

Figure S1. Type 2 immune-deficient strains have an increased *Demodex* burden and expansion of skin ILC2s with extrusion into the circulation, related to Figure 1.

(A) Gating strategy for hair follicle stem cells (HFSCs). (B) Number of HFSCs by flow cytometry. (C) Percent EdU⁺ HFSCs by flow cytometry. (D) Quantification of visualized hair follicles per 1mm of skin. (E) Gating strategy for skin cell populations using various mouse strains. (F) Flow cytometry of skin ILC2s (CD45⁺Lin⁻Thy1⁺IL-7R⁺GATA3⁺) in 8-12 weeks old WT, *Il4ra^{-/-}*, and $II4^{-/-}$, $II13^{-/-}$ mice at homeostasis. (G) Flow cytometry of skin T regulatory (Treg) cells $((CD3^+CD4^+FoxP3^+))$ in 8-12-week-old WT, $Il4ra^{-/-}$, and $Il4^{-/-}$, $Il13^{-/-}$ mice at homeostasis. (H) Flow cytometry plot for blood ILC2s (gated CD45⁺Lin⁻Thy1⁺GATA3⁺) in WT or *Demodex*infested $Il4ra^{-/-}$ mice. Expression of ST2 (IL-33R) and IL-18R in gated ILC2s as indicated. (I) Frequency of blood ILC2s in WT or Demodex-infested $Il4ra^{-/-}$ mice. (J) Serum IL-4. IL-5. IL-13. IL-17A, IL-22 in WT and Demodex-infested $ll4ra^{-/-}$ and $ll4^{-/-}$, $ll13^{-/-}$ mice. (K) QPCR analyses of *Il13* and *Il22* expression in sorted skin ILC2s from *Demode*-infested WT and *Il4ra*^{-/-} mice. (L) IL-13 and IL-22 in supernatant of sorted skin ILC2s from *Demodex*-infested WT and *Il4ra^{-/-}* mice cultured with IL-7+TSLP (Control); IL-7+TSLP+IL-18+IL-133 (IL-18+IL-33) or IL-7+TSLP+PMA/Ionomycin (PMA/Iono). Data presented as mean \pm s.e.m. Data are from one representative experiment (B, K, L) of at least two independent experiments, or pooled from multiple independent experiments (C, D, I, J). * P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 0.0001 by two-tailed Student's t test.

EdU ILC2(IL-5) DAPI

Figure S2. Mice with intact type 2 immunity do not show the altered skin phenotype associated with *Demodex* infection, related to Figure 3.

(A) Representative pictures of $Il4ra^{+/+}$ and $Il4ra^{-/-}$ F2 mice generated from F1 intercross of $Il4ra^{+/-}$ parent mice. The F1 $Il4ra^{+/-}$ mice were derived by crossing unaffected WT x affected $Il4ra^{-/-}$ grandparents. (**B**) Flow cytometry plots of ILC2s (top, gated CD45⁺Lin⁻CD3⁻CD4⁻Thy1⁺IL7R⁺) or CD4 (bottom, gated CD45⁺CD3⁺CD4⁺) from F2 *Il4ra*^{+/+}, and *Il4ra*^{-/-} mice generated from F1 $Il4ra^{+/-}$ intercross or age matched WT and affected $Il4ra^{-/-}$ experimental groups. (C to E) Quantification of ILC2 (C), CD4 (D), and frequency of Treg cells (E). In the $Il4ra^{+/+}$, and $Il4ra^{+/-}$ experimental group, closed circles represent WT mice and open circles represent heterozygous mice. (F) Representative pictures of $Il4ra^{+/-}$, $Il5^{Red5}$ and $Il4ra^{-/-}$, $Il5^{Red5}$ littermates generated from visually unaffected $Il4ra^{+/-}$ x affected $Il4ra^{-/-}$ mice. The F1 $Il4ra^{+/-}$ mice were derived by crossing unaffected WT x affected $ll4ra^{-/-}$ parents. (G) PCR for *Demodex* chitinase synthase gene (CHS) or genomic DNA for the keratin 5 gene (Krt5) from back skin. Quantification of relative Demodex infestation for PCR is shown below. (H) Flow cytometry plots of Red5⁺ ILC2s (pre-gated on Live CD45⁺Lin⁻Thy1⁺) from littermate $Il4ra^{+/-}$ and $Il4ra^{-/-}$ mice. (I to L) Quantification of Red5⁺ ILC2s (I), total CD4 (J), frequency of IL-5⁺(Red5⁺) CD4 T cells in skin (K) and frequency of Treg cells (CD3⁺CD4⁺FoxP3⁺) in skin (L). (M) Serum IL-13 and IL-22 from littermate *Il4ra^{+/-}* and *Il4ra^{-/-}* mice. (N) Skin sections stained with H&E. Scale bar, 100 µm. (O) Back skin sections were stained with EdU (green), anti-tdTomato (red, highlighting IL-5⁺ cells), and DAPI (blue). Scale bar, 100 μ m. Data presented as mean \pm s.e.m and representative of two independent experiments. Statistical significance shown by * P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 0.0001 by one-way ANOVA (C-E) or two-tailed Student's t test (H-L). ns, not significant.

Figure S3. 16S ribosomal RNA gene sequencing analysis of uninfected and *Demodex*-infected mice, related to Figure 3.

(A) Compositional plots of the top 10 major taxa present in each sample of the co-housing experiment shown in Figure 3. Bacterial lineages are color coded and presented as stacked bar graphs. (B) PCoA plot based on the Bray-Curtis dissimilarity assessed using the microbiome data.

All samples were used to make a common plot. Samples were further classified by gross skin phenotype (uninfected, open circles; *Demodex*-infected (Demodex+), closed circles). The color of the symbol indicates the sampling site. (**C**) Ratio of obligate to facultative anaerobes abundance in uninfected and Demodex+ mice. (**D**) 8 week old, *Demodex*-infested $Il4ra^{-/-}$ littermates were separated and treated with broad spectrum antibiotics for 1 month in the drinking water or topically with Moxidectin and Imidacloprid weekly for 8 weeks.

Background EdU DAPI

Figure S4. Targeted therapy prevents the phenotype in *Demodex*-infested type 2 immunodeficient mice, related to Figure 3.

(A) *Demodex*-infested $Il4ra^{-/-}$ littermates that were separated and treated with Ethanol (vehicle control) or Moxidectin and Imidacloprid mixture (Moxi/Imi) once a week for 8 weeks. (B) PCR for Demodex chitin synthase gene (CHS, top) or genomic DNA for the Keratin gene (Krt5, bottom) in Ethanol- or Moxi/Imi-treated mice. Each lane represents an individual mouse. (C) Quantification of relative band intensity (CHS/Krt5) for the PCR in (B). (D) Sections from back skin of Ethanol- or Moxi/Imi-treated mice were stained with H&E. Scale bar, 100 µm. (E–G) Quantification of skin ILC2 (D), CD4 (E), and frequencies of Treg cells in skin (F) from control WT, or unaffected $Il4ra^{-/-}$ or from *Demodex*-infested $Il4ra^{-/-}$ littermates that were treated with Ethanol or Moxi/Imi. (H) Representative pictures of *II4^{-/-}, II13^{-/-}* mice. Littermates of known *Demodex* infested *II4^{-/-}, II13^{-/-}* were separated at 3-6 weeks of age and treated with topical Ethanol or Moxi/Imi once a week for 8 weeks. (I) PCR for *Demodex* chitinase synthase gene (CHS) or genomic DNA for the keratin 5 gene (Krt5) from back skin. (J) Quantification of relative band intensity (CHS/Krt5) for the PCR in (I). (K) Sections from back skin of $I14^{-/-}$, $I113^{-/-}$ Ethanol- or Moxi/Imi-treated mice were stained with H&E. Scale bar, 100 µm. (L–N) Quantification of ILC2s (J), CD4s (K), and frequency of Treg cells (J) in $II4^{-/-}$, $II13^{-/-}$ mice treated with Ethanol or Moxi/Imi for 8 weeks. (O) Serum IL-22. (P) Sections from back skin of $II4^{-/-}$, $II13^{-/-}$ Ethanol- or Moxi/Imi-treated mice were stained for EdU (red) and DAPI (blue). Scale bar, 100 μ m. Data presented as mean \pm s.e.m and pooled from two independent experiments. Statistical significance shown by * P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 0.0001 by one-way ANOVA (C, E-G) or two-tailed Student's t test (J-O). ns. not significant.

Figure S5. Susceptibility to *Demodex* infection is dependent on IL-13Ra1 but not IL-4 deficiency, related to Figure 4.

(A) Representative uninfected $Il4^{-/-}$, $Il4^{-/-}$ co-housed with *Demodex*-infested $Il4ra^{-/-}$ mice for 8 weeks then separated for 8 weeks, or co-housed $Il4^{-/-}$ mice with *Demodex*-infested $Il4ra^{-/-}$ for 12 weeks. (B) Skin sections, as in (A) stained for H&E. Scale bar, 100 µm.

(C) PCR for *Demodex* chitinase synthase gene (CHS, top) or genomic DNA for the keratin 5 gene (Krt5, bottom) from back skin. (**D**) Quantification of relative *Demodex* infestation by PCR in (C). (**E** to **G**) Number of skin ILC2s (E), CD4 (F), and frequency of Treg cells (G) (as percentage of total CD4) in back skin. (**H**) Representative co-housed *Demodex*-infested *Il4ra^{-/-}*, *Il13ra1^{+/-}* and *Il13ra1^{-/-}* mice. (**I**) PCR for *Demodex* chitinase synthase gene (CHS, top) or genomic DNA for the keratin 5 gene (Krt5, bottom) from back skin and quantification of relative *Demodex* infestation (right). (**J**) Skin sections stained for H&E from *Demodex*-infested *Il13ra1^{+/-}* mice. (**L**) Skin sections stained for H&E from *Demodex*-infesting Il13ra1^{-/-} mice. (**L**) Skin sections stained for H&E from mice as in (K). Scale bar, 100 µm. (**M**) Quantification of proportion of HF visually infested by *Demodex* mites. (**N**) Number of skin ILC2s, CD4, frequency of Treg cells (as percentage of total CD4), and CD8 in back skin. Data presented as mean ± s.e.m and representative of two independent experiments. Statistical significance shown by * P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 0.001 by one-way ANOVA. ns, not significant.

Figure S6. ILC-sufficient mice are protected from high-burden *Demodex* infection, related to Figure 5.

(A) Representative images of $Rag1^{-/-}$, $II5^{Red5/Red5}$ littermates that were maintained by themselves (Control) or Co-Housed with *Demodex*-infested $Il4ra^{-/-}$ mice (Co-Housed) for 8 weeks. (B) PCR for Demodex chitin synthase gene (CHS, top) or genomic DNA for the keratin 5 gene (Krt5. bottom) from back skin and quantification of relative *Demodex* infestation (right). (C) Skin sections from Rag1^{-/-}, II5^{Red5/Red5} control mice and Demodex-infected Il4ra^{-/-} mice co-housed with Rag1^{-/-} $,II5^{Red5/Red5}$ mice were stained with H&E. (**D**) Skin sections as in (C), stained for chitin (green, eGFP-CBP) and DAPI (blue). Arrowheads highlight *Demodex* mites. All scale bars, 100 µm. (E) Flow cytometry plots of Red5⁺ ILC2s (pre-gated on Live CD45⁺Lin⁻Thy1⁺) from Rag1^{-/-}, Il5^{Red5/Red5} (control) or Rag1^{-/-}, II5^{Red5/Red5} that were co-housed with Demodex-infested Il4ra^{-/-} mice (Co-Housed). (F) Quantification of the number of Red5⁺ ILC2s (left), and mean fluorescence intensity (MFI) of Red5⁺ ILC2s (right) in skin. (G) Flow cytometry plots showing ST2 (IL-33R) and IL-18R expression by skin ILC2s (pre-gated on Live CD45⁺Lin⁻Thy1⁺Red5⁺) from Rag1^{-/-}, 115^{Red5/Red5} (control) or $Rag1^{-/-}$, $II5^{Red5/Red5}$ that were co-housed with $Il4ra^{-/-}$ mice (Co-Housed). (H) Quantification of the total of ST2⁺ (left) or IL-18R⁺ (right) Red5⁺ ILC2s in full thickness back skin. Data presented as mean \pm s.e.m and pooled from 2 independent cohorts. Statistical significance shown by *** P < 0.001 by two-tailed Student's t test. ns, not significant.

60 40 Count

80

Figure S7. scRNA-seq of *Demodex*-infected mice reveal a divergent tissue response in WT and type 2 immunodeficient mice, related to Figure 6.

(A) UMAP projection of the CD45⁻ cells from skin of WT control and *Demodex*-infected mice. (B) Bar plot showing the percentage of cells in (A) for each cluster by experimental condition. S.G., sebaceous glands. (C) Gene Ontology (GO) analyses for biological processes upregulated across all CD45⁻ cells in *Demodex*-infected WT mice vs. WT control. (D) Dot plot of representative genes associated with GO term related to tensile strength. (E) Gene Ontology (GO) analyses for biological processes upregulated across all CD45⁻ cells in *Demodex*-infected *Il4ra^{-/-}* (top) and *Il4^{-/-},Il13^{-/-}* (bottom) *Demodex*-infected mice vs. WT (non-infected) control. (F) Dot plot of representative genes associated with antigen presentation and anti-microbial response. (G) Density plot showing expression of *Il4ra*, *Il13ra1* or joint *Il4ra* and *Il13ra1* by CD45⁻ cells (UMAP as in A). (H–J) GO biological processes upregulated in stem cells in WT (H), IL-4Ra^{-/-} (I), or *Il4^{-/-},Il13^{-/-}* (J) *Demodex*infested skin (I) vs. WT (non-infected) control.

Table S1. Identification of *Demodex musculi*, related to Figure 1.

Formatted Alignments

Alignments of putative *Demodex spp.* 18S rRNA gene amplicon sequences obtained from 3 affected mice (one representative for each sample) with the corresponding sequences of *Demodex musculi* (GenBank #JF834894), *Demodex folliculorum* (GenBank #KY922187), *Demodex brevis* (GenBank JN885466.1), and *Demodex canis* (GenBank JN885468.1). Single nucleotide sequence which differs from the *Demodex musculi* reference is highlighted and the consensus sequence is also shown.

Company	Catalog Number	Antibody Name	Clone	Dilution
BioLegend	115549	Brilliant Violet 421 [™] anti-mouse CD19 Antibody, 50 µg	6D5	1:300
BioLegend	116234	Brilliant Violet 421™ anti-mouse TER-119/Erythroid Cells Antibody, 50 µg	TER-119	1:300
Biolegend	108445	Brilliant Violet 421™ anti-mouse Ly-6G/Ly-6C (Gr-1) Antibody, 50 µg	RB6-8C5	1:300
Biolegend	101236	Brilliant Violet 421™ anti-mouse/human CD11b Antibody, 500ul	M1/70	1:300
Biolegend	101259	Brilliant Violet 650 [™] anti-mouse/human CD11b Antibody	M1/70	1:300
Biolegend	117322	Pacific Blue™ anti-mouse CD11c Antibody, 100 µg	N418	1:300
BioLegend	108918	Pacific Blue [™] anti-mouse CD49b (pan-NK cells) Antibody, 100 µg	DX5	1:300
BioLegend	137612	Brilliant Violet 421™ anti-mouse CD335 (NKp46) Antibody, 50 µg	29A1.4	1:300
BioLegend	108741	Brilliant Violet 421™ anti-mouse NK-1.1 Antibody, 50 µg	PK136	1:300
BioLegend	118120	Brilliant Violet 421 [™] anti-mouse TCR γ/δ Antibody, 50 µg	GL3	1:500
Biolegend	134314	Pacific Blue [™] anti-mouse FcεRIα Antibody, 100 μg	MAR-1	1:300
BioLegend	100220	PE/Cy7 anti-mouse CD3 Antibody, 100 µg	17A2	1:200
BioLegend	123124	Pacific Blue [™] anti-mouse F4/80 Antibody, 100 µg	BM8	1:300
Biolegend	103147	Brilliant Violet 711 [™] anti-mouse CD45 Antibody, 50 µg	30-F11	1:300
BD Biosciences	564279	BUV395 Rat Anti-Mouse CD45, 50 µg	30-F11	1:300
BioLegend	103116	APC/Cyanine7 anti-mouse CD45 Antibody, 100 µg	30-F11	1:400
BioLegend	105331	Brilliant Violet 785™ anti-mouse CD90.2 Antibody, 50 µg	30-H12	1:1000
Biolegend	105343	Brilliant Violet 605™ anti-mouse CD90.2 Antibody	30-H12	1:1000
BioLegend	100550	Brilliant Violet 711™ anti-mouse CD4 Antibody, 500 µl	RM4-5	1:200
BioLegend	100725	Pacific Blue [™] anti-mouse CD8a Antibody, 100 µg	53-6.7	1:200
BioLegend	100750	Brilliant Violet 785™ anti-mouse CD8a Antibody	53-6.7	1:200
BioLegend	100642	Pacific Blue [™] anti-mouse CD5 Antibody	53-7.3	1:300
BioLegend	108133	Brilliant Violet 605™ anti-mouse Ly-6A/E (Sca-1) Antibody, 125 µL	D7	1:300
BioLegend	107643	Brilliant Violet 711 [™] anti-mouse I-A/I-E Antibody	M5/114.15.2	1:400
BioLegend	118220	PerCP/Cyanine5.5 anti-mouse CD326 (Ep-CAM) Antibody	G8.8	1:300
BioLegend	313606	FITC anti-human/mouse CD49f Antibody	GoH3	1:300
BioLegend	313622	PE/Cyanine7 anti-human/mouse CD49f Antibody	GoH3	1:300
BD Biosciences	560230	Alexa Fluor® 647 Rat anti-Mouse CD34	RAM34	1:200
Invitrogen	47-1271-82	CD127 (IL-7R) Monoclonal Antibody (A7R34), APC-eFluor 780	A7R34	1:100
Invitrogen	50-9966-42	Gata-3 Monoclonal Antibody (TWAJ), eFluor 660, eBioscience™, 100 tests	TWAJ	1:25
Biolegend	300514	APC anti-human CD4 Antibody	RPA-T4	1:20
Invitrogen	11-5773-82	FOXP3 Monoclonal Antibody (FJK-16s), eBioscience™	FJK-16s	1:100
BD Biosciences	745257	BV605 Rat Anti-Mouse IL-33R (ST2), 50 μg	U29-93	1:200
Invitrogen	46-5183-82	CD218a (IL-18Ka) Monocional Antibody (P31UNYA), PerCP-eFluor /10, eBioscience™, 100 µg	P3TUNYA	1:300
TakaraBio	632496	Living Colors® DsRed Polyclonal Antibody (100 µl)	Polyclonal, Lot 1904182	1:500
Invitrogen	11-5698-82	Ki-67 Monoclonal Antibody (SolA15), FITC, eBioscience™	SolA15	1:100
BD Biosciences	612131	FITC Mouse Anti- E-Cadherin	Clone 36	1:400
Invitrogen	A-21428	Goat anti-Kabbit IgG (H+L) Cross-Adsorbed Secondary Antibody, Alexa Fluor 555	Polyclonal, Lot 2011559	1:1000

 Table S2. List of antibodies used for flow cytometry and immunofluorescence, related to STAR Methods.

Channel	Metal	Antigen	Conc. Stock	Clone	Vendor	
			(µg/ml)	Cione		
113	In	Ter119	0.4	TER119	BioLegend	
115	In	CD45	0.5	30-F11	BioLegend	
139	La	pSTAT3	3	49	BD Biosciences	
140	Ce	CD326	0.5	G8.8	BioLegend	
141	Pr	CD11b	0.5	M1/70	BioLegend	
142	Nd	pH-H3	0.5	HTA28	Abcam	
143	Nd	CD11c	0.2	HL3	BD Biosciences	
144	Nd	pMAPKAPK2	1.5	27B7	Cell Signaling Technology	
145	Nd	pCREB	4	87G3	Cell Signaling Technology	
146	Nd	pPLCg2	1	K86-689.37	BD Biosciences	
147	Sm	pSTAT1	2.5	4a	BD Biosciences	
148	Nd	Мус	0.2	9E10	Fluidigm	
149	Sm	pSTAT5	3	47	BD Biosciences	
150	Nd	pS6	7	2F9	Cell Signaling Technology	
151	Eu	Ly6C	0.5	HK1.4	BioLegend	
152	Sm	pErk1/2	10	D13.14.4E	Cell Signaling Technology	
153	Eu	CyclinB1-153	0.2	GNS-1	Fluidigm	
154	Sm	p-p38	3	36/p38	BD Biosciences	
155	Gd	CD8	0.2	53-6.7	BioLegend	
156	Gd	CD4	0.5	RM4-5	Biolegend	
157	Gd	CD3	0.5	17A2	BD Biosciences	
158	Gd	Ly6G	0.5	1A8	BioLegend	
159	Tb	p4EBP1	1	236B4	Cell Signaling Technology	
160	Gd	pSyk/ZAP70	1.25	17a	BD Biosciences	
161	Dy	pTBK1	6	D52C2	Cell Signaling Technology	
162	Dy	TCRgd	0.853	GL3	BioLegend	
163	Dy	IkBa	3	L35A5	Cell Signaling Technology	
164	Dy	AFP-1	0.2	SPM334	Novus	
165	Но	pSTAT6	3	18	BD Biosciences	
166	Er	pRB	0.2	J112906	Fluidigm	
167	Er	Foxp3	5	NRRF-30	eBioscience	
168	Er	NK1.1	0.5	PK136	BioLegend	
169	Tm	Ki67	2	SolA15	eBioscience	
170	Er	pSTAT4	3	38	BD Biosciences	
171	Yb	CD62L	5	MEL-14	BioLegend	
172	Yb	SiglecF	0.5	E50-2440	BD Biosciences	
173	Yb	CD19	0.5	6D5	BioLegend	
174	Yb	CD34	0.2	RAM34	BD Biosciences	
175	Lu	CD44	0.5	IM7	BD Biosciences	
209	Bi	MHC II	0.5	M5/114.15.2	BioLegend	

Table S3. List of antibodies used for the CyTOF experiment, related to STAR Methods.

Sample	Diagnosis	Age	Sex	Location	Reason for tissue
1	Rhinophyma	70	М	nose	Rhinophyma excision
2	Rhinophyma	47	М	nose	Rhinophyma excision
3	Rhinophyma	68	М	nose	Rhinophyma excision
4	Rhinophyma	62	М	nose	Rhinophyma excision
5	Rhinophyma	62	М	nose	Rhinophyma excision
6	Rhinophyma	63	Μ	nose	Rhinophyma excision
7	Rhinophyma	63	Μ	nose	Rhinophyma excision
8	Rhinophyma	59	Μ	nose	Rhinophyma excision
9	Normal	78	Μ	nose	BCC excision
10	Normal	65	F	nose	BCC excision
11	Normal	66	F	nose	BCC excision
12	Normal	65	М	nose	MIS excision
13	Normal	59	F	nose	MIS excision
14	Normal	65	F	nose	MIS excision
15	Normal	57	F	nose	Nevus excision
16	Normal	75	М	nose	BCC excision

Table S4. Patient sample characteristics, related to STAR Methods.

Note: Normal skin was obtained from the tips of elliptical excisions. Cases were selected where normal skin in the tips, well away from the reason for the excision, was available.