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Supplementary Table 1. Average relative expression of key genes after 8, 14, and 21 days in 
primary OB culture (c.f. Figure 6). Among over 50 examined genes, the dispersion of 3 replicates for 
each time point varied from 3 to 20%. We therefore estimated the measurement error at the upper limit of 
this variation as ~20%. Most genes listed in this table exhibited much larger than 20% change between 8 
and 14 days in Het, WT, or both cultures. In contrast, very few differences between the expression at 14 
and 21 days that exceeded 20% could be attributed to random outliers within normal distribution. 
Therefore, we assumed the cells to be in a steady state of collagen matrix synthesis between 14 and 21 
days and pooled the corresponding expression data together.   

Gene Symbol 8 d, Het 14 d, Het 21 d, Het 8 d, WT 14 d, WT 21 d, WT 
Asns 0.11 0.39 0.29 0.09 0.21 0.21 
Atf4 0.28 0.76 0.68 0.30 0.57 0.63 
Atf5 0.15 0.46 0.48 0.11 0.29 0.34 
Atf6 0.082 0.14 0.14 0.09 0.11 0.13 
Avil 0.03 0.20 0.12 0.04 0.02 0.01 

Bglap 0.001 0.20 0.22 0.003 0.50 0.94 
Clpp 0.04 0.05 0.04 0.04 0.04 0.04 

Col1a1 34 106 123 43 156 159 
Creb3l1 0.17 0.71 0.73 0.22 0.65 0.61 
Cyb5r1 0.09 0.20 0.19 0.07 0.07 0.07 
Ddit3 0.02 0.10 0.09 0.02 0.04 0.04 

Dnaja3 0.08 0.12 0.11 0.09 0.11 0.10 
Eif3c 0.41 0.77 0.66 0.40 0.49 0.50 

Eif4ebp1 0.09 0.25 0.20 0.07 0.14 0.13 
Gpt2 0.04 0.13 0.10 0.04 0.07 0.07 

Hsp90b1 2.1 2.4 1.8 2.2 2.2 1.8 
Hspa5 1.5 1.8 1.4 1.7 1.7 1.3 
Hspa9 0.41 0.80 0.64 0.41 0.43 0.38 
Hspd1 0.47 0.46 0.34 0.51 0.38 0.29 
Hspe1 0.20 0.22 0.16 0.20 0.16 0.13 
Lonp1 0.09 0.16 0.14 0.10 0.12 0.12 
Lrp5 0.08 0.16 0.16 0.07 0.22 0.29 

Nupr1 0.05 0.93 1.1 0.05 0.51 0.77 
Rcc2 0.24 0.29 0.26 0.24 0.18 0.14 
Shmt2 0.15 0.31 0.26 0.15 0.24 0.21 
Trap1 0.14 0.15 0.13 0.14 0.13 0.12 
Trib3 0.008 0.21 0.19 0.005 0.02 0.03 
Xbp1 0.20 0.38 0.34 0.24 0.39 0.37 
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Supplementary Figure 1. Identification of ISR activation pathway(s) in G610C mouse OBs; schematic 
study layout. 1. Candidates are identified by scRNASeq as ISR-related pathways upregulated by 
increased synthesis of type I procollagen in G610C OBs isolated from mouse femurs and parietal bones. 
2. Potential effects (artifacts) of cell isolation for scRNASeq are eliminated by validating the findings 
with scRNASeq-like sequencing of mRNA from thousands of regularly spaced 55 µm spots in fresh 
frozen tibia sections (srRNASeq). 3. Upregulation of key marker genes is further validated with 
subcellular resolution by mRNA-FISH in fixed femur and tibia sections. 4. The corresponding key 
proteins are analyzed by Western blotting in primary OB cultures after validating the cell culture 
approach by comparing bulk RNASeq of cultured OBs with sc- and sr-RNASeq.   
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Supplementary Figure 2. OB identification in scRNASeq data. A. Localization of OBs (defined as 
shown in Fig. 1) on tSNE and UMAP plots. Two independent E18.5 cell preparations (1 WT and 1 Hom 
in experiment 1; 3 WT, 3 Het, and 2 Hom in experiment 2) and one of two P5 cell preparations (2 WT 
and 2 Het) are shown. PCA analysis was performed with default settings within Cell Ranger program 
from the assay manufacturer (10X Genomics). OBs were found to form multiple tight clusters plus a 
scattered pattern of isolated cells. Similar patterns were observed when OBs were selected based on 
coexpression of Col1a1/Runx2/Sp7/Ibsp, expression of Bglap/Bglap2, or expression of Ifitm5. OB 
clustering was not improved by PCA performed with Seurat version 4.[1] Multiple cells not expressing key 
OB marker genes were found within tight OB clusters. B. Expression of fibroblast (Clec3b), endothelial 
(Pecam1), chondrocyte (Acan), smooth muscle (Acta2), macrophage (Cd68), and neutrophil/macrophage 
(Cd33) marker genes in OBs and the corresponding cell subpopulations from E18.5 (top row) and P5 
(bottom row) cell preparations. The number of cells in each subpopulation is shown in parentheses. The 
OB selection thresholds for Col1a1, Runx2, Sp7, and Ibsp (Fig. 1) were tuned to simultaneously 
maximize the separation between the cells and the number of OBs at each differentiation stage. 
Importantly, some expression of Acan, Acta2, Clec3b, Pecam1, and to a much smaller extent Cd33/Cd68 
in OBs may be expected (particularly at early differentiation stages).  
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Supplementary Figure 3. OB malfunction. The plots show correlations between expression of selected 
genes and Col1a1 transcription in E18.5 and P5 OBs. They represent 20-point running average for cells 
sorted in the order of increasing Col1a1 expression. The vertical dotted lines separate subpopulations of 
early (eOB), differentiating (dOB), and mature (mOB) osteoblasts based on Col1a1 transcription as 
described in Fig. 2. Small black dots on top of the plots mark significantly different gene expression (p < 
0.01, **) in Hom vs. WT (E18.5) and Het vs. WT (P5). The significance was estimated by the Wilcoxon 
test for each pair of running average windows centered at the same or closely matching Col1a1 
expression. Circles with error bars show mean transcription in mOBs and mean value of the standard 
deviation (SD) for the running average across the full range of Col1a1. 

 The G610C mutation clearly affects Wnt (top row), IGF (Igfbp5/6), and other (Pdgfa, Vdr) signaling 
pathways crucial for OB differentiation and function. ECM synthesis (Col15a1, Dcn), cell migration 
(Pdpn, Avil), cell metabolism (Adm2, Shmt2), and cell cycle (Cdkn1a, Rcc2) are also significantly altered. 
The latter effects of the G610C mutation appear only at high collagen expression and coincide with 
upregulation of ISR markers (Fig. 3b), suggesting that they are caused by procollagen misfolding inside 
the cell rather than by signals from outside (ECM and other cells). Changes in the expression of Cthrc1 
and Pdgfa seem to have the same etiology. In contrast, effects of the mutation on Wif1 and Vdr appear to 
be independent of the osteoblast differentiation stage and level of Col1a1 transcription, suggesting that 
they are caused by altered cellular environment rather than cell-intrinsic factors. The assay sensitivity is 
not sufficient for similarly distinguishing the etiology of changes in Lrp5, Cpz, and Igfbp5/6.     
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Supplementary Figure 4. Effects of collagen expression on ISR and UPR genes. These plots 
complement Fig. 3B by showing how transcription of additional ISR, UPR, and Creb3l1 genes depends 
on Col1a1 in E18.5 and P5 OBs (20-point running average). Small black dots on top indicate significant 
mRNA upregulation in Hom vs. WT (E18.5) and Het vs. WT (P5), unlike Supp. Fig. 3 where they show 
both up- and down-regulation of the genes. Like in Supp. Fig. 3, circles with errors bars show mean 
transcription in mOBs and mean value of the SD for the running average across the full range of Col1a1. 

Strong upregulation of Atf5 (Fig. 3B), Ddit3, Eif3c, Eif4ebp1, Nupr1, and Trib3 at high Col1a1 
expression unequivocally demonstrates ISR activation by misfolding of G610C procollagen. Minimal 
change (≤ 1 SD) or downregulation of Hspa5 (Fig. 3B) and other UPR genes with increasing Col1a1 is 
consistent with the lack of UPR upstream of ISR in G610C osteoblasts, which we reported before.[2] 
Transcription of Hspa5 and other general ER chaperones (Hsp90b1, Canx, Calr, Pdia4, P4hb) is 
upregulated by all UPR pathways.[3] Increased transcription of Atf6, Xbp1, Ern1 (IRE1), and Eif2ak3 
(PERK) has been reported in UPR as well.[4] Increased Atf6 transcription may maintain cellular 
homeostasis when ATF6 is translocated to Golgi and cleaved. Increased Xbp1 transcription may be a 
similar response to its alternative splicing. However, upregulation of Ern1 and Eif2ak3 may not be a 
common feature of the corresponding IRE1 and PERK pathways, although reported in HeLa cells treated 
with thapsigargin.[4] IRE1 and PERK functions do not involve cleavage or degradation of these proteins. 

  Increased transcription of Creb3l1 in Het P5 OBs occurs in the same range of Col1a1 expression as 
ISR activation, but no effect of the mutation on Creb3l1 in Het E18.5 and Hom E18.5 OBs indicates that 
CREB3L1 is not essential for activating ISR in G610C OBs. Creb3l1 encodes an ATF6-like ER 
membrane sensor of ER disruption (CREB3L1/OASIS). Nearly perfect correlation with Col1a1 points to 
its transcriptional regulation. It is one of OI genes, which is known to regulate Col1a1.[5] CREB3L1 is 
cleaved like ATF6 upon ER disruption,[5] yet Creb3l1 transcription is not affected by the G610C mutation 
in E18.5 OBs despite particularly severe ER disruption and ISR in Hom cells.  
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Supplementary Figure 5. Correlation between expression of Serpinh1, Atf5, and Hspa9 in different cells. 
UMAP plots of all cells extracted from E18.5 femurs and tibia (top row) as well as P5 parietal bones 
(bottom row) are shown. Each dot represents an individual cell. The intensity of the red is proportional to 
logarithm of the UMI count. Serpinh1 encodes an HSP47 chaperone, transcription of which parallels that 
of collagens.[6] Therefore, Serpinh1 transcription reveals most collagen-producing cells in bone and 
surrounding tissues.   
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Supplementary Figure 6. Expression of key mitochondrial UPR (mt-UPR) genes. Dependence of the 
expression of genes known to be transcriptionally upregulated in canonical mt-UPR on the expression of 
Col1a1 (for Hspa9 and Atf5 see Fig. 3B). Similar to Fig. 3B and Supp. Fig. 4, the curves show 20-point 
running averages, black dots show gene upregulation with p < 0.01 within each running average window, 
and circles with error bars show mean expression in mOBs and standard deviation averaged over the full 
range of Col1a1. Only Asns increases with Col1a1, is highly upregulated in mOBs, and is therefore 
affected by the ER disruption upon G610C procollagen misfolding. Much smaller upregulation of Hspd1 
(mt-HSP60) and Hspe1 (mt-HSP10) is independent of Col1a1 expression and therefore likely associated 
with extracellular effects of the secreted mutant procollagen that alters the ECM and cell-ECM 
interactions. Dnaja3 (mt-DNAJ) and genes encoding mt-UPR proteases (Clpp and Lonp1) do not appear 
to be upregulated. The few groups of cells with p < 0.01 in Hom E18.5 (5-10 Col1a1 spots) are likely 
stochastic outliers since ~ 5 outlier spots are expected due to multiple comparison effects on the statistical 
analysis (see Methods). However, low expression of the latter genes precluded their accurate 
quantification by scRNASeq (no UMI counts in many OBs). Overall, the observed mitochondrial 
response does not appear to be consistent with canonical mt-UPR. 
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Supplementary Methods: Normalization of Relative Expression in different RNA 
sequencing approaches 

The problem of RNASeq data normalization has been extensively discussed (see, e.g., Ref. [7] and 
references therein). One of the key confounding issues underlying this problem is that NGS cDNA 
libraries are prepared and amplified by PCR, the efficiency and quality of which vary with the nucleotide 
sequence. As a result, the number of reads per cDNA fragment – which is the starting point for all 
analysis – may depend not only on the abundance of the corresponding mRNA but also on its sequence. 
This and other RNASeq technicalities discussed below are expected to have particularly strong effects on 
transcripts from low expression genes. Some of the data normalization procedures (e.g., LogNormalize 
and SCTransform for scRNASeq or DESeq2 for bulk RNASeq) attempt to address the resulting 
uncertainties in quantifying transcription of low expression genes through different mathematical means. 
However, these models have been developed based on RNASeq data from cell populations other than 
OBs. Therefore, we examined whether they are applicable to our study or other approaches to OBs were 
needed.   
 
scRNASeq 
  

In 10X Genomics scRNASeq and srRNASeq assays used for the present study, the PCR problem is 
partially resolved by utilizing 3’ sequencing with UMIs (see manufacturer’s protocols). Specifically, each 
cDNA is reverse transcribed from the 3’ end of mRNA by capturing the mRNA vis hybridization with 
oligonucleotides that contain poly(dT) for the hybridization and unique molecular identifier (UMI) 
barcodes. This allows each mRNA molecule to be counted only once based on the UMI regardless of the 
number of copies produced by the PCR, reducing PCR artifacts. This partially solves the problem, at least 
for genes that produce enough mRNA for reliable reverse transcription and PCR amplification.  

Nonetheless, 10X Genomics and all other UMI-based scRNASeq assays have another crucial 
limitation affecting data analysis. It is related to a finite number of the UMI-tagged oligonucleotides 
available for reverse transcription of mRNA from each cell, NUMI. In the 10X Genomics assay, NUMI is the 
number of oligonucleotides on each gel bead that is captured within an emulsion droplet with its cell. 
Because of the technicalities of the bead manufacturing process, NUMI is inherently not the same for 
different beads (and therefore cells) and may be highly variable. It is one of the factors contributing to the 
large variation in the sequencing depth per cell. 

Ideally, the goal of scRNASeq would be to accurately measure the actual number of transcripts for 
each gene i (mRNAi) in each cell, but the current technology does not allow it. Indeed, when the total 
number of transcripts in a cell, mRNAcell becomes comparable to or exceeds NUMI, the relationship 
between the number of reverse transcribed UMIs per gene i (UMIi) and the number of reverse transcribed 
UMIs per cell (UMIcell = Σi UMIi) become nonlinear and dependent on NUMI. Not only NUMI varies from 
bead to bead, but mRNAcell varies from cell to cell. The resulting cell-to-cell variation in UMIcell (further 
confounded by the sequencing depth) would be difficult to account for even if mRNA hybridization with 
the oligonucleotides followed an equilibrium binding isotherm. (The equilibrium binding is not likely 
either given high activation energy and therefore practically infinite time needed for equilibrating mRNA 
hybridization.) In other words, the general relationship between the measured relative count 

 
𝑅𝑅𝑅𝑅𝑖𝑖 = 𝑈𝑈𝑈𝑈𝑈𝑈𝑖𝑖

𝑈𝑈𝑈𝑈𝑈𝑈𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
          (1) 

 
and the actual fraction of the transcript in the cell (mRNAi /mRNAcell) is: (a) not linear, (b) not trivial, and 
(c) not known. Even if we were to assume that the subsequent PCR and sequencing were ideal, there 
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would be no statistically rigorous way to account for this effect without establishing the efficiency of 
hybridization of different mRNAs with the oligonucleotides, the statistics of NUMI, and the statistics of   
mRNAcell. Because of their large number, highly expressed genes get to “choose” the oligonucleotides 
once the cell is lysed. For these genes, the approximation RCi ≈ (mRNAi /mRNAcell) may be reasonable. 
For low and potentially even moderate expression genes, it may not be the case. To avoid overinterpreting 
and/or misinterpreting scRNASeq data, it is crucial to at least acknowledge this limitation.  

With this in mind, %UMI used in the present study,  
 
 %UMIi = 100%∙RCi         (2) 
 
provides the simplest possible approach to data normalization that accounts for all sources of variations in 
the sequencing depth (including NUMI) without attempting to parametrize the unknown relationship 
between RCi and (mRNAi /mRNAcell). A scaled relative count, 
 
 sRCi = sf∙RCi          (3) 
 
is essentially the same approach implemented in Seurat, except it utilizes a scaling factor sf that can be set 
by the user (Seurat’s default is sf = 10,000). For instance, %UMIi can be used for estimating differential 
expression of the gene i between cells that have similar overall mRNA transcription (mRNAcell), e.g., 
G610C OBs vs. WT OBs with the same level of Col1a1 mRNA. In this case, the unknown relationship 
between the measured RCi and the fraction of the transcript in the cell would be the same for the two 
types of cells and would not alter the conclusions.  

Unfortunately, the same cannot be guaranteed for other normalization procedures that parametrize the 
data and incorporate additional model assumptions and/or nonlinear transformations, e.g., SCTransform 
and LogNormalize procedures in Seurat. Regardless of potential benefits of these procedure for some 
applications, we do not find them to be justified for differential gene expression analysis in OBs and 
potentially other highly secretory cells.  

A key feature of mature OBs (mOBs) is that collagen I mRNA (Col1a1 + Col1a2) overwhelms all 
other transcripts, accounting for up to 40% of all mRNA molecules detected by scRNASeq in the cell 
(Supp. Figure 7A). To keep up with the massive collagen synthesis, the cell must selectively ramp up 
transcription of multiple other genes (e.g., ribosomal proteins), resulting in at least ~ 2-fold increase in the 
total mRNA/cell during OB maturation (Supp. Figure 7B-D). In the end, mOBs may produce ~ 5 times 
more mRNA/cell than non-secretory cells (e.g., macrophages, Supp. Figure 7B). As noted above, this 
feature of mRNA transcription in mOBs does not affects the analysis based on nonparametric 
normalization with %UMIi (or sRCi), yet it is incompatible with models based on nonlinear 
transformations or existing parametrized models of data dispersion.  

For instance, consider the SCTransform data parametrization model implemented in Seurat, which is 
rapidly gaining popularity.[8] In SCTransform, the data are normalized by extracting the normalization 
parameters from negative binomial regression of UMIi vs. UMIcell (followed by subsequent regularization 
to avoid data overfitting). Regardless of the general merits of ad hoc assumptions built into this approach, 
such parametrization may severely distort differential expression results for mOBs because it is based on 
regression across all cells rather than just the cells with the same mRNA transcription patterns (e.g., 
mRNAcell). As discussed above, just a change in the mRNAcell should already be expected to alter the 
relationship between UMIi and the actual transcript fraction in the cell (as well as between UMIi and 
UMIcell). In our opinion, the ~ 5-fold or larger difference in mRNAcell between OBs and other cells and at 
least 2-fold difference in mRNAcell within the OB subpopulation (Supp. Figure 7B) preclude utilization of 
SCTransform for analyzing differential expression of low and moderately expressed genes in our case. 
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Supplementary Figure 7. Transcription of mRNA in OBs. A. Col1a1+Col1a2 fraction of total mRNA molecules in 
mOBs (defined as OBs with Col1a1 > 3.5% UMI, see Fig. 2A). B. Dependence of the total mRNA/cell on the level 
of collagen synthesis (eOBs = Col1a1 ≤ 0.75% UMI, dOBs = 0.75% < Col1a1 ≤ 3.5 % UMI, see Fig. 2A). Cd68+ 
cells are monocytes (mostly macrophages) with Cd68 > 3 (UMI count). C. Correlation between the amount Rpl41 
mRNA (encoding ribosomal protein L41 essential for collagen translation) and Col1a1 mRNA in mOBs. D. 
Correlation between Actg1 mRNA (encoding actin G1) and Col1a1 mRNA. A strong correlation between Col1a1 
and gene transcripts involved in collagen synthesis combined with the lack of such correlation for other transcripts 
indicates that OBs selectively ramp up transcription of the former genes to support collagen production.  

Note that E18.5 cells were used for panels B-D because of inherent limitations on NUMI in the 10X Genomics 
scRNASeq assay we utilized. In this assay, mRNAcell was not only larger than NUMI for mOBs but also close to NUMI 
even in those P5 cells that produced little or no collagen (~ 30,000 transcripts per average macrophage). As a result, 
we could detect the change in mRNAcell only in E18.5 cells (<10,000 transcripts per average macrophage and 
<20,000 transcripts per average eOB). 
_____________________________________________________________________________________ 

 
Another approach implemented in various scRNASeq data analysis packages is logarithmic 

normalization. For instance, the default Seurat procedure is LogNormalize, in which the log-normalized 
gene expression (LNEi) for gene i is calculated from the raw UMIi count for the gene as 
 
 LNEi = ln(1 + sf∙RCi),         (4)  

 
e.g., to avoid ln(0). For differential gene expression analysis in Seurat v4 (FindMarkers function), this 
normalization involves another adjustable parameter pc (pseudocount) that can be set by the user 
(Seurat’s default is pc = 1), which effectively replaces 1 in a logarithm similar to Eq. (4) when calculating 
mean fold-change in gene expression. The choice of sf and pc allows the user to suppress variations in 
LNEi for low expression genes, but fold-change in gene expression then becomes dependent on both sf 
and pc. Whatever the benefits of LogNormalize might be, RCi in our data set varies from RCi ~ 2∙10-5 at 
UMIi = 1 and UMIcell ~ 50,000 to RCi ~ 0.1 at UMIi ~ 500 and UMIcell ~ 5,000, causing strongly nonlinear 
dependence of fold-change in expression of most genes on sf and pc. Not only the results become highly 
dependent on the choice of sf and pc, but the effects of this choice become very different for genes with 
different expression level. The dependence on sf and pc can be eliminated only by setting 
sf >> max(pc∙UMIcell), but that is an arbitrary choice as well. Without a validated justification for the 
choice of sf and pc that is based on objective criteria grounded in experimental facts rather than on the 
desired appearance of the results, such an approach may not be advisable. Unfortunately, we are not 
aware of such a justification.   
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Therefore, we normalized and reported all data as %UMI to avoid biasing the outcome of our 
analysis. 
 
Bulk RNASeq 
 

Like SCTransform, the DESeq2 approach claims to address the data normalization problem in bulk 
RNASeq through advanced mathematical modeling and regression procedures based on ad hoc 
assumptions (e.g., the negative binomial model).[9] In our opinion, utilization of this approach for special 
cell populations like OBs may not be advisable for essentially the same reasons as SCTransform. When 
combined with PCR-related effects and inherent lack of a linear relationship between expression of some 
genes and mRNAcell, large systematic rather than random variations in total mRNAcell (Supp. Figure 7B) 
may introduce even bigger problems for data parametrization. The assumptions built into DESeq2 are 
inconsistent with our data set and may thereby lead to unreliable analysis outcome.   

In other common data normalization procedures used for traditional bulk RNASeq, e.g., FPKM and 
TPM, the PCR problem is ignored for the lack of a better solution.[10] FPKM and TPM are not based on 
data parametrization, but these approaches may also be problematic in our case because of PCR bias. 
Indeed, as shown in Supp. Figure 7A, mOBs – our main cells of interest – have disproportionately high 
content of Col1a1 and Col1a2 mRNA. The corresponding cDNA is rich in GC base pairs and repetitive 
sequences, presenting a challenge for PCR. Under these conditions, reduced transcription of Col1a1 and 
Col1a2 by Het vs WT cells (Figure 2) may introduce a systematic bias into the analysis.  

To verify whether this is indeed the case, we compared expression of several housekeeping genes in 
Het and WT cells using just the minimally necessary normalization for the sequencing depth. First, we 
utilized our scRNASeq dataset for P5 OBs to choose and validate housekeeping genes that are truly 
independent of the OB differentiation stage. We chose this dataset because the cultured primary cells 
were extracted from the same P5 parietal bones as used for the scRNASeq experiments. 

 

Supplementary Figure 8. Housekeeping genes. The plots show dependence of housekeeping gene expression in 
Het (yellow) and WT (green) cells on Col1a1 expression determined by scRNASeq of P5 parietal bone cells (20-cell 
running average calculated as described in Fig. 3B).  Geometric Mean is the geometric mean for the 4 genes.  

After examining ~ 50 housekeeping gene candidates previously studied by others,[11] we found that 
Actg1, Actb, Mrfap1, and Sdha met all the criteria (Supp. Figure 8). (a) Their expression was the same in 
Het and WT OBs at the same level of Col1a1 expression. (b) Their %UMI remained constant at low 
Col1a1 expression and decreased at high Col1a1 expression in mOBs, which was expected for genes 
unrelated to collagen synthesis once the total mRNA/cell began to increase due to increasing Col1a1 
transcription. (c) The relative dispersion of %UMI for these genes was within the average range for OBs. 

We then confirmed the Het vs. WT bias in bulk RNASeq by observing that the geometric mean of the 
depth-normalized expression for Actg1, Actb, Mrfap1, and Sdha in bulk RNASeq was noticeably higher 
in Het vs WT cells (Supp. Figure 9, last panel). Like the genes themselves, the geometric mean %UMI for 
these genes exhibited no difference in %UMI between Het and WT at the same level of Col1a1 
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expression (Supp. Figure 8). We also observed the same bias for each of the 4 genes individually (Supp. 
Figure 9). As noted above, this bias could be caused by higher PCR quality and efficiency because of the 
lower average Col1a1 mRNA content in Het cells (Supp. Table 1). The bias could also be a simple 
arithmetic consequence of lower average mRNAcell in Het vs. WT and therefore higher normalized counts 
for all genes in Het OBs. 
 

 
 
Supplementary Figure 9. Bias in housekeeping gene expression after sequencing depth normalization of bulk 
RNASeq. The plots show dependence of housekeeping gene expression in primary cells isolated from P5 parietal 
bones on days in culture determined by bulk RNASeq (expression was normalized to sequence depth and scaled). 
Circles, squares, and triangles show 3 Het (yellow) and 3 WT (green) replicates. Error bars in the geometric mean 
plot show standard deviation for the 3 replicates. The observed bias is caused by lower average Col1a1 expression in 
Het vs. WT cells.  Unlike scRNASeq in Supp. Figure 8, this bias cannot be removed by data stratification based on 
Col1a1 expression in individual cells since such information is not available in bulk RNASeq.  

To resolve this bias problem, we utilized a well-tested empirical solution known since the early days 
of qPCR, which is normalizing the data with the geometric mean of housekeeping gene expression. 
Specifically, we divided the sequencing-depth-normalized counts for the genes of interest by the 
geometric mean of the housekeeping gene counts, yielding expression values relative to the housekeeping 
genes. By utilizing the same, validated Actg1, Actb, Mrfap1, and Sdha genes, we could then compare the 
expression of various genes in Het and WT cells similar to the ΔΔCT approach in qPCR. Additional 
normalization for the gene length (akin to FPKM) could be utilized as well, but it was not necessary in the 
context of our study since we were interested only in comparing relative expression of the same gene in 
Het and WT rather than in comparing relative expression of different genes. Given that this normalization 
was not needed and that it would be based on a questionable assumption of similar PCR efficiency across 
the gene length and between different genes, we decided to avoid it.   
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