## **Supplementary Material**

## Crosslinking of CD20 and CD38 by Drug-Free Macromolecular Therapeutics Enhances B Cell Apoptosis

M. Tommy Gambles<sup>1,2</sup>, Jiahui Li<sup>1,2</sup>, D. Christopher Radford<sup>1,4</sup>, Douglas Sborov<sup>3</sup>, Paul Shami<sup>3</sup>, Jiyuan Yang<sup>1,2\*</sup>, Jindřich Kopeček<sup>1,2,4\*</sup>

<sup>1</sup> Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA
<sup>2</sup> Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA
<sup>3</sup> Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
<sup>4</sup> Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah 84112, USA
\* Correspondence: jindrich.kopecek@utah.edu; jiyuan.yang@utah.edu

## **Table of Contents**

Figure S1. Fab'-MORF1 size exclusion chromatograms.

Figure S2. UV-Vis spectroscopy hybridization of nanoconjugates.

Figure S3. Size exclusion chromatograms of hybridized nanoconjugates.

Figure S4. CD20 and CD38 expression on Raji cells.

Figure S5. Single-target DFMT median effect plots.

**Figure S6.** Fab'<sub>DARA</sub> + Fab'<sub>RTX</sub> DFMT combination index experimental data.

**Figure S7.** Fab'<sub>DARA</sub> + Fab'<sub>OBN</sub> DFMT combination index experimental data.

**Figure S8.** Fab'<sub>ISA</sub> + Fab'<sub>RTX</sub> DFMT combination index experimental data.

**Figure S9.** Fab'<sub>ISA</sub> + Fab'<sub>OBN</sub> DFMT combination index experimental data.

Figure S10. Dual-target DFMT caspase 3 activation flow cytometry fluorescence histograms.

Figure S11. Dual-target DFMT Bax/Bcl-2 protein expression ratio.

Figure S12. Dual-target DFMT lysosomal enlargement inhibition using cathepsin B inhibitor.

Figure S13. Saline-treated mice weights and bone marrow immunostains.

Figure S14. Fab'<sub>RTX</sub> DFMT single dose mice weights and bone marrow immunostains.

Figure S15. Fab'<sub>RTX</sub> DFMT triple dose mice weights and bone marrow immunostains.

Figure S16. Fab'<sub>DARA</sub> DFMT single dose mice weights and bone marrow immunostains.

Figure S17. Fab'<sub>RTX</sub> DFMT triple dose mice weights and bone marrow immunostains.

Figure S18. Dual-target DFMT single dose mice weights and bone marrow immunostains.

Figure S19. Dual-target DFMT single dose mice weights and bone marrow immunostains.



Figure S1. Fab'-MORF1 size exclusion chromatograms of intermediates and final products.



**Figure S2.** UV-Vis spectrophotometry observations of morpholino hybridization between Fab'-MORF1 nanoconjugates and HSA-(MORF2)<sub>10</sub>. Absorbance at  $\lambda$  = 260 nm was monitored for base pair complementation with varying molar equivalences of MORF1:MORF2 in a PBS pH 7.4 solution  $\varepsilon_{MORF1}$  = 278,000 M<sup>-1</sup>cm<sup>-1</sup>;  $\varepsilon_{MORF2}$  = 252,120 M<sup>-1</sup>cm<sup>-1</sup>. Hybridization is indicated by a decrease in absorbance at this wavelength.



**Figure S3**. Fab'-MORF1 and HSA-(MORF2)<sub>10</sub> hybridization determined by SEC with a Superdex 200 10/300 GL column, PBS (pH 7.4) as eluant at 0.4 mL/min flow rate. A 1:1 MORF1:MORF2 molar equivalent solution of Fab'-MORF1 and HSA-(MORF2)<sub>10</sub> was premixed in PBS and allowed to hybridize for 10 min. Hybridized nanoconjugate (solid) was compared to Fab'-MORF1 (dashed) and HSA-(MORF2)<sub>10</sub> (dotted).



**Figure S4.** Fluorescence quantification of Rituximab mAb to Daratumumab mAb binding on Raji cells indicating about 2-fold higher CD20 expression than CD38 expression. Binding was measured by treating cells with mAb for 1 h at 4 °C followed by PBS wash followed by 1 h exposure to Fluor488 goat anti-human secondary antibody. Fluorescence of secondary antibody binding was quantified using flow cytometry as a mean fluorescent intensity and normalized to unstained cells. Higher CD20 expression would suggest better response to anti-CD20 DFMT systems on this cell type.



**Figure S5.** Individual Fab' DFMT Median-Effect Plots, correlation data, slope and  $EC_{50}$  values reported as  $D_m$ , or x-intercept. Two replicates per Fab' DFMT system were performed.



Figure S6. Fab'<sub>DARA</sub> + Fab'<sub>RTX</sub> DFMT combination index experimental data.



**Figure S7.** Fab'<sub>DARA</sub> + Fab'<sub>OBN</sub> DFMT combination index experimental data.



Figure S8. Fab'<sub>ISA</sub> + Fab'<sub>RTX</sub> DFMT combination index experimental data.



Figure S9. Fab'<sub>ISA</sub> + Fab'<sub>OBN</sub> DFMT combination index experimental data.



**Figure S10.** Caspase 3 activation experiment histograms from flow cytometry. Corresponds with bar graph data presented in Figure 5C.



**Figure S11.** Bcl-2 and Bax protein expression presented as a ratio of Bax / Bcl-2 of Raji cells treated with various Fab' DFMT systems. Bcl-2 and Bax protein expression was quantified using immunostaining of the two proteins and fluorescence quantified using flow cytometry. Higher Bax-to-Bcl-2 ratio indicates a proapoptotic state in the treated cells. \*\*\* *p*<0.001, \*\* *p*<0.01, \**p*<0.05, n.s. not significant by One-Way ANOVA and Tukey test.



**Figure S12.** Lysosomal enlargement inhibition of dual-target DFMT treated Raji cells with or without co-treatment with E-64 cysteine proteinase inhibitor. Corresponds to histograms presented in main text Figure 7D. \*\*\* p<0.001, \*p<0.05 by One-Way ANOVA and Tukey test.



**Figure S13.** In vivo dual-target DFMT. Saline-treated mouse cohort. Body weights and bone marrow immunostaining for human  $\alpha$ -CD10 and human  $\alpha$ -CD19 antibodies.



**Figure S14.** In vivo dual-target DFMT. Fab'<sub>RTX</sub> DFMT single dose mouse cohort. Body weights and bone marrow immunostaining with human  $\alpha$ -CD10 and human  $\alpha$ -CD19 antibodies. Long-term surviving mice indicated with green box.



**Figure S15.** In vivo dual-target DFMT. Fab'<sub>RTX</sub> DFMT triple dose mouse cohort. Body weights and bone marrow immunostaining for human  $\alpha$ -CD10 and human  $\alpha$ -CD19 antibodies. Long-term surviving mice indicated with green box.



**Figure S16.** In vivo dual-target DFMT. Fab'<sub>DARA</sub> DFMT single dose mouse cohort. Body weights and bone marrow immunostaining for human  $\alpha$ -CD10 and human  $\alpha$ -CD19 antibodies.



**Figure S17.** In vivo dual-target DFMT. Fab'<sub>DARA</sub> DFMT triple dose mouse cohort. Body weights and bone marrow immunostaining for human α-CD10 and human α-CD19 antibodies. Long-term surviving mice indicated with green boxes.



**Figure S18.** In vivo dual-target DFMT. Dual-target DFMT single dose mouse cohort. Body weights and bone marrow immunostaining for human  $\alpha$ -CD10 and human  $\alpha$ -CD19 antibodies. Long-term surviving mice indicated with green box.



**Figure S19.** In vivo dual-target DFMT. Dual-target DFMT triple dose mouse cohort. Body weights and bone marrow immunostaining for human  $\alpha$ -CD10 and human  $\alpha$ -CD19 antibodies. Long-term surviving mice indicated with green box.