detected at kinetochores in both con-

trol- and CENP-E-depleted cells (Figure 4C), virtually no Mad1

signal was detected at both kinetochores from misaligned chro-

mosomes (an indication of syntelic attachments in which both ki-

netochores of amisaligned chromosome are oriented toward the
Figure 3. Mild, yet penetrant, chromosome alignment defects are com

(A) Examples of time-lapse sequences illustrating the fates exhibited by HeLa ce

from nuclear envelope breakdown (NEB) to each cellular outcome. Scale bars, 5

(B) Frequency of cells that either died in mitosis (magenta) or died in interphase (gr

each condition is indicated in Data S1. *p % 0.05, **p % 0.01, ***p % 0.001, ****p

test; # highlights a possible off-target associated with siRNA oligo 1 against HUR

(C) Correlation between mitotic duration and cell death in mitosis for each condi

(D) Correlation between the severity of the congression phenotypes and the freq

(E) Correlation between the mitotic duration after siRNA treatment and cell death

(F) Correlation between congression severity and the frequency of cell death in in

plots (two-tailed test).
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same spindle pole) that persisted in early anaphase after

CENP-E depletion (Figure 4C). Together, these data suggest

that cells with misaligned chromosomes enter anaphase after

a delay by satisfying the SAC.

To further validate this conclusion, we used time-lapse fluores-

cence microscopy in HeLa and non-transformed near-diploid

RPE-1 cells to quantify the levels and monitor the respective

degradation kinetics of endogenously tagged cyclin B1 with the

fluorescent protein Venus40 after depletion of CENP-E, or a sec-

ond unrelated protein (TACC3) whose depletion also resulted in

misaligned chromosomes41 (Figures 2B and S5A–S5C). Consis-

tent with previous reports15,42 and in stark contrast with cyclin

B1 degradation kinetics over more than 12 h during mitotic slip-

page/death upon complete microtubule depolymerization with

nocodazole (Figures S5D and S5E; see also Brito and Rieder,38

Gascoigne and Taylor,39 and Novais-Cruz et al.40), cyclin B1

starts to be steadily degraded a few minutes before the onset

of anaphase and continues to decline throughout anaphase in

control HeLa or RPE-1 cells, becoming undetectable as chromo-

somes decondense in telophase (Figures 5A and 5B; Videos S2

and S3). Similar degradation kinetics were observed in CENP-

E-depleted or TACC3-depleted cells that entered anaphase,

with or without completion of chromosome alignment

(Figures 5A, 5B, S5A, and S5B; Videos S2 and S3). In this partic-

ular set of experiments �40% of the CENP-E-depleted and

�20% of the TACC3-depleted anaphase HeLa cells formed mi-

cronuclei directly from chromosomes that never aligned at the

spindle equator and missegregated (Figure 5C). The frequency

of these events was significantly lower in RPE-1 cells, likely due

to higher efficiency in chromosome alignment after CENP-E

depletion (Figure S5C). Taken together, these data indicate that

cells with misaligned chromosomes may enter anaphase after

satisfying the SAC and undergoing normal cyclin B1 degradation.

Although most micronuclei originate from anaphase
lagging chromosomes, misaligned chromosomes are a
stronger predictor of micronuclei formation
The origin of micronuclei has been linked to the presence of lag-

ging chromosomes during anaphase that form due to incorrect

merotelic kinetochore-microtubule attachments (when individ-

ual kinetochores bind to microtubules oriented to both spindle

poles).43,44 More recently, DNA bridges that persist during

anaphase were also implicated in micronuclei formation.45

Here, we sought to compare the relative contributions of lagging

andmisaligned chromosomes, as well as DNA bridges, tomicro-

nuclei formation during HeLa cell division (Figure 6A). To do so,

we focused our analysis on a subset of experimental conditions

that are recognized to prevent proper kinetochore-microtubule
patible with mitotic progression and cell viability

lls undergoing congression defects following siRNA knockdown. Time, h:min,

mm.

een) in control and siRNA-depleted cells. The total number of cells analyzed for

% 0.0001; ns, not significantly different from control; Fisher’s exact two-tailed

P.

tion.

uency of cell death in mitosis.

in interphase.

terphase. Pearson’s correlation (r) and respective p values are indicated in the



Figure 4. Cells with misaligned chromosomes enter anaphase after satisfying the spindle assembly checkpoint

(A) Selected time frames of representative HeLa cells stably expressing Mad2-GFP (green) and chromosomes labeled with SiR-DNA (magenta) in control and

after CENP-E depletion. White arrowheads point to a misaligned chromosome during anaphase. Time, min:s. Time 00:00, anaphase onset.

(B) Immunofluorescence of HeLa cells stained for DNA (blue), Mad1 (green), CENP-C (white), and b-tubulin (magenta). Insets show higher magnification of

selected regions with misaligned chromosomes (grayscale for single channels of Mad1 and CENP-C). Images are maximum-intensity projections of deconvolved

z stacks. Scale bars, 5 mm.

(C) Quantification of the fluorescence intensity of Mad1 relative to CENP-C on misaligned chromosomes. Each dot represents an individual kinetochore. The

horizontal line indicates the mean of all quantified kinetochores, and the error bars represent the standard deviation from a pool of two independent experiments

(mock/prometaphase, n = 90 kinetochores, 9 cells; siCENP-E/prometaphase, n = 72 kinetochores, 17 cells; siCENP-E/anaphase, n = 19 kinetochores, 14 cells;

****p % 0.0001 relative to control, Mann-Whitney test).
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attachments (Figure 6B). As a rule, and in line with our previous

findings,46 these conditions led to a substantial increase in the

frequency of daughter cells with micronuclei (9.0% ± 7.3%,

mean ± SD of all conditions, and up to 40% on specific condi-

tions such as KNL1 depletion) when compared with daughter
cells treated with a control siRNA (1.4%) (Figure 6B). As ex-

pected, most of the resulting micronuclei derived from anaphase

lagging chromosomes (62% ± 19%,mean ± SD of all conditions)

and only few (8.5% ± 6.2%, mean ± SD of all conditions) origi-

nated from DNA bridges (Figure 6B). However, we also found
Current Biology 32, 4240–4254, October 10, 2022 4245



Figure 5. Cells with misaligned chromosomes enter anaphase after undergoing normal cyclin B1 degradation

(A) Selected time frames from live-cell microscopy of HeLa cells stably expressing H2B-mCherry and cyclin B1-Venus in control, CENP-E, and TACC3 RNAi.

Time, min:s. Time 00:00, anaphase onset. Scale bars, 5 mm. Black arrowheads point to misaligned chromosomes at anaphase onset.

(B) Cyclin B1 degradation curves for control, CENP-E-, and TACC-3-depleted cells that properly align their chromosomes at the metaphase plate or exit mitosis

with misaligned chromosomes and form micronuclei. The curves represent mean cyclin B1-Venus fluorescence intensity from all analyzed cells, and error bars

represent the standard deviation from a pool of two independent experiments (siScramble n = 20; siCENP-E [misaligned +micronuclei] n = 22; siCENP-E [aligned]

n = 15; siTACC3 [misaligned + micronuclei] n = 5; siTACC3 [aligned] n = 12).

(C) Frequency of anaphase cells with aligned chromosomes, misaligned chromosomes, and misaligned chromosomes that result in micronuclei in control (black

bars), CENP-E- (green bars), and TACC3-depleted cells (magenta bars).
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that a significant fraction of cells (29% ± 20%, mean ± SD of all

conditions) formed micronuclei that derived directly from mis-

aligned chromosomes (Figure 6B). Noteworthy, although occur-

ring at much lower frequency, the relative origin of micronuclei in
4246 Current Biology 32, 4240–4254, October 10, 2022
control HeLa cells was in line with that generally observed

upon experimental perturbation of kinetochore-microtubule

attachments (56%, 22%, and 22%, for lagging chromosomes,

DNA bridges, and misaligned chromosomes, respectively;



Figure 6. Although most micronuclei originate from

anaphase lagging chromosomes, misaligned chromo-

somes are a stronger predictor of micronuclei formation

(A) Examples of time-lapse sequences illustrating the different ori-

gins of micronuclei. Time, min:s. Time 00:00, anaphase onset. White

arrowheads track misaligned chromosomes, DNA bridges, or lag-

ging chromosomes until they eventually form micronuclei. Pixels

were saturated for optimal visualization of misaligned chromosomes,

DNA bridges, and lagging chromosomes. Scale bars, 5 mm.

(B) Frequency of daughter cells with micronuclei that derived either

from lagging chromosomes (black bars), DNA bridges (green bars),

or misaligned chromosomes (magenta bars) under the specified

conditions (siScramble, n = 1,700;MonWO, n = 327; siAstrin, n = 423;

siBub1, n = 457; siKif18a, n = 540; siCENP-N, n = 422; siSka1, n =

395; siTACC3, n = 485; siNsl1, n = 400; siSka3, n = 383; siZw10, n =

404; siNdc80, n = 440; siAurora A, n = 388; siCLERC, n = 263; siNuf2,

n = 428; siCENP-I, n = 389; siAurora B, n = 499; siDsn1, n = 688;

siCENP-E, n = 346; siSpc24, n = 418; siBubR1, n = 387; siSpc25, n =

425; siHURP_oligo1, n = 296; siHURP_oligo2, n = 200; siKNL1, n =

413; pool of 2 independent experiments for each siRNAi per condi-

tion, with the exception of Aurora A and CLERC in which only 1

experiment for the second siRNAi was performed. All independent

experiments were pooled). *p% 0.05, **p% 0.01, ***p% 0.001, ****p

% 0.0001; ns, not significantly different from control; Fisher’s exact

two-tailed test; # highlight a possible off-target associated with

siRNA oligo 1 against HURP.

(C) Relative probability (sum of the 3 independent absolute proba-

bilities normalized to 1) of micronuclei formation from a lagging

chromosome (black bars), a DNA bridge (green bars), or amisaligned

chromosome (magenta bars) under the specified conditions (*p %

0.05, **p % 0.01, ***p % 0.001, ****p % 0.0001; ns, no significant

difference from what would be expected if all missegregation events

were equally likely to cause micronuclei in each experimental con-

dition; chi-square test).
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n = 1,700 cells) (Figure 6B). This scenario changed significantly

both regarding frequency and origin of micronuclei uponmonas-

trol treatment and washout, which induces the formation of erro-

neous kinetochore-microtubule attachments leading to a high

frequency of anaphase lagging chromosomes47,48 (Figure 6B).

Next, we determined the respective probabilities of micronu-

clei formation given a specific condition, which can either be a

lagging chromosome, a DNA bridge, or a misaligned chromo-

some. Surprisingly, and despite the fact that most micronuclei

derived from anaphase lagging chromosomes, we found that

in unperturbed HeLa cells treated with a control siRNA the abso-

lute and relative probability of micronuclei formation from a mis-

aligned chromosome (0.92 and 0.70, respectively) clearly out-

competed the other two classes, including anaphase lagging

chromosomes (0.28 and 0.21, for absolute and relative probabil-

ities, respectively) (Figures 6C and S6A). Those probabilities

were significantly higher than what would be expected if all mis-

segregation events were equally likely to cause micronuclei

(p < 0.0001; chi-square test). Interestingly, although the experi-

mental perturbation of kinetochore-microtubule attachment sta-

bility did not result in gross alterations of the relative origins ofmi-

cronuclei, in most cases, it reverted or attenuated the much

higher probability of micronuclei formation from misaligned

chromosomes observed in unperturbed cells (Figures 6C and

S6A). This result is consistent with a role of stable kinetochore-

microtubule attachments in anaphase error correction and

micronuclei prevention from lagging chromosomes.46 One

noticeable exception was HURP, which gave rise to muchmilder

congression problems with no obvious bias for micronuclei for-

mation from misaligned chromosomes with a second siRNA, in

contrast with the original siRNA, despite equivalent depletion ef-

ficiency (Data S3). We suspect that the first siRNA against HURP

might by hitting the SAC component MAD2, which is highly

prone to off-targeting49 and would force HURP-depleted cells

with incomplete chromosome congression to enter anaphase

prematurely, directly leading to micronuclei formation due to

incomplete chromosome alignment. Overall, we conclude that,

although the majority of micronuclei originate from anaphase

lagging chromosomes, misaligned chromosomes are a stronger

predictor of micronuclei formation during HeLa cell division.

Micronuclei formation frommisaligned chromosomes is
a frequent outcome in a cancer cell model of
chromosomal instability, but not in non-transformed
near-diploid cells
Next, we set out to investigate the origin of micronuclei that

form spontaneously during cell division in RPE-1 and
Figure 7. Micronuclei formation from misaligned chromosomes is a fre

not in non-transformed cells

(A and B) Examples of time-lapse sequences illustrating possible origins of micron

White arrowheads track misaligned chromosomes, DNA bridges, or lagging ch

optimal visualization of misaligned chromosomes, DNA bridges, and lagging chr

(C) Frequency of RPE-1 and U2OS daughter cells with micronuclei that derived

misaligned chromosomes (magenta bars) in control, siCENP-E, and after monas

95; MonWO, n = 105. U2OS cells: control, n = 250; siCENP-E, n = 81; MonWO,

(D) Relative probability (sum of the 3 independent absolute probabilities normalize

bridge (green bars), or a misaligned chromosome (magenta bars) in RPE-1 and

washout. *p% 0.05, **p% 0.01, ***p% 0.001, ****p% 0.0001; ns, no significant di

likely to cause micronuclei in each experimental condition; chi-square test.
chromosomally unstable U2OS cells.50 To visualize the entire

chromosome set and spindle microtubules, these cell lines

were engineered to stably express histone H2B-GFP and

mRFP-a-tubulin and were inspected by 4D live-cell spin-

ning-disk confocal microscopy, with a temporal resolution be-

tween 30 s and 2 min (Figures 7A and 7B). In parallel, we pro-

moted chromosome missegregation by performing either

CENP-E depletion or a monastrol treatment and washout. Un-

perturbed RPE-1 cells showed only a residual (1.2%) forma-

tion of micronuclei after cell division and none derived from

a misaligned chromosome (Figure 7C). CENP-E depletion or

monastrol treatment/washout in RPE-1 cells significantly

increased the frequency of micronuclei formation (3.2% and

4.2%, respectively), most of which (71% and 89%, respec-

tively) derived from anaphase lagging chromosomes, and

only very few derived from a misaligned chromosome (2.1%

and 0.95% of the cells, respectively) (Figure 7C), further

demonstrating a robust chromosome alignment capacity in

normal cells. This scenario was strikingly different even in un-

perturbed U2OS cells, which formed micronuclei in 5.8% of

the cases, of which 53% derived from anaphase lagging chro-

mosomes, 14% from DNA bridges and 33% from misaligned

chromosomes (Figure 7C). Monastrol treatment/washout

only slightly increased (without statistical significance) the

percentage of dividing U2OS cells that formed micronuclei,

which in this case derived mostly from anaphase lagging

chromosomes (80%), likely due to an increase in merotelic at-

tachments.47 In contrast, CENP-E depletion in U2OS cells

significantly increased the percentage of dividing U2OS cells

that formed micronuclei (17.2%), of which 62% derived from

anaphase lagging chromosomes, 21% from DNA bridges

and 17% from misaligned chromosomes (Figure 7C).

We next determined the relative probabilities of micronuclei

formation from lagging chromosomes, DNA bridges, and mis-

aligned chromosomes scored in both RPE-1 and U2OS cells,

with and without CENP-E, as well as with and without monastrol

treatment/washout (Figure 7D) (for absolute probabilities, see

Figure S6B). In line with our previous observations in HeLa cells

(Figures 6C and S6A), this analysis revealed that misaligned

chromosomes have the highest absolute and relative probability

of resulting in micronuclei in unperturbed chromosomally unsta-

ble U2OS cells (0.63 and 0.80, respectively) (Figures 7D and

S6B). These probabilities were significantly higher than what

would be expected if all missegregation events were equally

likely to causemicronuclei (p < 0.0001; chi-square test). In agree-

ment with our findings in HeLa cells, both CENP-E depletion and

monastrol treatment/washout reverted this tendency in U2OS
quent outcome in a chromosomally unstable cancer cell model, but

uclei in RPE-1 (A) and U2OS (B) cells. Time, min:s. Time 00:00, anaphase onset.

romosomes until they eventually form micronuclei. Pixels were saturated for

omosomes. Scale bars, 5 mm.

either from lagging chromosomes (black bars), DNA bridges (green bars), or

trol treatment/washout (MonWO). RPE-1 cells: control, n = 163; siCENP-E, n =

n = 49 (Fisher’s exact two-tailed test).

d to 1) of micronuclei formation from a lagging chromosome (black bars), a DNA

U2OS cells in control and after CENP-E depletion or monastrol treatment/

fference fromwhat would be expected if all missegregation events were equally
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cells, likely due to a significant increase in the frequency of

anaphase lagging chromosomes (Figures 7C, 7D, and S6B).47

Most striking, and in sharp contrast to unperturbed HeLa and

U2OS cells, unperturbed RPE-1 cells always entered anaphase

after completing chromosome alignment and, consequently,

no micronuclei from misaligned chromosomes were ever

detected in our recordings (Figures 7D and S6B). Likewise,

human primary fibroblasts were previously shown to never enter

anaphase with misaligned chromosomes even after nocodazole

treatment and washout, and the resulting lagging chromosomes

appeared during anaphase after completing chromosome align-

ment during metaphase.44 We concluded that spontaneousmis-

aligned chromosomes in unperturbed chromosomally unstable

cancer cell models, but not in non-transformed near-diploid

cells, have a strong probability to missegregate and result in

micronuclei.

Misaligned chromosomes in chromosomally unstable
cancer cells have hyper-stabilized kinetochore-
microtubule attachments
Chromosomally unstable cancer cells have hyper-stabilized

kinetochore-microtubule attachments and a poor error correc-

tion capacity.50,51 To investigate whether increased kineto-

chore-microtubule attachment stability in chromosomally unsta-

ble cancer cells allows misaligned chromosomes to satisfy the

SAC, we implemented a protocol that promotes the formation

of few misaligned chromosomes after nocodazole treatment

and washout (Figure S7A) (STAR Methods), followed by quanti-

fication of fluorescence intensity after a nocodazole shock to

completely depolymerizemicrotubules in fixed cells (Figure S7A).

Both qualitative and quantitative analyses revealed that, under

these experimental conditions, kinetochore microtubules in

chromosomally unstable U2OS cells are more resistant to depo-

lymerization when compared with non-transformed near-diploid

RPE-1 cells (Figures S7A and S7B). Measurement of the respec-

tive half-life of polymerized tubulin, confirmed �2-fold increase

in U2OS cells relative to RPE1 cells (Figures S7A and S7B).

These results provide an explanation for the inefficient correction

of few misaligned chromosomes that eventually satisfy the SAC

in a chromosomally unstable cancer cell model and thus may

represent important drivers of chromosomal instability and

micronuclei formation in human cancers.

DISCUSSION

It is currently thought that anaphase lagging chromosomes re-

sulting from erroneous merotelic attachments that satisfy the

SAC are major drivers of genomic instability in human can-

cers.52,53 Although anaphase lagging chromosomes resulting

from merotelic attachments rarely missegregate,54,55 they may

fail to incorporate into the respective daughter nuclei during

cell division and result in the formation of micronuclei. Micronu-

clei were recently implicated as key intermediates of chromo-

thripsis, a series of massive genomic rearrangements that may

drive rapid tumor evolution and account for acquired drug resis-

tance and oncogene activation.43,56–59 We now show that

although most micronuclei derive from anaphase lagging chro-

mosomes, simply because these events occur at a very high fre-

quency in chromosomally unstable cancer cells,54 misaligned
4250 Current Biology 32, 4240–4254, October 10, 2022
chromosomes that satisfy the SAC often directly missegregate

(without lagging behind in anaphase) and have the highest prob-

ability to form micronuclei, specifically in human cancer cell

models (see graphical abstract). This is consistent with recent

high-resolution live-cell studies in both cancer and non-cancer

human cells that showed that the vast majority of lagging chro-

mosomes have a transient nature and are corrected during

anaphase by an Aurora-B-dependent mechanism that prevents

micronuclei formation,46,60 and the relatively low frequency of

micronuclei formation even after induction of massive chromo-

some segregation errors by experimental abrogation of the

SAC.61,62

Defects in chromosome alignment are normally avoided by

increased Aurora B activity at centromeres of misaligned chro-

mosomes.27 However, the correction of erroneous attachments

underlying some chromosome alignment defects (e.g., syntelic

attachments) appears to be less robust in cancer cells that

also show overly stabilized kinetochore-microtubule attach-

ments.50,51 Indeed, RPE-1 cells treated with microtubule-target-

ing drugs at concentrations that stabilize microtubules satisfy

the SAC in the presence of misaligned chromosomes and do

so faster under conditions that promote the formation of syntelic

attachments.62–64 In addition to direct missegregation from

misaligned chromosomes, late-aligning chromosomes are also

more prone to lag behind in anaphase and missegregate at

higher frequencies in human cancer cells, or upon SAC inactiva-

tion or stabilization of incorrect kinetochore-microtubule attach-

ments in normal cells.62,65 Together with the fact that non-trans-

formed human cells rely on a robust p53-dependent mechanism

that limits the proliferation of aneuploid cells,66 the present work

helps to explain how spontaneous misaligned chromosomes in

cancer cells eventually satisfy the SAC and may constitute a

direct route to chromosomal instability.

This work also unveils a wide range of genetic perturbations

that predispose for these events and might account for the un-

derlying chromosomal and genomic instability commonly

observed in human cancers. A paramount case is the perturba-

tion of CENP-E function that has been linked to tumorigenesis

in vivo.31 Previous studies have shown that �40% of CENP-E-

depleted HeLa cells enter anaphase with misaligned chromo-

somes.27,28 Fixed-cell analysis revealed that these misaligned

chromosomes accumulate Mad2, but micronuclei generated

from CENP-E-depleted cells did not, suggesting that mis-

aligned chromosomes satisfy the SAC.27 Although suggestive,

the origin of the scored micronuclei was not determined in

these fixed-cell experiments, and so it remains possible that

the scored micronuclei did not derive directly from misaligned

chromosomes (they may alternatively derive from anaphase

lagging chromosomes; Figures 6B and 6C), and cells with mis-

aligned chromosomes entered anaphase without satisfying the

SAC. Indeed, previous experiments in fixed CENP-E KO MEFs

revealed continued localization of SAC proteins at misaligned

chromosomes seen in anaphase cells, suggesting ongoing

SAC signaling.26 Our live-cell imaging of Mad2-GFP upon

CENP-E depletion in HeLa cells, supported by quantitative an-

alyses in fixed cells soon after anaphase onset, show that

Mad1/Mad2 dissociate from kinetochores of misaligned chro-

mosomes in cells that entered anaphase, suggesting SAC

satisfaction. Moreover, live-cell imaging revealed a normal
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degradation kinetics of cyclin B1 in CENP-E-depleted or unre-

lated TACC3-depleted cells that entered anaphase with

misaligned chromosomes. This contrasts with the pattern

observed upon mitotic slippage, in which mitotic cells that

cannot satisfy the SAC exit mitosis with high Mad1/Mad2 levels

at kinetochores and after very slow and prolonged degradation

of cyclin B1.39,64,67 Combined, these data provide direct evi-

dence that, at least under certain conditions, cancer cells

with misaligned chromosomes may enter anaphase after SAC

satisfaction and have a high risk of forming micronuclei (see

graphical abstract). In line with these findings, recent experi-

ments in which CENP-E activity was inhibited in human

RPE-1 cells suggest that endomembrane ‘‘ensheathing’’ of

misaligned chromosomes may facilitate micronuclei formation

and delay SAC satisfaction.68

Our systematic analysis of more than 100 different molecular

perturbations further indicates that entering anaphase with mis-

aligned chromosomes might be a frequent outcome in cancer

cells. In particular, perturbations such as CENP-E or Kif18a

depletion were largely compatible with cell viability, despite

the high incidence of cells that entered anaphase in the pres-

ence of misaligned chromosomes. This contrasts with more

drastic scenarios that result from perturbation of end-on kinet-

ochore-microtubule attachments (e.g., depletion of KMN com-

ponents) that often result in massive chromosome missegrega-

tion and cell death. Noteworthy, while the loss of Kif18a, which

causes asynchronous segregation of misaligned chromosomes

due to loss of interchromosome compaction during anaphase,

does not promote chromosomal instability and tumorigen-

esis,10,69 the loss of CENP-E that typically originates one or

few pole-proximal chromosomes directly leads to aneuploidy

and the spontaneous formation of lymphomas and lung tumors

in aged animals.26,31 These data suggest that the origin and

properties of the resulting micronuclei is genetically determined

and might have implications for the propensity to undergo

massive chromosome rearrangements, such as those

commonly observed in chromothripsis. Interestingly, micronu-

clei derived from segregation errors associated with Kif18a

loss of function appear to form stable nuclear envelopes.69

However, because misaligned chromosomes that form after

perturbation of CENP-E function are brought very close to

Aurora A activity at the spindle poles,2 this might compromise

proper nuclear envelope formation.70,71 In agreement, micronu-

clei derived from misaligned chromosomes after CENP-E

perturbation were recently suggested to activate the cGAS-

STING pathway in cancer cells.72 Thus, cellular response to mi-

cronuclei might depend on their relative origin. Overall, our find-

ings incite for an in-depth characterization of the properties and

fate of micronuclei of different origins, while evaluating their

respective potential to drive and/or sustain cell transformation.

In this regard, our study indicates that micronuclei formation

from misaligned chromosomes appears to be a specific

outcome of cancer cells and may represent a possible thera-

peutic opportunity in human cancers.
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Data and code availability

d A public repository where time-lapse videos, phenotypical fingerprints, siRNA sequences and available western blotting anal-

ysis for each condition can be conveniently browsed and is freely available as a community resource at http://

chromosomecongression.i3s.up.pt.

d This paper does not report original code.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell lines
All cell lines were cultured at 37�C in 5% CO2 atmosphere in Dulbecco’s modified medium (DMEM, Gibco, Thermofisher) containing

10% fetal bovine serum (FBS, Gibco, Thermofisher). HeLa H2B-GFP/a-tubulin-mRFP, HeLa Cyclin B1-Venus/H2B-mRFP, RPE-1

H2B-GFP/mCherry-a-tubulin and RPE-1 Cyclin B1-Venus/H2B-mRFP cells were generated by lentiviral transduction. HeLa parental

was kindly provided by Y. Mimori-Kiyosue (RIKEN, Japan). U2OS parental and H2B-GFP/mCherry-a-tubulin were kindly provided by

S. Geley (Innsbruck Medical University, Innsbruck, Austria). hTERT-RPE-1 (RPE-1) parental (ATCC CRL-400) was kindly provided by

Ben Black (U. Pennsylvania, PA, USA). HeLa Mad2-GFP cells were previously described.74 HeLa and RPE-1 cells expressing Cyclin

B1-Venus were kindly provided by J. Pines (Cancer Research Institute, London, UK).

METHOD DETAILS

High-content live-cell imaging RNAi screen
All siRNA sequences used were either a commercial predesigned siRNA from Sigma-Aldrich (MISSION siRNA) or Dharmacon,

many of which were previously validated by other published studies (see Data S2). For each protein, depletion efficiency was

first optimized after preliminary phenotypic analysis between 24-96 h upon siRNA transfection (for specific conditions see

Data S1) and confirmed by western blotting whenever antibodies against specific proteins were available (Data S3). For few

proteins whose role in chromosome congression remained unclear at the mechanistic level or were followed-up in subsequent

experiments, a second siRNA was used to rule-out possible off-targeting effects. This led to the identification of six proteins

(Shp2, GAK, CEP72, CEP90, CENP-H and Mis12), where no discernable congression phenotype was observed with the second

siRNA, despite a clear reduction in protein levels with both siRNA sequences (Figure S1), or a clear congression phenotype was

observed despite no evident reduction in protein levels with two siRNA sequences, suggesting that they are off-targets. A sec-

ond siRNA was also used to validate all selected conditions that were followed-up to determine the origin of micronuclei

(Data S2). Whenever the results obtained with the second siRNA oligonucleotide were consistent with those obtained with

the original siRNA oligonucleotide, the data from both experiments was pooled for statistical analysis. All exceptions (Arp1,

Haspin, CENP-F, HAUS4 and CENP-T) that could not be validated by western blotting due to the poor quality of the antibodies

we had access to are clearly marked in the respective figures and main text, and were not followed-up in subsequent exper-

iments. Treatment with scramble siRNA was undistinguishable from mock transfection (Lipofectamine only) and was therefore

used as a negative control throughout the manuscript. A total of 125 proteins were analyzed in this study (Data S1). For high-

content live-cell imaging, HeLa cells stably expressing H2B-GFP/a-tubulin-mRFP were plated onto 96-well plate in DMEM sup-

plemented with 5% FBS and after 1 h transfected with siRNA oligonucleotides (Data S2) at a final concentration of 50 nM.

Transfections were performed using Lipofectamine RNAiMAX in Opti-MEM medium (both from Thermo Fisher Scientific) ac-

cording to the manufacturer’s instructions. Transfection medium was replaced with complete medium after 6 h. For time-lapse

microscopy acquisition, cell culture medium was changed to DMEM without phenol red supplemented with 10% FBS 6-12 h

before acquisition. Cells were imaged for 72 h in an IN CELL Analyzer 2000 microscope (GE Healthcare, Chicago, IL, USA)

equipped with temperature and CO2 controller, using a Nikon 20x/0.45 NA Plan Fluor objective according to manufacturer in-

structions. For some validation experiments with a second siRNA oligonucleotide a Nikon ECLIPSE TI microscope (Nikon,

Japan) equipped with temperature and CO2 controller, using a Nikon 20x/0.45 NA Plan Fluor objective according to the man-

ufacturer’s instructions, using 24-well plates. Single planes were acquired every 10 min for approximately 72 h. Images were

processed using ImageJ software. Long-term recordings of HeLa Cyclin B1-venus treated with nocodazole and MG132

were also performed under similar conditions using the same IN CELL Analyzer 2000 microscope system, imaged every

15 min for 13 h.

Other RNAi experiments
For high-resolution live cell imaging and immunofluorescence analysis of CENP-E depletion (siCENP-E), cells were plated at 50-60%

confluence onto 22 x 22 mm No. 1.5 glass coverslips in DMEM supplemented with 5% of FBS. RNAi transfection was performed

using Lipofectamine RNAiMAX reagent (Thermofisher) with 20 nM of siRNA against human CENP-E (see siRNA sequence in Data

S2), diluted in serum-free media (Opti-MEM, Thermofisher). Depletion of CENP-E was maximal at 24 h after siRNA transfection

and all of the analysis was performed at 24 h.
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Drug treatments
Microtubule depolymerization was induced by nocodazole (Sigma-Aldrich) at 1 mM. To inhibit the proteasome, induce a metaphase

arrest, and prevent exit due to a compromised SAC, cells were treated with 5 mMMG132 (EMDMillipore). To promote chromosome

missegregation, a monastrol washout assay was performed. Briefly, cells were incubated during 8-10 h with 100 mMmonastrol. After

this period, monastrol was washed twice with warm PBS followed by washing with warm fresh medium and entry in anaphase was

monitored under the microscope.

High-resolution time-lapse microscopy
For high-resolution time-lapse microscopy, cells were plated onto 22 x 22mmNo. 1.5 glass coverslips (Corning) and cell culture me-

dium was changed to phenol-red-free DMEM CO2-independent medium (Invitrogen) supplemented with 10% FBS 6-12 h before

mounting. Coverslips were mounted onto 35-mm magnetic chambers (14 mm, no. 1.5, MaTek corporation) immediately before im-

aging. Time-lapse imagingwas performed in a heated chamber (37�C) using a 100x oil-immersion 1.40 NAPlan-Apochromatic objec-

tive mounted on an invertedmicroscope (Eclipse TE2000U; Nikon) equipped with a CSU-X1 spinning-disk confocal head (Yokogawa

Corporation of America) controlled by NIS-Elements software and with three laser lines (488nm, 561nm, and 647 nm). Images were

detected with a iXonEM+ EM-CCD camera (Andor Technology). Images of U2OS and RPE-1 expressing H2B-GFP, mCherry-

a-tubulin were collected every 2 minutes or 30 seconds: 9 x 2 mm z-stacks spanning a total volume of 16 mm. For imaging of

HeLaMad2-GFP andHeLa andRPE-1 expressing Cyclin-B1-Venus/H2B-mRFP eleven 1-mm-separated z-planes covering the entire

volume of the mitotic spindle were collected every 2 min. All displayed images represent maximum-intensity projections of Z-stacks,

analysed with the open source image analysis software ImageJ.

Immunofluorescence microscopy
For immunofluorescence processing, cells were fixed with 4% Paraformaldehyde (Electron Microscopy Sciences) for 10 min fol-

lowed by extraction with 0.3% Triton X-100 in PBS (Sigma-Aldrich) for 10 min. After blocking with 10% FBS in PBS with 0.1% Triton

X-100, all primary antibodies were incubated at 4�C overnight. Then, the cells were washed with PBS containing 0.1% Triton X-100

and incubated with the respective secondary antibodies for 1 h at room temperature. Primary antibodies used were: mouse anti-

Mad1 (1:500; Merck Millipore); mouse anti a-tubulin (1:2000; Sigma); rabbit anti-b-tubulin (1:2000; Abcam); anti-guinea pig

CENP-C (1:1000; MBL International). Secondary antibodies used were Alexa Fluor 488, Alexa Fluor 568 and Alexa Fluor 647

(1:1000; Themofisher). DNA was counterstained with 1 mg/mL DAPI (4’,6’-diamino-2-fenil-indol; Sigma-Aldrich) and mounted onto

glass slides with 20 mM Tris pH8, 0.5 N-propyl gallate and 90% glycerol. Images were acquired using an AxioImager Z1 (63x,

Plan oil differential interference contract objective lens, 1.46 NA; from Carl Zeiss), coupled with a CCD camera (ORCA-R2; Hama-

matsu Photonics) and the Zen software (Carl Zeiss). Blind deconvolution of 3D image datasets was performed using Autoquant X

software (Media Cybernetics).

Western Blotting
Cell extracts were collected after trypsinization and centrifuged at 1200 rpm for 5min, washed and re-suspended in Lysis Buffer (NP-

40, 20 nM HEPES/KOH pH 7.9; 1 mM EDTA pH 8; 1 mM EGTA; 150 mM NaCl; 0.5% NP40; 10% glycerol, 1:50 protease inhibitor;

1:100 Phenylmethylsulfonyl fluoride). The samples were then flash frozen in liquid nitrogen and kept on ice for 30 min. After centri-

fugation at 14000 rpm for 20 min at 4�C the supernatant was collected and protein concentration determined by the Bradford protein

assay (Bio-Rad). Fifty micrograms of total extract were then loaded in SDS-polyacrylamide gels and transferred onto nitrocellulose

membranes for western blot analysis. The membranes were blocked with 5%milk in TBS with 0.1% Tween-20 (TBS-T) at room tem-

perature during 1 h, and all primary antibodies were incubated at 4�C overnight. After three washes in TBS-T the membranes were

incubated with the secondary antibody for 1 h at room temperature. The membranes were washed in the same conditions than pre-

viously and the detection was performed with Clarity Western ECL Substrate (Bio-Rad). The following antibodies were used for west-

ern blot: mouse anti-Hec1 (9GA) (1:500; Abcam), mouse anti-Dsn1 (1:1000; a gift fromAndreaMusacchio, MPI, Dortmund, Germany),

rabbit anti-CENP-E (1:250; Abcam), mouse anti-Aim1 (1:1000; BD Bioscience), mouse anti-ATRX (1:1000; Santa Cruz Biotech-

nology), rabbit anti-CEP72 (1:1000; Novus Biologicals), mouse anti-GAK (1:500; R&D Systems), rabbit anti- WDHD1/And-1

(1:1000; Novus Biologicals), rabbit anti-Aurora-A (1:1000; Novus Biologicals), rabbit anti-HURP (1:500, a gift from Patrick Meraldi),

mouse anti-INCENP (1:500; Santa Cruz Biotechnology), rabbit anti-LRRCC1/CLERC (1:1000; Abcam), mouse anti-Sgo-1 (F-8)

(1:1000; Santa Cruz Biotechnology), rabbit anti-DHC (1:500; ThermoFisher Scientific), mouse anti-Nde1 (1:1000; Abnova), sheep

anti-Bub1 (1:1000; a gift from Stephen Taylor); rabbit anti-Septin-2 (1:500; Novus Biologicals), rabbit anti-CEP90/PIBF1 (1:1000; No-

vus Biologicals), mouse anti-Ska2 (1:1000; Santa Cruz Biotechnology), mouse anti-4.1r (B-11) (1:1000; Santa Cruz Biotechnology),

rabbit anti-Astrin (N-terminal) (1:500; a gift from Duane Compton), rabbit anti-Kif4a (1:1000; ThermoFisher Scientific), rat anti-

CLASP1 (1:50; Maffini et al., 2009), rat anti-CLASP2 (1:50; Maffini et al., 2009), rabbit anti-BubR1 (1:1000; Abcam), rabbit anti-

SHP2 (1:1000; Abcam), rabbit anti-survivin (1:1000; Novus Biologicals), mouse anti-Ska3 (1:500; Santa Cruz Biotechnology), rabbit

anti-Mis12 (1:1000, a gift from Claudio Sunkel), rabbit anti-Kif18a (1:1000; Bethyl Laboratories), rabbit anti-KNL1 (1:1000; Novus Bi-

ologicals), rabbit anti-Nsl1 (1:500, Novus Biologicals), rabbit anti-Ska1 (1:500; a gift from Patrick Meraldi), goat anti-TACC3 (1:1000;

Novus Biologicals), rabbit anti-Zw10 (1:1500; Novus Biologicals), rabbit anti-CENP-I (1:250; a gift from Patrick Meraldi), rabbit anti-

CENP-H (1:500; Novus Biologicals), rabbit anti-CENP-N (1:500; Novus Biologicals), rabbit anti-CLERC (1:500, Abcam), mouse anti-

GAPDH (1:40000; Proteintech), rabbit anti-vinculin (1:1000;ThermoFisher Sientific), mouse anti-a-tubulin (clone B-512; 1:5000;
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Sigma-Aldrich) were used as primary antibodies, and anti-mouse-HRP, anti-rabbit-HRP, anti-sheep-HRP, anti-rat-HRP and anti-

goat-HRP were used as secondary antibodies (1:5000; Jackson ImmunoResearch Laboratories,).

QUANTIFICATION AND STATISTICAL ANALYSIS

Quantification of mitotic errors
Mitotic errors were tracked and quantifiedmanually through the assessment of H2B localization in single plane images. Mitotic errors

were divided into 3 main classes: lagging chromosomes, DNA bridges or misaligned chromosomes and these were discriminated

according to location and morphology associated with H2B localization. Lagging chromosomes retained normal DNA condensation

and emerged at different stages during anaphase. Any H2B-positive material between the two chromosomes masses, but distin-

guishably separated from them, was counted as lagging chromosomes. DNA bridges were characterized by stretches of DNA

that connected both daughter nuclei and often displayed aberrant DNA condensation as judged by H2B localization. Misaligned

chromosomeswere characterized by any H2B-positive material that remained near the spindle pole or clearly outside themetaphase

plate. To determine micronuclei origin, fully formed micronuclei were backtracked to reveal whether these originated from lagging

chromosomes, DNA bridges or misaligned chromosomes. The absolute probability of micronucleus formation from a lagging chro-

mosomewas determined by the ratio between the number of daughter cells withmicronuclei derived from lagging chromosomes and

the total number of cells with lagging chromosomes. The absolute probability of micronucleus formation from a DNA bridge was

determined by the ratio between the number of daughter cells with micronuclei derived from DNA bridges and the total number of

cells with DNA bridges. The absolute probability of micronucleus formation from a misaligned chromosome was determined by

the ratio between the number of daughter cells with micronuclei derived frommisaligned chromosomes and the total number of cells

that exit mitosis with a misaligned chromosome. For the relative probabilities, the sum of the 3 independent absolute probability

values was normalized to 1.

Quantitative image analysis
For quantification of Mad1 fluorescence intensity, images were analysed using ImageJ. Briefly, individual kinetochores were identi-

fied by CENP-C staining and marked by a region of interest (ROI). The average fluorescence intensity of signals of Mad1 at kineto-

chores wasmeasured on the focused z plan. The background signal wasmeasured within a neighbouring region and was subtracted

from the measured fluorescence intensity the region of interest. Fluorescence intensity measurements were normalized to the

CENP-C signals. Mad1 negative values were considered zero, since resulted from the high background fluorescence observed in

early anaphase cells. Approximately 90 kinetochore pairs from 9 cells were analysed for control prometaphase cells, 72 kinetochore

pairs from 14 cells for prometaphase in CENP-E depleted cells and 19 kinetochore pairs from 14 cells for early anaphase in CENP-E

depleted cells. The fluorescence levels of Cyclin B1 in HeLa cells treated with nocodazole weremeasured using the IN Cell Developer

Toolbox software (GEHealthcare). After background subtraction, fluorescence intensities were normalized to the level at time = 0 and

represented as a function of time. The levels of Cyclin B1 in siScramble, siCENP-E, siTACC3 HeLa cells and siScramble, siCENP-E

RPE-1 were measured using ImageJ. A small square region of interest (ROI) was defined, and Cyclin B1 fluorescence intensity

measured, throughout time in the cell. The same ROI was used to measure the background outside the region of interest. All fluo-

rescence intensity values were then background corrected and the values were normalized at 14 or 8minutes before anaphase onset

in HeLa and RPE-1 cells, respectively. The microtubule depolymerization rate after nocodazole treatment in U2OS and RPE-1 cells

was determined by the proportion of total and soluble a-tubulin levels. The total a-tubulin intensity wasmeasured by drawing a larger

oval shaped region of interest (ROI) contained the entire cell in sum-projected images (ImageJ). The soluble a-tubulin levels were

determined by drawing five smaller oval shapedROI outside the chromosome region and the average of these valueswere calculated

in sum-projected images. The fluorescence intensities were normalized to the level at time = 0 and represented as a function of time.

Statistical analysis
All results presented in this manuscript were obtained from pooling data from at least 2 independent experiments unless otherwise

stated. Sample sizes and statistical tests used for each experiment are indicated in the respective figure legends. Quantifications of

mitotic errors (i.e. cell death and micronuclei) were analyzed using the Fisher’s exact two-tailed test. Correlations were calculated

using two-tailed Pearson0s correlation coefficients. When only two experimental groups were compared, we used either a parametric

t test or a nonparametric Mann-Whitney test. Distribution normalities were assessed using the D0Agostino-Pearson omnibus test. For

the comparison of the single exponential fitting curve extra sum-of square F test was used. Probabilities were calculated using Chi-

squared test. For each graph, where applicable, ns= non-significant, *p% 0.05, **p% 0.01 ***p% 0.001 and ****p% 0.0001, unless

stated otherwise. In all plots error bars represent standard deviation. All statistical analysis was performed using GraphPad Prism V7

(GraphPad Software).
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Figure S1. Identification of off-targets, related to Figure 1. Protein lysates obtained 

after RNAi treatment were immunoblotted with an antibody specific for each protein of 

interest (Mis12, CEP90, CENP-H, SHP2, CEP72 and GAK, upper bands). The bottom 

band corresponds to antibody detection of GAPDH or Vinculin, which were used as 

loading controls.  

  



 



Figure S2. In addition to chromosome alignment defects, some genetic 

conditions also compromise the maintenance of chromosome alignment at the 

metaphase plate, related to Figure 2. a) Examples of time-lapse sequences 

illustrating the three main mitotic phenotypes of chromosome alignment maintenance 

defects observed: 1) cells showed a prolonged delay in chromosome alignment but 

eventually completed congression, after which chromosomes/chromatids underwent 

gradual scattering from the metaphase plate; 2) chromosomes aligned normally at the 

metaphase plate, but then underwent gradual scattering; 3) chromosomes aligned 

normally at the metaphase plate, followed by spindle pole fragmentation and 

chromosome scattering. Arrows indicate scattered chromosomes/chromatids in cells 

that were unable to maintain chromosome alignment at the metaphase plate. Scale 

bar = 5 µm. Time: h:min, from nuclear envelope breakdown (NEB) to cell death or 

mitotic exit. b) Frequency of cells exhibiting problems in the maintenance of 

chromosome alignment at the metaphase plate. Only the conditions exhibiting 

problems in the maintenance of chromosome alignment were included. At least 2 

independent experiments were analyzed. The total number of cells analyzed for each 

condition is indicated in Table S1. (*p≤0.05, **p≤0.01, ***p≤0.001, ****p≤0.0001, ns 

corresponds to not significantly different from control, Fisher´s exact two-tailed test). 

  



 

Figure S3. Mitotic duration upon gene-specific RNAi-mediated depletion, related 

to Figure 3. HeLa cells stably expressing H2B-GFP and α-tubulin-mRFP were 



acquired every 10 minutes. Mitotic duration was determined by measuring the time 

between nuclear envelope breakdown (NEB) and anaphase onset, shown in minutes. 

Data was presented as box-and-whiskers and each point corresponds to one cell. The 

difference between mean values of each RNAi condition was statistically significant 

from the control mean values. At least 2 independent experiments per condition were 

performed. (*p≤0.05, **p≤0.01, ***p≤0.001, ****p≤0.0001, ns corresponds to not 

significantly different from control, Mann-Whitney test). 

 

  



 

Figure S4. Cell fate upon induction of chromosome alignment defects of distinct 

molecular nature, related to Figure 3. a) Cell fate profiles of HeLa cells with delayed 

or failed chromosome alignment after Ndc80 depletion. Each line indicates a single 

cell and respective outcome. a´) Time that cells spent until mitotic exit (blue), death in 

mitosis (purple) or in subsequent interphase (green) after Ndc80 depletion. Each dot 

represents a single cell. The horizontal line indicates the mean of all quantified cells 

and the error bars represent the standard deviation from a pool of four independent 

experiments (Mitotic exit, 289±377 min, n=83; Death in mitosis, 894±292 min, n=45; 

Post-mitotic death 1162±359 min, n=42; ****p≤0.0001 relative to control, analyzed 

using a Mann-Whitney Test). b) Cell fate profiles of HeLa cells with delayed or failed 

chromosome alignment after CENP-E depletion. b´) Time that cells spent until mitotic 

exit (blue), death in mitosis (purple) or in the subsequent interphase (green) after 



CENP-E depletion. Each dot represents a single cell. The horizontal line indicates the 

mean of all quantified cells and the error bars represent the standard deviation from a 

pool of five independent experiments (Mitotic exit, 243±193 min, n=358; Death in 

mitosis 996±322 min, n=15; Post-mitotic death 814±408 min, n=32; ****p≤0.0001 

relative to control, analyzed using a Mann-Whitney Test). 

 



 

Figure S5. Further characterization of Cyclin B1 degradation profiles in RPE-1 

and HeLa cells, related to Figure 5. a) Selective time frames from live-cell 



microscopy of RPE-1 cells stably expressing H2B-mRFP and Cyclin B1-Venus in 

control and siCENP-E. Images were acquired every 2 min. Time = min:sec. Time 00:00 

= anaphase onset. Black arrowheads point to misaligned chromosomes that remain 

upon anaphase onset. b) Cyclin B1 degradation profile for control, CENP-E- depleted 

cells that properly align their chromosomes at the metaphase plate and CENP-E-

depleted cells that exit mitosis with misaligned chromosomes give rise to micronuclei. 

Fluorescence intensities were normalized to the levels at time = -8. The curves 

represent mean Cyclin B1-Venus fluorescence intensity from all analyzed cells and 

errors bars represent the standard derivation from a pool of three independent 

experiments (siScramble n=30; siCENP-E (aligned) n=30; siCENP-E 

(misaligned+micronuclei) n=5). c) Frequency of anaphase cells with aligned 

chromosomes, misaligned chromosomes and misaligned chromosomes that result in 

micronuclei in control (black bars) and CENP-E-depleted cells (green bars). d) 

Selected time frames from phase-contrast and fluorescence microscopy of Cyclin B1-

Venus HeLa cells treated with nocodazole with or without MG132. Images were 

acquired every 15 min. Scale bar = 5 µm. Time = h:min. e) Cyclin B1 degradation 

profiles of nocodazole-treated Cyclin B1-Venus HeLa cells in the presence or absence 

of MG132. Fluorescence intensities were normalized to the levels at time = 0. The 

curves depict mean Cyclin B1-Venus fluorescence intensity from all analyzed cells per 

condition (nocodazole n=12; nocodazole + MG132 n=10), and error bars represent 

the standard deviation. Note that acquisition in the presence of MG132 was terminated 

earlier relative to acquisition without MG132 due to cell death. 

  



 

Figure S6. Absolute probabilities of forming a micronucleus from misaligned 

chromosomes, DNA bridges and lagging chromosomes in the different cell lines 

used, related to Figure 6 and Figure 7. a) Absolute probabilities of forming a 



micronucleus of different origins in unperturbed HeLa cells and after molecular 

perturbations that weaken kinetochore-microtubule attachments or promote the 

formation of anaphase lagging chromosomes after monastrol treatment and washout 

(MonWO). [siScramble n=1700, MonWO n=327, siAstrin n=423, siBub1 n=457, 

siKif18a n= 540, siCENP-N n= 422, siSka1 n=395, siTACC3 n=485, siNsl1 n=400, 

siSka3 n= 383, siZw10 n= 404, siNdc80 n=440, siAurora A n= 388, siCLERC n=263, 

siNuf2 n=428, siCENP-I n= 389, siAurora B n=499, siDsn1 n=688, siCENP-E n= 346, 

siSpc24 n=418, siBubR1 n=387, siSpc25 n= 425, siHURP_oligo1 n=296, 

siHURP_oligo2 n=200, siKNL1 n=413; pool of 2 independent experiments for each 

siRNAi oligonucleotide per condition, with the exception of Aurora A and CLERC in 

which only 1 experiment for the second siRNAi oligonucleotide was performed. All 

independent experiments were pooled]. b) Absolute probabilities of forming a 

micronucleus of different origins in unperturbed RPE-1 and U2OS cells and after 

CENP-E depletion (siCENP-E) or monastrol treatment and washout. [RPE-1 cells: 

control, n=163; siCENP-E, n=95; MonWO, n=105]. [U2OS cells: control, n=250; 

siCENP-E, n=81; MonWO, n=49]. 

  



 

Figure S7.  Misaligned chromosomes in chromosomally unstable cancer cells 

have hyper-stabilized kinetochore-microtubule attachments, related to Figure 7. 

a) Representative immunofluorescence images of RPE-1 and U2OS cells stained for 



DNA (green) and α-tubulin (magenta). RPE-1 and U2OS cells upon nocodazole 

treatment and washout to generate misaligned chromosomes were processed for 

immunofluorescence microscopy after a subsequent nocodazole shock 5, 15 and 30 

min after drug addition. Representative immunofluorescence images of the mitotic 

spindle at each stage are shown. Images are maximum intensity projections of 

deconvolved z-stacks. Scale bar = 5 µm. b) Normalized α-tubulin fluorescence 

intensity at indicated time points in RPE-1 and U2OS cells after nocodazole shock. 

Fluorescence intensities were normalized to the levels at time = 0. Data represent 

mean ± s.d., U2OS n=22 cells, RPE-1 n=22 cells, from 2 independent experiments. 

Whole lines show single exponential fitting curve (**p≤0.01, extra sum-of-squares F 

test). 
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