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A Usage of BERN2
BERN2 is available as a web service (http://bern2.korea.ac.kr/) or as a local installation (source code
and installation manual in https://github.com/dmis-lab/BERN2) depending on the users’ preferences.
BERN2 web service is useful for users to get the annotations of biomedical texts without installing or
to get pre-computed annotations in an instant. Using BERN2 locally, on the other hand, provides users
with a more stable and customizable way, allowing them to add external modules on their own.

In this section, we describe the web service in terms of the interactive web demo and RESTful APIs,
but please note that the usages described here can be applied to local BERN2 as well.

A.1 Interactive Web Demo

We provide the interactive BERN2 web demo so that users can easily access our tool. Fig. S1 shows
an example web page from our demo. When a user types in plain text or a PubMed ID (PMID) in the
input box and presses the submit button (Fig. S1-A), the annotated results (Fig. S1-B) and their JSON
results (Fig. S 1-C) are displayed. For the annotation results, recognized entity spans are colored with
their entity types, and their CUIs appear by clicking on them.

A.2 RESTful APIs

As shown in Table S1, BERN2 offers RESTful APIs to allow users to get annotation results for plain
texts or PMIDs in a programmable way. The URL format for a single or multiple PubMed abstracts is
http://bern2.korea.ac.kr/pubmed/<PMID> using the HTTP GET method. For plain text, the format of
the URL is http://bern2.korea.ac.kr/plain using the HTTP POST method. Listing 1 shows an example
of the JSON results from BERN2.
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Fig. S1: Interactive web demo of BERN2 (http://bern2.korea.ac.kr). (A) Input box and submit button.
(B) Annotation results. (C) Annotation results in the JSON format.

Table S1. BERN2 APIs and URL examples

API HTTP Method URL example Data

Single PMID GET http://bern2.korea.ac.kr/pubmed/29446767 -
PMIDs GET http://bern2.korea.ac.kr/pubmed/29446767,2568119 -
Plain text POST http://bern2.korea.ac.kr/plain {"text":"tumour growth through arginine"}

Listing 1: An example of BERN2 annotations in the JSON format
{

"annotations": [
{

"id": [
"mesh:D009369"

],
"is_neural_normalized": false,
"prob": 0.9999922513961792,
"mention": "tumour",
"obj": "disease",
"span": {

"begin": 20,
"end": 26

}
},
{

"id": [
"mesh:D001120"

],

http://bern2.korea.ac.kr
http://bern2.korea.ac.kr/pubmed/29446767
http://bern2.korea.ac.kr/pubmed/29446767,2568119
http://bern2.korea.ac.kr/plain
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"is_neural_normalized": false,
"prob": 0.9819278717041016,
"mention": "arginine",
"obj": "drug",
"span": {

"begin": 54,
"end": 62

}
}

],
"text": "Autophagy maintains tumour growth through circulating arginine .",
"timestamp": "Thu Dec 23 04:12:28 +0000 2021"

}

B Named Entity Recognition for BERN2
The goal of named entity recognition (NER) is to detect biomedical entity spans given a biomedical text.
While BERN uses the biomedical language model, BioBERT (Lee et al., 2020), for high-performance
NER, it has some limitations from using separate single-task NER models for each entity type (i.e.,
five separate NER models required for annotating five entity types). This approach requires larger
GPU memory for parallelization but is very slow at inference when used sequentially (Fig. S2a). To
overcome these limitations, we adopt a biomedical multi-task NER model motivated by Wang et al.
(2019). In this section, we describe the design of our multi-task NER model, the decision rules for
resolving overlapping entities, and its performance on out-of-distribution datasets.

B.1 Multi-task Named Entity Recognition

Following Wang et al. (2019), our multi-task NER model consists of a shared backbone language model
and separate task-specific layers per entity type as shown in Fig. S2b. We choose the state-of-the-art
biomedical language model, Bio-LM (Lewis et al., 2020)1, as our backbone model and a two-layer
MLP network with ReLU activation as a task-specific layer. The outputs of each task-specific layer are
the probabilities of three classes (i.e., Begin, Inside, and Outside). At training time, we merge all train
sets across all entity types and use cross-entropy objectives to optimize our model. We define a loss
function L for our model as follows,

L = − 1

NM

N∑
i=1

M∑
j=1

yij · log(pij), (1)

where N is the number of task-specific layers, M is the max sequence length of input texts, yij denotes
the ground-truth label, and pij denotes the probability that each task-specific layer produces.

B.2 Overlapping Entity Resolution

Recognized entities in biomedical texts can overlap between entity types. For example, in ‘the androgen
is synthesized from ...’, a gene/protein type layer and a drug/chemical type layer can annotate ‘androgen’
as both types because androgen is a natural or synthetic steroid hormone. Therefore, it is important
to resolve these ambiguous overlapping entities and provide more appropriate entities based on the
context. Following the decision rules proposed by BERN, we resolve overlapping entities based on
the highest probability of each type. We also include another heuristic where normalized entities (see

1 We use the RoBERTa-large-PM-M3-Voc checkpoint released in https://github.com/facebookresearch/bio-lm.

https://github.com/facebookresearch/bio-lm
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Fig. S2: Comparison of the NER model architectures between BERN and BERN2. BERN2 uses a
shared backbone language model and task-specific layers for each entity type, allowing fast parallel
inference and efficient memory usage.

Section C) are preferred over entities that failed to be normalized. Lastly, we include mutation entities
when recognized by tmVar2.0 (Wei et al., 2018) because it achieves high precision (over 97%) while
producing no probability to compare with other entity types. Fig. S3 illustrates the decision rules of
our overlapping entity resolution. Table S2 shows statistics of the overlapping entities between pairs
of types in randomly sampled 308K abstracts (1% of PubMed). For example, 9,364 entity overlaps are
resolved between the gene/protein type and the drug/chemical type in 308K abstracts.
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Fig. S3: The decision rules for resolving overlapping entities in BERN2. Between two entities, a
normalized entity is preferred over an entity that failed to be normalized (*).
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Table S2. Overlap statistics of recognized entities in randomly sampled 308K PubMed abstracts. The numbers in each
cell indicate the count of completely overlapping cases of the entity pair. The percentages in parentheses indicate the
ratio of overlapping entities of the entity type pair.

Gene/Protein Disease Drug/Chemical Mutation Species Cell Line Cell Type DNA RNA

Gene/Protein -
2,332

(0.10%)
9,364

(0.41%)
1,582

(0.15%)
1,144

(0.06%)
3,681

(0.29%)
4,260

(0.29%)
108,744
(7.60%)

14,496
(1.30%)

Disease
2,332

(0.10%)
-

862
(0.04%)

2
(0.0002%)

27,919
(1.26%)

8,838
(0.60%)

7,945
(0.48%)

752
(0.05%)

431
(0.03%)

Drug/Chemical
9,364

(0.41%)
862

(0.04%)
-

138
(0.01%)

30
(0.001%)

2,549
(0.17%)

769
(0.05%)

9,297
(0.57%)

869
(0.07%)

Mutation
1,582

(0.15%)
2

(0.0002%)
138

(0.01%)
-

4
(0.0004%)

246
(0.09%)

6
(0.001%)

5,252
(1.29%)

727
(0.79%)

Species
1,144

(0.06%)
27,919

(1.26%)
30

(0.001%)
4

(0.0004%)
-

4,331
(0.35%)

6,011
(0.42%)

1,345
(0.10%)

527
(0.05%)

Cell Line
3,681

(0.29%)
8,838

(0.60%)
2,549

(0.17%)
246

(0.09%)
4,331

(0.35%)
-

109,467
(16.11%)

3,457
(0.54%)

91
(0.03%)

Cell Type
4,260

(0.29%)
7,945

(0.48%)
769

(0.05%)
6

(0.001%)
6,011

(0.42%)
109,467

(16.11%)
-

1,616
(0.20%)

512
(0.10%)

DNA
108,744
(7.60%)

752
(0.05%)

9,297
(0.57%)

5,252
(1.29%)

1,345
(0.10%)

3,457
(0.54%)

1,616
(0.20%)

-
7,777

(1.66%)

RNA
14,496

(1.30%)
431

(0.03%)
869

(0.07%)
727

(0.79%)
527

(0.05%)
91

(0.03%)
512

(0.10%)
7,777

(1.66%)
-

B.3 Evaluation on Out-of-Distribution Datasets

Apart from the evaluation on in-domain datasets described in the main paper, we also
evaluate BERN2 on out-of-distribution datasets (Bada et al., 2012; Pyysalo et al., 2013; Kim
et al., 2019a) to measure the generalization ability of our NER model. Table S3 shows
that BERN2 outperforms BERN by 2.0% macro-averaged F1 score. This reveals that the Bio-LM
NER model (Lewis et al., 2020) trained in multi-task learning detects biomedical entities from out-
of-distribution contexts more robustly than the BioBERT NER model (Lee et al., 2020) trained in
single-task learning. However, BERN2 underperforms HunFlair (Weber et al., 2021), which uses the
Flair model (Akbik et al., 2019) with LSTM-CRF-based prediction layers trained on 23 NER corpora.
We leave an investigation on making BERN2 more generalizable in out-of-distribution circumstances
as future work.

C Named Entity Normalization for BERN2
A named entity normalization (NEN) model aims to find the concept unique IDs (CUI) of entities
recognized by the NER model. In addition to the rule-based NEN models used in Kim et al. (2019b)2,
BERN2 applies neural network-based NEN models (Sung et al., 2020) to increase the number of
correctly normalized entities. Specifically, BERN2 use the neural network-based NEN models to
normalize entities that failed to be normalized by rule-based NEN models. We call this hybrid NEN.
We employ the hybrid NEN model for gene/protein, disease, and drug/chemical types where the public

2 GNormPlus (Wei et al., 2015) for gene/protein, Sieve-based entity linking (D’Souza and Ng, 2015) for disease, tmChem (Leaman et al., 2015) without
Ab3P for drug/chemical, tmVar2.0 (Wei et al., 2018) for mutation, and dictionary lookup for species.



“output” — 2022/7/9 — 13:52 — page 6 — #6

6 Sung et al.

Table S3. Results on out-of-distribution biomedical NER benchmarks. F1 score is reported.
Following the evaluation in Weber et al. (2021), Misc refers to tmChem (Leaman et al., 2015)
for Chemical, GNormPlus (Wei et al., 2015) for Gene and Species, and DNorm (Leaman et al.,
2013) for Disease.

Dataset Type Misc HunFlair BERN BERN2

CRAFT Gene/Protein 64.9 72.2 56.9 57.7
(Bada et al., 2012) Drug/Chemical 42.9 59.7 54.9 55.4

Species 81.2 85.1 82.4 86.5

BioNLP CG Gene/Protein 69.0 87.7 76.8 78.5
(Pyysalo et al., 2013) Disease 55.6 65.1 63.2 63.7

Drug/Chemical 72.2 81.8 73.0 76.1
Species 80.5 76.5 81.3 85.6

PDR (Kim et al., 2019a) Disease 80.6 83.4 78.8 79.3

Average 68.4 76.4 70.9 72.9

datasets (Morgan et al., 2008; Li et al., 2016) are available for training neural network-based NEN
models. For four entity types, mutation, species, cell line, and cell type, we only use the rule-based NEN
models due to the lack of public normalization datasets. In this section, we describe the dictionaries
used for NEN and the statistics of recognized and normalized entities in randomly sampled 308K
abstracts.

C.1 Dictionaries and Statistics

BERN2 can normalize entities of seven different types.3 Table S4 shows the dictionaries used for each
type and their statistics. For instance, the gene/protein dictionary, NCBI Gene (Brown et al., 2015), has
67,370 CUIs and the corresponding 277,944 entity names. We also report the number of normalized
entities on randomly sampled 308K abstracts (1% of PubMed) in Table S5. For example, for the
species type, 974,935 entities are recognized and 864,904 (88.7%) are normalized among them. Since
entities of three types (gene/protein, disease, and drug/chemical) are normalized into the CUIs by the
hybrid NEN models, there could be incorrect CUIs unlike when solely using the dictionaries or rule-
based approaches. Taking this into account, we report the estimated number of correctly normalized
entities considering the accuracies of the neural NEN models. For example, for the gene/protein type,
when 436,851 entities are normalized by the rule-based model and 585,583 entities are normalized by
the neural network-based NEN model, which has 91.3% accuracy on the gene/protein normalization
benchmark, we estimate the ratio of the correctly normalized gene/protein type entities as follows:
(436,851 + 585,583 * 0.913) / (436,851 + 585,583) = 95.0%. In the case of two entity types, cell line
and cell type, the number of normalized entities is low due to the use of the simple dictionary lookup
method.

D Use Cases of BERN
We conclude our supplementary data by introducing two use cases of BERN (Kim et al., 2019b)
in biomedical downstream tasks. Despite its applicability for a variety of tasks, its bottleneck is the

3 NEN for DNA and RNA is not currently supported due to the lack of available dictionaries
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Table S4. The dictionaries used for normalization and their statistics.

Entity type Dictionaries # of CUIs # of names Avg. # of names
per ID

Gene/Protein NCBI Gene (Brown et al., 2015) 67,370 277,944 4.1

Disease
MeSH (Lipscomb, 2000),
OMIM (Hamosh et al., 2005)

12,174 141,497 11.6

Drug/Chemical
MeSH (Lipscomb, 2000),
CHEBI (Degtyarenko et al., 2007)

212,317 1,147,293 5.4

Mutation
dbSNP (Sherry et al., 2001),
ClinVar (Landrum et al., 2016)

208,474 302,498 1.5

Species NCBI Taxonomy (Federhen, 2012) 398,037 3,119,005 7.8

Cell Line Cellosaurus (Bairoch, 2018) 128,806 220,824 1.7

Cell Type Cell Ontology (Diehl et al., 2016) 2,525 4,970 2.0

Table S5. Normalization models and the statistics of recognized and normalized entities in randomly sampled 308K
PubMed abstracts. For the types that use hybrid NEN, we report the estimated number of correctly normalized entities
based on the performance of the neural network-based NEN models.

Entity type Normalization model # of recognized
entities

# of normalized
entities

# of abstracts
with each entity types

Avg. # of recognized
entities per abstract

Avg. # of normalized
entities per abstract

Gene/Protein Hybrid 1,022,434 971,312 (95.0%) 117,367 8.7 8.3
Disease Hybrid 1,210,336 1,178,867 (97.4%) 178,233 6.8 6.6
Drug/Chemical Hybrid 1,233,942 1,226,538 (99.4%) 152,692 8.1 8.1
Mutation tmVar2.0 14,570 14,570 (100%) 3,827 3.8 3.8
Species Dictionary lookup 974,935 864,904 (88.7%) 227,345 4.3 3.8
Cell Line Dictionary lookup 180,355 13,480 (7.5%) 66,653 2.7 0.2
Cell Type Dictionary lookup 356,065 36,788 (10.3%) 107,460 3.3 0.3

relatively slow processing time required to annotate large-scale biomedical texts. Therefore, we believe
that our BERN2 with much faster inference will be widely used to solve lots of tasks that require
biomedical entities.

Biomedical knowledge graph construction Biomedical texts contain a considerable amount
of expert knowledge. Constructing biomedical knowledge graphs from biomedical texts can help
researchers navigate this information more easily. Biomedical entities extracted by NER tools can be
used as essential components (e.g., nodes in the graphs) when building biomedical knowledge graphs.
For example, Xu et al. (2020) use BERN to automatically extract biomedical entities from 29M PubMed
abstracts and build a PubMed knowledge graph, utilizing the extracted entities as nodes.

Biomedical entity-based search engine As biomedical documents are rich in domain-specific
terminology, extracting named entities can enhance search engines to find documents related to the
entities in queries. Vapur (Köksal et al., 2020), a search engine for finding protein compounds in
COVID-19 literature, pre-processes a document into a set of triples (Entity1, Relation, Entity2). They
adopt BERN to recognize and normalize the biomedical named entities in a document so that relevant
documents that contain the same biomedical concepts can be retrieved. For example, if "IL1B" is given
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as a query, Vapur retrieves documents that not only contain "IL1B", but also "Interleukin1b", since
they are normalized to the same concept (EntrezGene:3553) by BERN.
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