Supplementary Information

S1 Appendix. Literature Review Citations for Table 1

Published studies that examined change in fish abundances before and after hurricanes listed in the literature review.

S1 Figure. Statistical Analysis Flowchart and Transformations

Decision-tree indicating how fish data was subsetted, transformed, and analyzed. If not listed as transformed, raw data was used as the response variable.

S1 Table. Seagrass meadow locations and survey dates

Meadows surveyed for both fishes and percent cover of seagrass. Seagrass survey dates (month/year) and periodicity listed.

S2 Table. Temperature and Salinity ANOVA summary statistics

Summary results examining potential correlations between environmental variables, namely surface water temperature and salinity, fish catches and species richness.

S3 Table. Short-term ANOVA mBACI summary statistics

Summary results of short-term ANOVA tests across time period (before vs. after) and year type (control vs. impact year) for mBACI and Arthur BACI. Short-term analyses include only trawls conducted within 23 days of stormfall. Response variables were transformed when necessary to meet assumptions of parametric statistics. Post-hoc test results are not presented as no interaction term was significant.

S4 Table. Mean fish metrics across mBACI treatments

Mean +/- standard error CPUE, CPUE-Lr, and species richness for multi-storm mBACI and BACI comparisons. Percent change is calculated as the decline or increase in catch or richness between before and after periods: $\frac{before - after}{before} \times 100$. Note: Means presented are rounded to whole values for catch and one decimal place for species richness. Percent change was calculated using unrounded values and may differ from calculations based upon means in the table.

S5 Table. NMDS environmental correlates

Summary results of environmental variables tested for potential correlation with fish community structure at the short-term and seasonal time frames.

S6 Table. Contributing species to group dissimilarities

Results of Similarity Percentages (SIMPER) analysis indicating the species that contribute the most to dissimilarity across BACI groups based on Bray-Curtis dissimilarities calculated from fourth-root transformed abundance data. Only the top 10 species that contribute the most to between-group dissimilarities are listed.

S7 Table. Seasonal ANOVA and Tukey HSD for mBACI, Arthur- and Matthew BACIs

Summary results of seasonal-scale ANOVA tests across time period (before vs. after) and year type (control vs. impact year). Seasonal analyses include trawls conducted during the months of

May-October. Response variables were transformed when necessary to meet assumptions of parametric statistics. Post-hoc test results are presented when the interaction term is significant at p<0.05. Abbreviations indicate treatments; CB = control before, IB = impact before, CA = control after, IA = impact after

S8 Table. GAM Model Summary Statistics for Seasonal mBACI and Hurricane Arthur

All GAM models were run for the seasonal time frame against days since storm as the independent variable and built using a cubic regression spline with penalized shrinkage, a maximum of three degrees of freedoms, negative binomial error distribution with log link function, and restricted maximum likelihood smoothing parameter. edf = effective degrees of freedom, logLik = log likelihood, Dev = deviance, df.r = residual degrees of freedom, AIC = Akaike information criterion BIC = Bayesian information criterion.

S2 Figure. Individual mBACI treatment PCoA ordinations of short-term communities

This figure demonstrates the potential difference/lack of difference in short-term community dispersion within each mBACI treatment using Principle Coordinates Analysis. Convex hulls are drawn in dashed lines through the outer-must points.

S3 Figure. Individual mBACI group PCoA ordinations of seasonal communities

This figure demonstrates the potential difference/lack of difference in seasonal community dispersion within each mBACI treatment using Principle Coordinates Analysis. Convex hulls are drawn in dashed lines through the outer-must points.

S4 Figure. Hurricane Arthur BACI comparisons

Short-term and seasonal fish catches and species richness across time periods (before vs. after) and year type (control vs. impact) for Hurricane Arthur (July 2014) compared to 2015 (control year). Only means are presented for short-term comparisons (column 1); whereas means, trend, and difference between control and impact trends (columns 2-4, respectively) are depicted for seasonal comparisons. Catch per unit effort (CPUE) is presented in row 1 (A, D, H, K); CPUE calculated sans *L. rhomboides* is presented in row 2 (B, E. I, L), and species richness is row 3 (C, F, J, M). P-values indicate the significance of the interactive ANOVA term. Error bars represent standard error. Smoothed lines represent generalized additive models ($y \sim s(Days to Storm)$, k = 3) for both hurricane and storm-free years based on a cubic regression spline with shrinkage and 95% confidence intervals.

S5 Figure. Hurricane Matthew Seasonal BACI comparisons

Seasonal fish catch per unit effort (A), catch per unit effort sans *Lagodon rhomboides* (B) and species richness (C) across time periods (before vs. after) and year type (control vs. impact) for Hurricane Matthew (October 2016) compared to 2017 (control year). Only means are presented for seasonal comparisons (column 1), as the closest trawl samples prior to hurricane Matthew occurred outside of the short-term window and all trawls that occurred after the storm were conducted on the same day. P-values indicate the significance of the interactive ANOVA term. Error bars represent standard error.

S1 Appendix. Literature Review Citations for Table 1

Published studies that examined change in fish abundances before and after hurricanes listed in the literature review.

- 1. Adams A. Effects of a hurricane on two assemblages of coral reef fishes: Multiple-year analysis reverses a false "snapshot" interpretation. Bull Mar Sci. 2001;69: 341–356.
- 2. Adams AJ, Ebersole JP. Resistance of coral reef fishes in back reef and lagoon habitats to a hurricane. Bull Mar Sci. 2004;75: 101–113.
- Anton A, Cebrian J, Duarte CM, Heck Jr KL, Goff J. Low impact of Hurricane Katrina on seagrass community structure and functioning in the northern Gulf of Mexico. Bull Mar Sci. 2009;85: 45–59.
- 4. Bortone SA. Effects of a hurricane on the fish fauna at Destin, Florida. Flor Sci. 1976; 245–248.
- 5. Bouchon C, Bouchon-Navaro Y, Louis M. Changes in the coastal fish communities following hurricane Hugo in Guadelope Island (French West Indies). Atoll Res Bull. 1994.
- 6. Burkholder J, Eggleston D, Glasgow H, Brownie C, Reed R, Janowitz G, et al. Comparative impacts of two major hurricane seasons on the Neuse River and western Pamlico Sound ecosystems. Proc Natl Acad Sci USA. 2004;101: 9291–9296.
- Cheal A, Coleman G, Delean S, Miller I, Osborne K, Sweatman H. Responses of coral and fish assemblages to a severe but short-lived tropical cyclone on the Great Barrier Reef, Australia. Coral Reefs. 2002;21: 131–142.
- 8. Davis J, Laird B. The effects of tropical storm Agnes on the Chesapeake Bay estuarine system. The Chesapeake Reserach Consortium; 1976. Report No.: CRC Publication No. 54.
- Dolloff CA, Flebbe PA, Owen MD. Fish habitat and fish populations in a southern Appalachian watershed before and after Hurricane Hugo. Trans Am Fish Soc. 1994;123: 668–678.
- Fenner DP. Effects of Hurricane Gilbert on Coral Reefs, Fishes and Sponges at Cozumel, Mexico. Bull Mar Sci. 1991;48: 719–730.
- 11. Fitzsimons JM, Nishimoto RT. Use of fish behavior in assessing the effects of Hurricane Iniki on the Hawaiian island of Kaua'i. Environ Biol Fishes. 1995;43: 39–50.
- Greenwood MF, Stevens PW, Matheson RE. Effects of the 2004 hurricanes on the fish assemblages in two proximate southwest Florida estuaries: change in the context of interannual variability. Estuaries Coast. 2006;29: 985–996.
- Lassig BR. The effects of a cyclonic storm on coral reef fish assemblages. Environ Biol Fishes. 1983;9: 55–63.
- Letourneur Y, Harmelin-Vivien M, Galzin R. Impact of hurricane Firinga on fish community structure on fringing reefs of Reunion Island, S.W. Indian Ocean. Environ Biol Fishes. 1993;37: 109–120. doi:10.1007/BF00000586
- 15. Locascio JV, Mann DA. Effects of Hurricane Charley on fish chorusing. Biol Lett. 2005;1: 362–365.

- 16. Paerl HW, Bales JD, Ausley LW, Buzzelli CP, Crowder LB, Eby LA, et al. Ecosystem impacts of three sequential hurricanes (Dennis, Floyd, and Irene) on the United States' largest lagoonal estuary, Pamlico Sound, NC. Proc Natl Acad Sci USA. 2001;98: 5655– 5660.
- Paperno R, Tremain D, Adams D, Sebastian A, Sauer J, Dutka-Gianelli J. The disruption and recovery of fish communities in the Indian River Lagoon, Florida, following two hurricanes in 2004. Estuaries Coast. 2006;29: 1004–1010.
- Springer VG, McErlean AJ. A study of the behavior of some tagged south Florida coral reef fishes. Am Midl Nat. 1962; 386–397.
- Stevens PW, Blewett DA, Casey JP. Short-term effects of a low dissolved oxygen event on estuarine fish assemblages following the passage of Hurricane Charley. Estuaries Coast. 2006;29: 997–1003.
- 20. Switzer T, Winner B, Dunham N, Whittington J, Thomas M. Influence of sequential hurricanes on nekton communities in a southeast Florida estuary: short-term effects in the context of historical variations in freshwater inflow. Estuaries Coast. 2006;29: 1011–1018.
- 21. Yu J, Tang D, Chen G, Li Y, Huang Z, Wang S. The positive effects of typhoons on the fish CPUE in the South China Sea. Cont Shelf Res. 2014;84: 1–12. doi:10.1016/j.csr.2014.04.025
- 22. Yu J, Tang D, Li Y, Huang Z, Chen G. Increase in fish abundance during two typhoons in the South China Sea. Adv Space Res. 2013;51: 1734–1749. doi:10.1016/j.asr.2012.11.019

Fish Response to Hurricane Analysis Flow Chart

S1 Figure. Statistical Analysis Flowchart and Transformations

Decision-tree indicating how fish data was subsetted, transformed, and analyzed. If not listed as transformed, raw data was used as the response variable.

Meadow	Latitude	Longitude	Dominant Seagrass spp.	Surveys
SG 1	34.691747	-76.622573	Zostera marina	May-Oct 2016 (monthly) Apr-Sep 2019 (monthly)
SG 2	34.697874	-76.595503	Halodule wrightii	Aug & Oct 2013 May & July 2014 May-Oct 2016 (monthly) Apr-Sep 2019 (monthly)
SG 3	34.699899	-76.592917	Halodule wrightii	Aug & Oct 2013 May & July 2014 May-Oct 2016 (monthly) Apr-Sep 2019 (monthly)
SG 4	34.703403	-76.587869	Halodule wrightii	May-Oct 2016 (monthly) Apr-Sep 2019 (monthly)

S1 Table. Seagrass meadow locations and survey dates

Meadows surveyed for both fishes and percent cover of seagrass. Seagrass survey dates (month/year) and periodicity listed.

	Time						
	Frame	ime Factor		Sum Sq	Mean Sq	F value	Р
		Period	1	26.3	26.28	1.741	0.189
	Short_term	Year Type	1	18	19.98	1.191	0.277
nre	Short-term	Period*Year Type	1	24.9	24.94	1.652	0.201
rat		Residuals	150	2264.6	15.1		
npe		Period	1	54	53.83	3.775	0.052
Ter	Seasonal	Year Type	1	45	45.31	3.178	0.075
		Period*Year Type	1	25	24.51	1.719	0.190
		Residuals	603	8597	14.26		
		Period	1	2.3	2.267	0.493	0.484
	Shout toum	Year Type	1	6.2	6.16	1.341	0.249
•	Short-term	Period*Year Type	1	0.3	0.321	0.1	0.792
nit		Residuals	142	652.4	4.594		
Sali		Period	1	0	0.196	0.031	0.859
	Sassanal	Year Type	1	7	7.191	1.154	0.283
	Scasullai	Period*Year Type	1	22	22.286	3.575	0.060
		Residuals	549	3422	6.234		

S2 Table. Temperature and Salinity ANOVA summary statistics

ANOVAs were conducted to determine if environmental conditions differed across BACI treatments to determine whether to include as potential explanatory variables in ANOVAs and GAMs.

			ANOV	4	
Analysis	Response	Effect	DF	F	р
	$1_{0} \sim (CDUE + 1)$	Period	1, 161	4.935	0.028
	$\log(CPUE + 1)$ (km ⁻¹)	Year Type	1, 161	0.214	0.644
		Period*Year Type	1, 161	2.418	0.122
	CDUE La	Period	1, 161	5.328	0.022
mBACI	(km^{-1})	Year Type	1, 161	0.945	0.333
		Period*Year Type	1, 161	2.591	0.109
		Period	1, 161	1.627	0.204
	Richness	Year Type	1, 161	10.633	0.001
		Period*Year Type	1, 161	2.970	0.087
	a ant (CDLIE)	Period	1, 58	0.182	0.671
	sqrt(CPUE)	Year Type	1, 58	0.064	0.801
		Period*Year Type	1, 58	0.21	0.210
A	a aut(CDUE I a)	Period	1, 58	0.28	0.599
Artnur BACI	sqrt(CPUE-Lr)	Year Type	1, 58	8.57	0.005
DACI		Period*Year Type	1, 58	1.235	0.271
		Period	1, 58	0.626	0.432
	Richness	Year Type	1, 58	1.867	0.177
		Period*Year Type	1, 58	0.067	0.797

S3 Table. Short-term ANOVA mBACI Summary Statistics

Summary results of short-term ANOVA tests across time period (before vs. after) and year type (control vs. impact year) for mBACI and Arthur BACI. Short-term analyses include only trawls conducted within 23 days of stormfall. Response variables were transformed when necessary to meet assumptions of parametric statistics. Post-hoc test results are not presented as no interaction term was significant.

			/		CPUE		CPUE	-Lr	Species Richness		
	Time Frame	Year Type	Period	n	Mean ± SE	%Change*	Mean ± SE	%Change	Mean ± SE	%Change	
		Control	Before	46	309 ± 65	8	37 ± 9	8	6.6 ± 0.4		
	Short-	Control	After	33	182 ± 22	-41.16	33 ± 5	-10.78	6.9 ± 0.5	3.95	
	term	Impact	Before	53	261 ± 23		50 ± 4		8.5 ± 0.3		
mPACI		Impact	After	33	151 ± 31	-40.17	29 ± 3	-43.03	7.5 ± 0.4	-11.57	
IIIDACI		Control	Before	239	376 ± 26		46 ± 4		6.1 ± 0.2		
	Saasanal	Control	After	93	169 ± 18	-55.02	23 ± 2	-50	6.4 ± 0.3	4.72	
	Seasonal	Impact	Before	251	269 ± 13		50 ± 3		6.7 ± 0.2		
		Impact	After	107	118 ± 15	-56.	18 ± 2	-64.14	6.0 ± 0.3	-9.323	
	Short-	Control	Before	12	578 ± 90		58 ± 9	-42.27	4.3 ± 0.5		
		Control	After	12	402 ± 114	-30.42	33 ± 7		4.8 ± 0.5	13.73	
	term	Impact	Before	12	498 ± 127		87 ± 15		7.9 ± 0.9		
Arthur		Impact	After	26	582 ± 113	16.69	86 ± 14	-1.14	7.5 ± 0.4	-4.78	
BACI		Control	Before	23	507 ± 61		61 ± 12		4.0 ± 0.3		
	Seesonal	Control	After	43	252 ± 46	-50.35	26 ± 4	-57.98	5.2 ± 0.4	30.65	
	Scasonar	Impact	Before	51	717 ± 67		140 ± 12		7.4 ± 0.3		
		Impact	After	70	335 ± 50	-53.37	56 ± 7	-60.31	7.9 ± 0.4	7.15	
		Control	Before	48	94 ± 17		16 ± 3		4.9 ± 0.3		
Matthew	Seasonal	Control	After	11	33 ± 9	-64.74	5 ± 1	-71.83	3.8 ± 0.4	-21.68	
BACI	Scasonal	Impact	Before	69	277 ± 29		39 ± 4		7.1 ± 0.4		
		Impact	After	15	28 ± 5	-89.97	10 ± 3	-74.14	4.4 ± 0.4	-38.42	

S4 Table. Mean values of CPUE, CPUE-Lr and Species Richness Across Treatments

Mean +/- standard error CPUE, CPUE-Lr, and species richness for multi-storm mBACI and BACI comparisons. Percent change is calculated as the decline or increase in catch or richness between before and after periods: $\frac{\text{before} - \text{after}}{\text{before}} \times 100$. Note: Means presented are rounded to whole values for catch and one decimal place for species richness. Percent change was calculated using unrounded values and may differ from calculations based upon means in the table.

	5	Short-term			Seasonal	
Factor	NMDS1	NMDS2	р	NMDS1	NMDS2	р
Depth	-0.063	0.126	0.557	0.057	-0.076	0.356
Temperature	0.012	-0.394	0.007	-0.021	0.143	0.084
Salinity	0.043	-0.019	0.928	-0.066	-0.070	0.385
Days since Storm	0.147	0.134	0.284	-0.240	0.554	0.001
Storm Rainfall	-0.041	0.209	0.236	0.030	-0.143	0.088
Rainfall Anomaly	0.104	-0.136	0.417	-0.043	-0.028	0.746
ACE	0.005	0.166	0.419	0.011	-0.147	0.085
Winds	0.121	-0.042	0.608	-0.022	-0.081	0.456
Gusts	0.096	0.067	0.66	-0.011	-0.108	0.288
Storm Surge	-0.018	0.191	0.315	0.020	-0.151	0.064
Antecedent Rain	0.179	0.069	0.329	-0.227	0.351	0.001

S5 Table. NMDS environmental correlates

Summary results of environmental variables tested for potential correlation with fish community structure at the short-term and seasonal time frames.

Zhang et al. Seagrass community response to tropical cyclones

			Avg.	Cum.						
	Scientific Name	Common Name	dissimilarity	dissimilarity						
	Before Control - After Control, Overall between	n-group dissimilarity	y = 0.4430							
	Lagadon rhomboides (Linnaeus, 1766) Pinfish		0.0436	0.0931						
	Gerreidae spp. (Goode and Bean, 1879)	Mojarra spp.	0.0435	0.1859						
	Leiostomus xanthurus (Lacepède, 1802)	Spot	0.0416	0.2747						
	Orthopristis chrysoptera (Linnaeus, 1766)	Pigfish	0.0409	0.3619						
	Paralichthys spp. (Jordan and Gilbert, 1882)	Flounder spp.	0.0380	0.4429						
	Bairdiella chrysoura (Lacepède, 1802)	Silver Perch	0.0344	0.5164						
	Stephanolepis hispidus (Linnaeus, 1766)	Planehead filefish	0.0297	0.5798						
	Lutjanus griseus (Linneaus, 1758)	Grey Snapper	0.0287	0.6409						
	Lutjanus synagris (Linneaus, 1758)	Lane Snapper	0.0195	0.6825						
	Anchoa spp. (Valenciennes, 1848)	Anchovy spp.	0.0172	0.7192						
	Before Hurricane - After Hurricane, Overall between-group dissimilarity = 0.4498									
	Lagadon rhomboides (Linnaeus, 1766)	Pinfish	0.0417	0.0928						
	Orthopristis chrysoptera (Linnaeus, 1766)	Pigfish	0.0378	0.1769						
_	Gerreidae spp. (Goode and Bean, 1879)	Mojarra spp.	0.0342	0.2529						
erm	Stephanolepis hispidus (Linnaeus, 1766)	Planehead filefish	0.0339	0.3283						
ort-t	Paralichthys spp. (Jordan and Gilbert, 1882)	Flounder spp.	0.0332	0.4022						
Shc	Bairdiella chrysoura (Lacepède, 1802)	Silver Perch	0.0330	0.4755						
	Leiostomus xanthurus (Lacepède, 1802)	Spot	0.0324	0.5474						
	Archosargus probatocephalus (Walbaum, 1792)	Sheepshead	0.0308	0.6160						
	Lutjanus griseus (Linneaus, 1758)	Grey Snapper	0.0250	0.6717						
	Sygnathus spp. (Jordan and Gilbert 1882)	Pipefish spp.	0.0184	0.7126						
	Before Control - Before Hurricane, Overall between-group dissimilarity = 0.4437									
	Lagadon rhomboides (Linnaeus, 1766)	Pinfish	0.0499	0.1125						
	Orthopristis chrysoptera (Linnaeus, 1766)	Pigfish	0.0381	0.1983						
	Gerreidae spp. (Goode and Bean, 1879)	Mojarra spp.	0.0340	0.2749						
	Leiostomus xanthurus (Lacepède, 1802)	Spot	0.0337	0.3509						
	Stephanolepis hispidus (Linnaeus, 1766)	Planehead filefish	0.0337	0.4268						
	Bairdiella chrysoura (Lacepède, 1802)	Silver Perch	0.0314	0.4974						
	Archosargus probatocephalus (Walbaum, 1792)	Sheepshead	0.0313	0.5680						
	Paralichthys spp. (Jordan and Gilbert, 1882)	Flounder spp.	0.0233	0.6205						
	Diplodus holbrookii (Bean, 1878)	Spottail pinfish	0.0203	0.6663						
	Sygnathus spp. (Jordan and Gilbert 1882)	Pipefish spp.	0.0178	0.7064						

S6 Table. Contributing species to short-term and seasonal community group dissimilarities

Zhang et al. Seagrass community response to tropical cyclones

	After Control - After Hurricane, Overall betwee	en-group dissimilarity = 0.	.4686	
	Lagadon rhomboides (Linnaeus, 1766)	Pinfish	0.0525	0.1187
	Gerreidae spp. (Goode and Bean, 1879)	Mojarra spp.	0.0447	0.2199
	Orthopristis chrysoptera (Linnaeus, 1766)	Pigfish	0.0393	0.3089
	Stephanolepis hispidus (Linnaeus, 1766)	Planehead filefish	0.0340	0.3858
	Leiostomus xanthurus (Lacepède, 1802)	Spot	0.0333	0.4610
	Paralichthys spp. (Jordan and Gilbert, 1882)	Flounder spp.	0.0271	0.5224
	Bairdiella chrysoura (Lacepède, 1802)	Silver Perch	0.0243	0.5774
	Lutjanus griseus (Linneaus, 1758)	Grey Snapper	0.0230	0.6294
	Diplodus holbrookii (Bean, 1878)	Spottail pinfish	0.0196	0.6738
	<i>Mycteroperca microlepis</i> (Goode & Bean, 1879)	Gag grouper	0.0140	0.7054
	Before Control - After Control, Overall betweer	n-group dissimilarity = 0.4	1826	
	Lagadon rhomboides (Linnaeus, 1766)	Pinfish	0.0674	0.1396
	Orthopristis chrysoptera (Linnaeus, 1766)	Pigfish	0.0539	0.2513
	Gerreidae spp. (Goode and Bean, 1879)	Mojarra spp.	0.0508	0.3567
	Leiostomus xanthurus (Lacepède, 1802)	Spot	0.0448	0.4496
	Paralichthys spp. (Jordan and Gilbert, 1882)	Flounder spp.	0.0347	0.5215
	Stephanolepis hispidus (Linnaeus, 1766)	Planehead filefish	0.0332	0.5903
	Bairdiella chrysoura (Lacepède, 1802)	Silver Perch	0.0240	0.6400
	Lutjanus griseus (Linneaus, 1758)	Grey Snapper	0.0220	0.6856
	Opsanus tau (Linnaeus 1766)	Toadfish	0.0176	0.7222
	Diplodus holbrookii (Bean, 1878)	Spottail pinfish	0.0158	0.7549
	Before Hurricane - After Hurricane, Overall be	etween-group dissimilarity	= 0.5023	
	Lagadon rhomboides (Linnaeus, 1766)	Pinfish	0.0636	0.1266
	Orthopristis chrysoptera (Linnaeus, 1766)	Pigfish	0.0610	0.2480
	Leiostomus xanthurus (Lacepède, 1802)	Spot	0.0473	0.3422
	Gerreidae spp. (Goode and Bean, 1879)	Mojarra spp.	0.0389	0.4197
	Paralichthys spp. (Jordan and Gilbert, 1882)	Flounder spp.	0.0376	0.4945
	Stephanolepis hispidus (Linnaeus, 1766)	Planehead filefish	0.0372	0.5685
	Bairdiella chrysoura (Lacepède, 1802)	Silver Perch	0.0306	0.6294
	Archosargus probatocephalus (Walbaum, 1792)	Sheepshead	0.0219	0.6731
	Diplodus holbrookii (Bean, 1878)	Spottail pinfish	0.0184	0.7098
	Lutjanus griseus (Linneaus, 1758)	Grey Snapper	0.0178	0.7452
	Before Control - Before Hurricane, Overall bet	tween-group dissimilarity	= 0.4432	
	Lagadon rhomboides (Linnaeus, 1766)	Pinfish	0.0580	0.1309
U.	Orthopristis chrysoptera (Linnaeus, 1766)	Pigfish	0.0544	0.2537
-rei	Leiostomus xanthurus (Lacepède, 1802)	Spot	0.0456	0.3566
guo	Stephanolepis hispidus (Linnaeus, 1766)	Planehead filefish	0.0358	0.4373
	Paralichthys spp. (Jordan and Gilbert, 1882)	Flounder spp.	0.0329	0.5114

Zhang et al. Seagrass community response to tropical cyclones

Gerreidae spp. (Goode and Bean, 1879)	Mojarra spp.	0.0242	0.5659
Bairdiella chrysoura (Lacepède, 1802)	Silver Perch	0.0239	0.6198
Diplodus holbrookii (Bean, 1878)	Spottail pinfish	0.0206	0.6663
Sygnathus spp. (Jordan and Gilbert 1882)	Pipefish spp.	0.0183	0.7077
Opsanus tau (Linnaeus 1766)	Toadfish	0.0180	0.7482
After Control - After Hurricane, Overall betwe	en-group dissimilarit	y = 0.4856	
Lagadon rhomboides (Linnaeus, 1766)	Pinfish	0.0596	0.1228
Orthopristis chrysoptera (Linnaeus, 1766)	Pigfish	0.0543	0.2346
Gerreidae spp. (Goode and Bean, 1879)	Mojarra spp.	0.0471	0.3316
Leiostomus xanthurus (Lacepède, 1802)	Spot	0.0426	0.4194
Paralichthys spp. (Jordan and Gilbert, 1882)	Flounder spp.	0.0412	0.5044
Bairdiella chrysoura (Lacepède, 1802)	Silver Perch	0.0314	0.5691
Lutjanus griseus (Linneaus, 1758)	Grey Snapper	0.0296	0.6301
Stephanolepis hispidus (Linnaeus, 1766)	Planehead filefish	0.0285	0.6888
Lutjanus synagris (Linneaus, 1758)	Lane Snapper	0.0188	0.7274
Archosargus probatocephalus (Walbaum, 1792)	Sheepshead	0.0158	0.7599

Results of Similarity Percentages (SIMPER) analysis indicating the species that contribute the most to dissimilarity across mBACI groups based on Bray-Curtis dissimilarities calculated from fourth-root transformed abundance data. Only the top 10 species that contribute the most to between-group dissimilarities are listed.

			ANOVA			Tukey	HSD
	Response	Effect	DF	F	р	Comparison	р
	CDU ID 1/4	Period	1,650	77.463	< 0.001		
	(km^{-1})	Year Type	1,650	2.983	0.085		
	(Period*Year Type	1,650	2.069	0.151		
		Period	1,650	59.551	< 0.001	CB-IB	0.517
C	CPUE-Lr ^{1/4}	Year Type	1,650	0.001	0.976	CA-IA	0.120
BA	(km ⁻¹)	Period*Year Type	1,650	6.802	0.009*	CB-CA & IB-IA	0.002, <0.001
B						CB-IA, IB-CA	<0.001, <0.001
		Period	1,650	0.484	0.487	CB-IB	0.155
	Richness	Year Type	1,650	1.467	0.226	CA-IA	0.725
	Richiless	Period*Year Type	1,650	4.016	0.046*	CB-CA & IB-IA	0.798, 0.219
						CB-IA, IB-CA	0.987, 0.907
		Period	1, 183	47.707	< 0.001		
	sqrt(CPUE) (km ⁻¹)	Year Type	1, 183	4.473	0.0358		
Б		Period*Year Type	1, 183	0.255	0.614		
3AC	sqrt(CPUE-Lr) (km ⁻¹)	Period	1, 183	70.995	< 0.001		
ur I		Year Type	1, 183	32.801	< 0.001		
\rth		Period*Year Type	1, 183	3.379	0.068		
4		Period	1, 183	0.198	0.657		
	Richness	Year Type	1, 183	7.078	0.009		
		Period*Year Type	1, 183	0.418	0.519		
		Period	1, 139	50.137	< 0.001	CB-IB	< 0.001
	log(CPUE	Year Type	1, 139	30.256	< 0.001	CA-IA	< 0.001
	+1) (km ⁻¹)	Period*Year Type	1, 139	6.689	0.011*	CB-CA & IB-IA	0.102, <0.001
AC						CB-IA, IB-CA	0.880, <0.001
w B		Period	1, 139	22.756	< 0.001		
tthe	$\log(CPUE-Lr$ +1) (km ⁻¹)	Year Type	1, 139	25.473	< 0.001		
Ma	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Period*Year Type	1, 139	0.828	0.364		
	a ant (Distance)	Period	1, 139	14.66	< 0.001		
	sqrt(Kichness) (km ⁻¹)	Year Type	1, 139	21.04	< 0.001		
	(KIII)	Period*Year Type	1, 139	2.25	0.136		

S7 Table. Seasonal ANOVA and Tukey HSD for mBACI, Arthur- and Matthew BACIs

Summary results of seasonal-scale ANOVA tests across time period (before vs. after) and year type (control vs. impact year). Seasonal analyses include trawls conducted during the months of May-October. Response variables were transformed when necessary to meet assumptions of parametric statistics. Post-hoc test results are presented when the interaction term is significant at p<0.05. Abbreviations indicate treatments; CB = control before, IB = impact before, CA = control after, IA = impact after

			·						
			edf	р	logLik	Dev	df.r	AIC	BIC
		Control : Before	0.901	0.044	-2201.3	280.2	237.1	4409.1	4420.3
	CPUF	Impact : Before	0.023	0.356	-2217.0	273.8	250.0	4438.1	4445.4
	CFUE	Control : After	1.785	< 0.001	-773.7	103.0	90.2	1555.4	1565.4
		Impact : After	1.708	< 0.001	-846.4	119.5	104.3	1700.6	1711.0
		Control : Before	0.637	0.129	-1703.6	278.3	237.4	3413.0	3423.3
son	CPUE-	Impact : Before	0.003	0.426	-1817.2	290.9	250.0	3638.4	3645.5
Sea	Lr	Control : After	1.672	< 0.001	-582.9	99.4	90.3	1173.5	1183.2
		Impact : After	1.545	< 0.001	-653.7	126.3	104.5	1314.8	1324.7
		Control : Before	< 0.001	0.466	-539.6	218.1	238.0	1083.2	1090.2
	Richness	Impact : Before	1.755	< 0.001	-559.8	199.1	248.2	1127.4	1141.0
		Control : After	1.437	0.001	-220.1	89.9	90.6	447.8	457.3
		Impact : After	1.711	< 0.001	-241.0	106.7	104.3	489.8	500.1
		Control : Before	0.003	0.326	-162.5	23.7	22.0	329.0	331.3
	CDUE	Impact : Before	0.993	0.02	-378.2	53.0	49.0	763.1	769.5
	CFUE	Control : After	0.908	0.037	-277.5	49.2	41.1	561.6	567.3
		Impact : After	1.803	< 0.001	-456.5	74.6	67.2	920.7	929.4
		Control : Before	< 0.001	0.764	-117.1	25.0	22.0	238.3	240.6
hur	CPUE-	Impact : Before	1.684	0.005	-291.8	53.2	48.3	591.5	599.1
Art	Lr	Control : After	1.55	0.001	-178.4	44.9	40.5	364.4	371.1
		Impact : After	1.739	< 0.001	-336.8	75.4	67.3	681.4	690.2
		Control : Before	0.598	0.116	-49.4	13.7	21.4	104.4	107.6
	Richness	Impact : Before	< 0.001	0.47	-115.2	35.7	50.0	234.4	238.2
	IXIUIIIC88	Control : After	< 0.001	0.467	-105.7	41.5	42.0	215.3	218.9
		Impact : After	< 0.001	0.708	-182.3	69.3	69.0	368.7	373.2

S8 Table. GAM Model Summary Statistics for Seasonal mBACI and Hurricane Arthur

All GAM models were run for the seasonal time frame against days since storm as the independent variable and built using a cubic regression spline with penalized shrinkage, a maximum of three degrees of freedoms, negative binomial error distribution with log link function, and restricted maximum likelihood smoothing parameter. edf = effective degrees of freedom, logLik = log likelihood, Dev = deviance, df.r = residual degrees of freedom, AIC = Akaike information criterion BIC = Bayesian information criterion.

Zhang et al. Seagrass community response to tropical cyclones

S3 Figure. Individual mBACI group PCoA ordinations of seasonal communities

This figure demonstrates the potential difference/lack of difference in seasonal community dispersion within each mBACI treatment using Principle Coordinates Analysis. Convex hulls are drawn in dashed lines through the outer-must points.

Zhang et al. Seagrass community response to tropical cyclones

S4 Figure. Short-term and seasonal fish catches and species richness across time periods and year type for Hurricane Arthur (July 2014) compared to 2015 (control year). Only means are presented for short-term comparisons (column 1); whereas means, trend, and difference between control and impact trends (columns 2-4, respectively) are depicted for seasonal comparisons. Catch per unit effort (CPUE) is presented in row 1; CPUE calculated sans *L. rhomboides* is presented in row 2, and species richness is row 3. P-values indicate the significance of the interactive ANOVA term. Error bars represent standard error. Smoothed lines represent generalized additive models ($y \sim s(Days to Storm)$, k = 3) for both hurricane and storm-free years based on a cubic regression spline with shrinkage and 95% confidence intervals.

S5 Figure. Seasonal fish catch per unit effort (A), catch per unit effort sans *Lagodon rhomboides* (B) and species richness (C) across time periods (before vs. after) and year type (control vs. impact) for Hurricane Matthew (October 2016) compared to 2017 (control year). Only means are presented for seasonal comparisons (column 1), as the closest trawl samples prior to hurricane Matthew occurred outside of the short-term window and all trawls that occurred after the storm were conducted on the same day. P-values indicate the significance of the interactive ANOVA term. Error bars represent standard error.