
 1

Supplementary material for ntHash2: Recursive Spaced
Seed Hashing for Nucleotide Sequences

Parham Kazemi, Johnathan Wong, Vladimir Nikolić, Hamid Mohamadi, René L Warren, and Inanç Birol

Table of Contents
1. Background ... 3

2. Updated 𝒌-mer Hashing ... 3

3. Uniformity of the Canonical Hash Value .. 6

4. Spaced Seeds Hashing Algorithm .. 9

5. Additional Features .. 11

6. Spaced Seeds Used in Experiments ... 11

7. Extended Experiments and Results ... 11

References ... 14

 Table of Figures
Fig. S1. Implementation of the 𝑠𝑟𝑜𝑙 function. ... 5

Fig. S2. Implementation of the 𝑠𝑟𝑜𝑟 function. .. 5

Fig. S3. Generating extended hash values for each 𝑘-mer. .. 5

Fig. S4. Fetching pre-computed 𝑠𝑟𝑜𝑙 values. .. 6

Fig. S5. Histogram of the generated hashes for forward and reverse-complement sequences.
Normalized hash values are shown on the x-axis. .. 7

Fig. S6. Probability density function of the Irwin-Hall distribution generated by simulation. .. 8

Fig. S7. Histograms of canonical hashes generated with min, add, and xor operators. 𝐻𝑖 refers

to the 𝑖th hash value generated from each 𝑘-mer. .. 9

Fig. S8. Pseudocode of the spaced seed hashing procedure. ... 10

 2

Fig. S9. C. elegans 𝑘-mer profiles generated with ntCard using both the previous and new

versions of ntHash (k=80). ntCard is also able to estimate 𝑘-mer profiles with low error when
integrated with ntHash2. ... 13

Fig. S10. Dataset coverage estimation using ntCard with k-mers and spaced seeds. The plot on
the right is a zoomed-in version of the peak in the count range between 34 and 64. Spaced seeds
are more stable compared to k-mers with the same number of bases and are more reliable for
coverage estimation in long-read datasets. ... 14

 3

1. Background

Given a sequence 𝑟 containing characters from an alphabet Σ, ntHash initially computes a base

hash value 𝐻! for the first 𝑘-mer. Next, for each succeeding 𝑘-mer, the contribution of the previous

𝑘-mer’s first character is removed and the next character in the sequence is included using circular
shifts and exclusive-or (XOR) operations. Formally, ntHash can be shown as a recursive function:

𝐻! =	$
𝑟𝑜𝑙"#$(ℎ[𝑟%]) ⊕…⊕𝑟𝑜𝑙(ℎ[𝑟"#&]) ⊕ ℎ[𝑟"#$] 𝑖 = 0

𝑟𝑜𝑙(𝐻!#$) ⊕ 𝑟𝑜𝑙"(ℎ[𝑟!#$]) ⊕ ℎ[𝑟!'"#$] 𝑖 > 0
	 (1)

where 𝑟𝑜𝑙"(𝑥) is the result of rotating a 64-bit word 𝑑 times to the left and ℎ is a lookup table

for mapping each character in Σ to a random 64-bit integer. ntHash also calculates the hash value

of the reverse-complement of each 𝑘-mer in the same loop as the forward strand, which leads to

faster canonical hash computation (Mohamadi, Chu, et al. 2016). In our implementation, as Σ =

{A,	C,	G,	T}, ntHash performs DNA hashing and ignores any other character not present in this
alphabet.

2. Updated 𝒌-mer Hashing

In equation (1), since rotating any 𝑥 64 times results in the same value, when 𝑘 > 64, swapping
two distinct characters 64 positions apart will not alter the resulting base hash value. Also, the
rotation terms of two identical characters with a distance of 64 positions cancel each other out,

resulting in the same effect. Our solution to this issue is to replace 𝑟𝑜𝑙 with 𝑠𝑟𝑜𝑙, which has a higher

period. Because modern computers operate on 64-bit words, the period of 𝑠𝑟𝑜𝑙 is maximized when

𝑑# = 31 and 𝑑$ = 33 (lcm(31, 33) = 1023), where lcm stands for the least common multiple.
Although this operation can be further generalized for longer periodicities by increasing the

number of sub-words of co-prime lengths (Table S1), we implement 𝑠𝑟𝑜𝑙 with two sub-words in

ntHash2. The theoretical maximum periodicity of the 𝑠𝑟𝑜𝑙 operation using 64-bit words is
2,042,040 with a pattern of seven sub-words.

 4

Table S1. Generalized optimal split patterns for the 𝑠𝑟𝑜𝑙 function. The maximum number of possible
splits for a 64-bit hash value is seven.

Splits Period Split Bits

- 64 64

2 1,023 31 33

3 9,660 20 21 23

4 62,985 13 15 17 19

5 306,306 9 11 13 14 17

6 855,855 5 7 9 11 13 19

7 2,042,040 3 5 7 8 11 13 17

The hash value for the 𝑖th 𝑘-mer in the sequence 𝑟 is computed by ntHash2 according to the
recursive function:

𝐻! =	

⎩
⎪
⎨

⎪
⎧ 6 𝑠𝑟𝑜𝑙𝑘−1−𝑝𝑜𝑠(ℎ7𝑟𝑝𝑜𝑠8)

𝑘−1

𝑝𝑜𝑠=0

𝑖 = 0

𝑠𝑟𝑜𝑙(𝐻𝑖−1) ⊕ 𝑠𝑟𝑜𝑙𝑘(ℎ[𝑟𝑖−1])⊕ ℎ[𝑟𝑖−1+𝑘] 𝑖 > 0

 (2)

where ⊕ is the bitwise XOR operator, ℎ is a lookup table containing a fixed 64-bit word for each
of the characters in the alphabet Σ. Also, 𝑠𝑟𝑜𝑙 is the split-and-rotate function performed by shifting
the input to the left and replacing the bits in positions 0 and 33 with the bits in positions 32 and 63
prior to the shift, as implemented in Fig. S1.

ntHash2 is also able to compute a hash value for the reverse-complement of the input 𝑘-mer by
modifying the recursion as:

𝐻′! =	

⎩
⎪
⎨

⎪
⎧ 6 𝑠𝑟𝑜𝑙𝑝𝑜𝑠(ℎ7𝑟′𝑝𝑜𝑠8)

𝑘−1

𝑝𝑜𝑠=0

𝑖 = 0

𝑠𝑟𝑜𝑟(𝐻𝑖−1
′ ⊕ ℎ7𝑟′

𝑖−18 ⊕ 𝑠𝑟𝑜𝑙𝑘(ℎ[𝑟′𝑖−1+𝑘])) 𝑖 > 0

 (3)

 5

where 𝑟′ is the complementary base pair of 𝑟 and 𝑠𝑟𝑜𝑟 is the reverse of a single 𝑠𝑟𝑜𝑙, which is

implemented as Fig. S2. In other words, 𝑠𝑟𝑜𝑟(𝑠𝑟𝑜𝑙(𝑥)) = 𝑥.

Additionally, ntHash2 can generate extra hash values for each 𝑘-mer using the function shown

in Fig. S3. Note that 𝑘 is the 𝑘-mer size and 𝑖 > 0 is the index of the newly generated hash value.
MULTISEED and MULTISHIFT are constant 64-bit unsigned integers.

To reduce the work required to compute 𝑠𝑟𝑜𝑙𝑑(𝑥) during runtime, we store results of rotating
the first 33 and last 31 bits of each ℎ[𝑐] (𝑐 ∈ Σ) for all possible rotation counts in two separate pre-

defined arrays called MS_TAB_33R and MS_TAB_331. The pre-computed value of 𝑠𝑟𝑜𝑙𝑑(𝑥) is
the result of joining the corresponding elements of the arrays using the bitwise OR operator. This
functionality is implemented as Fig. S4.

inline uint64_t sror(const uint64_t x) {

 uint64_t m = ((x & 0x200000000ULL) << 30) | ((x & 1ULL) << 32);

 return ((x >> 1) & 0xFFFFFFFEFFFFFFFFULL) | m;

}

Fig. S2. Implementation of the 𝑠𝑟𝑜𝑟 function.

inline uint64_t nte64(const uint64_t h_val, const unsigned k, const unsigned i) {

 uint64_t t_val = h_val;

 t_val *= (i ^ k * MULTISEED);

 t_val ^= t_val >> MULTISHIFT;

 return t_val;

}

Fig. S3. Generating extended hash values for each 𝑘-mer.

inline uint64_t srol(const uint64_t x) {

 uint64_t m = ((x & 0x8000000000000000ULL) >> 30) |

 ((x & 0x100000000ULL) >> 32);

 return ((x << 1) & 0xFFFFFFFDFFFFFFFFULL) | m;

}

Fig. S1. Implementation of the 𝑠𝑟𝑜𝑙 function.

 6

Finally, we speed up hashing the first 𝑘-mer by pre-computing the hash value of every possible

𝑚-mer of length 𝑚 ≤ 4 in four 4𝑚 arrays. To form 𝐻0, we first iterate over the 4-mers of the first

𝑘-mer and join the respective pre-calculations using 𝑠𝑟𝑜𝑙 and XOR operations. If 𝑘 is not divisible
by 4, we fetch the value of the last 𝑚 characters from the array corresponding to 𝑚 = 𝑘%64.

Naturally, split-rotation is a more complex function compared to simple rotation and requires a

higher number of instructions in the CPU. Calling 𝑠𝑟𝑜𝑙 1010 times requires approximately 9.4 s to

execute, whereas the same number of executions takes around 6.9 s for 𝑟𝑜𝑙. However, the
numerous implementation optimizations we explained in this section compensate for the decrease
in performance. Calling the forward hash functions in ntHash1 and ntHash2 106 times takes 6.3 s
and 6.4 s respectively for random 100-mers on average for 3 test repeats. In the end, the uniformity
(Section 3) and room for length increasing that split-rotation brings to ntHash2 is valuable for
bioinformatics applications and the slight performance change is negligible in most cases.

3. Uniformity of the Canonical Hash Value

To obtain a single representation for the forward and the reverse complement hash value of 𝑘-
mers, we define a canonical hash value. This feature is most useful in 𝑘-mer counting algorithms.
In most bioinformatics applications, the lexicographically smallest between the forward and
reverse-complement is selected as the canonical 𝑘-mer. Accordingly, the canonical hash value is
defined as the minimum of the hashes computed for the forward and reverse-complement of each
𝑘-mer in ntHash (Mohamadi, Chu, et al. 2016).

While ntHash was shown to distribute output values uniformly in the 64-bit hash space (Birol,
Mohamadi and Chu 2018), we changed the canonical hashing mechanism in ntHash2 to improve
its performance and uniformity. Specifically, we compute the canonical hash value as the sum of
the hashes generated for the 𝑘-mer’s forward and reverse-complement. Here, we provide
mathematical justification for the selection of addition for canonical hashing.

First, we show that the hash value of the forward and reverse-complements of the sequences
are independently uniform. This was shown to be true in ntHash for the 𝑟𝑜𝑙 operator (Birol,

inline uint64_t srol(const unsigned char c, const unsigned d) {

 return (MS_TAB_31L[c][d % 31] | MS_TAB_33R[c][d % 33]);

}

 Fig. S4. Fetching pre-computed 𝑠𝑟𝑜𝑙 values.

 7

Mohamadi and Chu 2018). To do so for ntHash2 and 𝑠𝑟𝑜𝑙, we generate 106 random 𝑘-mers (𝑘 =

100 for this test) and plot the histogram of the generated hashes by counting the values separated
in 1000 bins. As illustrated in Fig. S5, both the forward and reverse-complement hash function are
uniformly distributed (𝑈 (0,1)).

Moreover, we perform the Kolmogorov–Smirnov (K-S) test (Massey Jr. 1951) to compare the
distribution of the normalized hash values with 𝑈 (0,1). According to the test statistics 𝐷 = 0.0009
and 𝐷 = 0.0008 and p-values of 𝑝 = 0.48 and 𝑝 = 0.39 for the forward and reverse strand hashes
respectively, we fail to reject the null hypothesis that the distributions are not uniform. Therefore,
the distributions of the hashes generated for the forward and reverse-complements of the 𝑘-mers
are statistically indistinguishable from 𝑈 (0,1).

After observing a uniform distribution for the output hash values, we prove that in the case of
ntHash2, the summation of two uniform distributions results in another uniform distribution. The
probability density function (PDF) of the sum of 𝑛 independent 𝑈 (0,1) random variables is equal
to the Irwin-Hall distribution (Johnson, Kotz and Balakrishnan 1995):

𝑓((𝑥) = 	
1

2(𝑛 − 1)!
B(−1)" C

𝑛
𝑘
D (𝑥 − 𝑘))#$sgn(𝑥 − 𝑘)

)

"*%

(4)

where sgn(∙) is the sign function. The PDF is shown in Fig. S6. Note that based on the central limit
theorem, the Irwin-Hall distribution estimates a normal distribution as 𝑛 increases.

Fig. S5. Histogram of the generated hashes for forward and reverse-complement sequences. Normalized
hash values are shown on the x-axis.

 8

In ntHash2, we have a special case of the Irwin-Hall distribution where 𝑛 = 2:

𝑓𝑋(𝑥) = E
𝑥 0 ≤ 𝑥 < 1

2 − 𝑥 1 ≤ 𝑥 < 2
(5)

According to the fact that ntHash2 operates in the 64-bit unsigned integer space, if the canonical

hash value is greater than 2%&, integer overflow causes the values to wrap around. The summation

of two 64-bit integer values 𝑋 and 𝑌 is simply performed as 𝑚𝑜𝑑(𝑋 + 𝑌, 2%&) in many computer
architectures, and if not, we ensure that this is how it is performed. In that case, the line segment

𝑓'(𝑥) = 2 − 𝑥 in Fig. S6 for 𝑛 = 2 is transferred to 0 ≤ 𝑥 < 1 and the superposition of the two
line segments creates a uniform distribution.

Formally, the wrap around version of the normalized operation can be formulated as

𝑥′ = E
𝑥 0 ≤ 𝑥 < 1

𝑥 − 1 1 ≤ 𝑥 < 2
(6)

Because the two cases in 𝑥′ are mutually exclusive, its probability distribution can be written as

𝑓(!(𝑥′) = 𝑓((𝑥′) + 𝑓((𝑥′+ 1) = 1 (7)

defining a uniform distribution.

Hence, the probability distribution of the canonical hash value defined as the summation of the
forward and reverse hashes is uniform.

Other canonical hashing operators tested in previous releases of ntHash are shown in Fig. S7.
We also tested employing extended hashes in various applications. It is observed that 𝑚𝑖𝑛 without
extended hash generation is the only operator that is non-uniform. To make ntHash2 uniform when
using 𝑚𝑖𝑛 as the canonical hash operator, a second hash value must be generated which increases

Fig. S6. Probability density function of the Irwin-Hall distribution generated by simulation.

 9

hashing time. On the other and, using XOR for generating canonical hash values results in higher
hash collision rates, as the computation of forward and reverse hash values already consist of XOR
operations between the characters, and XORing the polynomials of the strands will cause multiple
terms to be cancelled out. By using addition as the canonical hash operator in ntHash2, we benefit
from fast computation, low collision rates, and high uniformity without the need to generate extra
hashes.

4. Spaced Seeds Hashing Algorithm

We summarize our hashing algorithm in the pseudocode presented in Fig. S8. The first stage of
our hashing algorithm consists of parsing the input seed strings to blocks and monomers, as
implemented in parse_seed. Note that we repeat the same process for blocks of do not cares and
use the ‘0’ blocks as masks if the predicted workload is less than blocks of care positions. We

Fig. S7. Histograms of canonical hashes generated with min, add, and xor operators. 𝐻(!) refers to the
𝑖th hash value generated from each 𝑘-mer.

 10

generate a hash value for the first 𝑘-mer with base_hash. Forward and reverse hash values before

encoding the monomers are stored in 𝐻(and 𝐻𝑏′ respectively for future function calls. Finally,

1: function parse_seed(seed_string):
2: 𝑏𝑙𝑜𝑐𝑘𝑠, 𝑚𝑜𝑛𝑜𝑚𝑒𝑟𝑠, 𝑠𝑡𝑎𝑟𝑡, 𝑖𝑠_𝑏𝑙𝑜𝑐𝑘 = [], [], 0, true
3: for 𝑖 = 0 → seed_string. 𝑙𝑒𝑛𝑔𝑡ℎ():
4: if seed_string[i].𝑖𝑠_𝑐𝑎𝑟𝑒() and not 𝑖𝑠_𝑏𝑙𝑜𝑐𝑘:
5: 𝑖𝑠_𝑏𝑙𝑜𝑐𝑘 = true
6: 𝑠𝑡𝑎𝑟𝑡 = 𝑖
7: else if not seed_string[i].𝑖𝑠_𝑐𝑎𝑟𝑒() and is_block:
8: if 𝑖– 𝑠𝑡𝑎𝑟𝑡 > 1:
9: add <𝑠𝑡𝑎𝑟𝑡, 𝑖> to 𝑏𝑙𝑜𝑐𝑘𝑠
10: else:
11: add 𝑖 to 𝑚𝑜𝑛𝑜𝑚𝑒𝑟𝑠
12: 𝑖𝑠_𝑏𝑙𝑜𝑐𝑘 = false
13: return 𝑏𝑙𝑜𝑐𝑘𝑠, 𝑚𝑜𝑛𝑜𝑚𝑒𝑟𝑠
14:
15: function base_hash(sequence, k, blocks, monomers): // k is the spaced seed’s length
16: hash_results = {𝐻 , 𝐻′, 𝐻𝑏, 𝐻𝑏

′ }
17: for 𝑝, 𝑞 ∈ 𝑏𝑙𝑜𝑐𝑘𝑠:
18: for 𝑖 = 𝑝 → 𝑞:
19: 𝐻 = 𝐻 ⊕ 𝑠𝑟𝑜𝑙(𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒[𝑖], 𝑘 − 𝑖 − 1)
20: 𝐻′ = 𝐻′ ⊕ 𝑠𝑟𝑜𝑙(𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒[𝑖]′, 𝑖)
21: 𝐻𝑏, 𝐻𝑏

′ = 𝐻, 𝐻′
22: for 𝑖 ∈ 𝑚𝑜𝑛𝑜𝑚𝑒𝑟𝑠:
23: 𝐻 = 𝐻 ⊕ 𝑠𝑟𝑜𝑙(𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒[𝑖], 𝑘 − 𝑖 − 1)
24: 𝐻′ = 𝐻′ ⊕ 𝑠𝑟𝑜𝑙(𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒[𝑖]′, 𝑖)
25: return hash_results
26:
27: function slide_hash(sequence, k, blocks, monomers, *hash_results):
28: 𝐻𝑏 = 𝑠𝑟𝑜𝑙(𝐻𝑏)
29: for 𝑝, 𝑞 ∈ 𝑏𝑙𝑜𝑐𝑘𝑠:
30: 𝐻𝑏 = 𝐻𝑏 ⊕ 𝑠𝑟𝑜𝑙(𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒[𝑝], 𝑘 − 𝑝) ⊕ 𝑠𝑟𝑜𝑙(𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒[𝑞], 𝑘 − 𝑞)
31: 𝐻𝑏

′ = 𝐻𝑏
′ ⊕ 𝑠𝑟𝑜𝑙R𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒[𝑝]′, 𝑝S⊕ 𝑠𝑟𝑜𝑙(𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒[𝑞]′, 𝑞)

32: 𝐻𝑏
′ = 𝑠𝑟𝑜𝑟(𝐻𝑏

′)
33: 𝐻 , 𝐻′ = 𝐻𝑏, 𝐻𝑏

′
34: for 𝑖 ∈ 𝑚𝑜𝑛𝑜𝑚𝑒𝑟𝑠:
35: 𝐻 = 𝐻 ⊕ 𝑠𝑟𝑜𝑙(𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒[𝑖], 𝑘 − 𝑖 − 1)
36: 𝐻′ = 𝐻′ ⊕ 𝑠𝑟𝑜𝑙(𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒[𝑖]′, 𝑖)

Fig. S8. Pseudocode of the spaced seed hashing procedure.

 11

subsequent hashes are computed using the slide_hash function.

5. Additional Features

Here, we provide a list of new features included in ntHash2:

• Streaming: Users can feed input characters to ntHash2 during runtime via the

BlindNtHash class. Only the first 𝑘-mer needs to be given to the constructor. Following
hash values are generated by passing the next character to the roll(char_in) function.

• Rolling Back: NtHash classes provide a roll_back function that reverts the previous roll
operation. Bi-directional traversal is possible using this function.

6. Spaced Seeds Used in Experiments

The seeds used in experiments of the main text are provided in Table S2. Seeds 1 and 2 show
the upper and lower bounds for the number of blocks and monomers. Seed 3 is designed for
maximizing the hit probability (Ounit and Lonardi 2016). Seeds 4 and 5 are randomly generated
strings with an average number of blocks and monomers. Seed 6 is designed to maximize the
sensitivity (Hahn, et al. 2016).

Table S2. Seed set for the main text’s experiments.

Seed1 1111111111000000000011111111111

Seed2 1010101010101010101010101010101

Seed3 1111011101110010111001011011111

Seed4 1111101111101000111111011110011

Seed5 1111000111111010010101010100111

Seed6 1111110101101011100111011001111

7. Extended Experiments and Results

To show that ntHash2 works well when used in tools that rely on 𝑘-mer or spaced seed hashing,
we integrated it in our de novo genome assembler ABySS 2.4.3 (Jackman, et al. 2017) and
assembled data from the N2 strain of C. elegans (SRA: DRR008444) and the human individual
NA24385, i.e. the Ashkenazi son (SRA: SRR11321732) from the Genome in a Bottle project

 12

(Zook, et al. 2016), with ~58x coverage short read data. ABySS parameters are presented in Table
S4. Evaluation results are obtained using QUAST (Gurevich, et al. 2013). Tables S3 and S4 show
that using ntHash2 as a substitute for the previous version of ntHash does not negatively impact
assembly quality. We observe that improved uniformity does not lead to a significant increase in
assembly quality in this experiment due to the fact that ntHash2 operates on a very low level of
the assembly algorithm.

Table S3. Assembly evaluation results for C. elegans data.

ABySS
Hash
Function

N50
length
(bp)

NG50
length
(bp)

NGA50
length
(bp)

Number of
Misassemblies

Number of
Local
Misassemblies

Genome
Fraction

Total Length

ntHash 35,475 33,494 31,208 344 186 95.06% 96,102,680

ntHash2 35,452 33,470 31,218 342 186 95.06% 96,102,377

Table S4. Assembly evaluation results for H. sapiens NA24385 data.

ABySS
Hash
Function

N50
length
(bp)

NG50
length
(bp)

NGA50
length
(bp)

Number of
Misassemblies

Number of
Local
Misassemblies

Genome
Fraction

Total Length

ntHash 123,763 106,978 103,290 1,441 1,015 92.53% 2,742,575,128

ntHash2 123,716 106,810 103,255 1,439 1,014 92.53% 2,742,543,401

Table S5. ABySS parameters for the assembly experiments.

Dataset k kc l s q B H S N

C. elegans 80 2 40 1000 15 5G 4 1000-10000 15

H. sapiens
NA24385

112 3 40 1000 15 100G 4 1000-10000 9

We also used the hashes generated by ntHash2 in our 𝑘-mer counting tool, ntCard (Mohamadi,
Khan and Birol, ntCard: a streaming algorithm for cardinality estimation in genomics data 2017)
on the same C. elegans dataset in the assembly experiment. Results with hashes generated with
ntHash2 and ntHash1 are compared with the gold standard, DSK (Rizk, Lavenier and Chikhi
2013), in Fig. S9, where it is observed that using ntHash2 with ntCard results in similarly accurate

 13

profile estimations as of ntHash (0.021% absolute error vs. DSK on average). Again, although
ntHash2 is a more uniform hash funcation than ntHash1, some applications such as ntCard may
not show an immediate quality gain for all datasets and experiments.

Fig. S9. C. elegans 𝑘-mer profiles generated with ntCard using both the previous and new versions of

ntHash (k=80). ntCard is also able to estimate 𝑘-mer profiles with low error when integrated with ntHash2.

Our final experiment shows an application of spaced seed hashing in long-read data. We
demonstrate the effect of using spaced seeds for estimating the coverage of a dataset with ntCard.
By increasing the number of base-pairs in the k-mers, the coverage profiles become more sensitive
to errors, especially in datasets with longer reads and higher error rates such as the CHM13 dataset1
with a coverage profile shown in Fig. S10. The data used in this experiment contains approximately
56.8x nominal coverage of the PacBio HiFi data used in the assembly of the telomere-to-telomere

human genome (Nurk et al., 2022). Here, we use gapped spaced seeds with lengths of 𝑙 bases and

𝑤 care positions. The seeds are built as two equal and contiguous care blocks separated by Δ =
𝑙 − 𝑤 do not care positions. By using gapped spaced seeds with the same lengths and different
number of bases included as care positions, the peaks of the profiles remain in roughly the same
position. On the other hand, by increasing the number of bases in k-mers, the peak gets shifted to
the right. In other words, utilizing spaced seeds for cardinality estimation results in more stable
graphs because of the level of error-tolerance they have compared to contiguous k-mers.

1 Available at https://github.com/marbl/CHM13

 14

Fig. S10. Dataset coverage estimation using ntCard with k-mers and spaced seeds. The plot on the right

is a zoomed-in version of the peak in the count range between 34 and 64. Spaced seeds are more stable
compared to k-mers with the same number of bases and are more reliable for coverage estimation in long-
read datasets.

References

Birol, Inanc, Hamid Mohamadi, and Justin Chu. 2018. "ntPack: A Software Package for Big Data
in Genomics." IEEE/ACM International Symposium on Big Data Computing (BDC).
IEEE. 41-50.

Gurevich, Alexey, Vladislav Saveliev, Nikolay Vyahhi, and Glenn Tesler. 2013. "QUAST: quality
assessment tool for genome assemblies." Bioinformatics 29 (8): 1072-1075.

Hahn, Lars, Chris-André Leimeister, Rachid Ounit, Stefano Lonardi, and Burkhard Morgenstern.
2016. "rasbhari: Optimizing Spaced Seeds for Database Searching, Read Mapping and
Alignment-Free Sequence Comparison." PLOS Computational Biology (Public Library of
Science) 12 (10): 1-18.

Jackman, Shaun D., Benjamin P. Vandervalk, Hamid Mohamadi, Justin Chu, Sarah Yeo, S. Austin
Hammond, Golnaz Jahesh, et al. 2017. "ABySS 2.0: resource-efficient assembly of large
genomes using a Bloom filter." Genome Research (Cold Spring Harbor Lab) 27 (5): 768-
777.

Johnson, Norman L., Samuel Kotz, and N. Balakrishnan. 1995. Continuous Univariate
Distributions Volume 2, Second edition. Wiley.

 15

Massey Jr., Frank J. 1951. "The Kolmogorov-Smirnov Test for Goodness of Fit." Journal of the
American Statistical Association (Taylor & Francis) 46 (253): 68-78.

Mohamadi, Hamid, Hamza Khan, and Inanc Birol. 2017. "ntCard: a streaming algorithm for
cardinality estimation in genomics data." Bioinformatics 33 (9): 1324–1330.

Mohamadi, Hamid, Justin Chu, Benjamin P. Vandervalk, and Inanc Birol. 2016. "ntHash:
recursive nucleotide hashing." Bioinformatics 32 (22): 3492-3494.

Nurk, Sergey, Sergey Koren, Arang Rhie, Mikko Rautiainen, Andrey V. Bzikadze, Alla
Mikheenko, Mitchell R. Vollger, et al. “The Complete Sequence of a Human Genome.”
Science 376, no. 6588 (2022): 44–53. https://doi.org/10.1126/science.abj6987.

Ounit, Rachid, and Stefano Lonardi. 2016. "Higher classification sensitivity of short metagenomic
reads with CLARK-S." Bioinformatics 32 (24): 3823–3825.

Rizk, Guillaume, Dominique Lavenier, and Rayan Chikhi. 2013. "DSK: k-mer counting with very
low memory usage." Bioinformatics 29 (5): 652–653.

Zook, Justin M., David Catoe, Jennifer McDaniel, Lindsay Vang, Noah Spies, Arend Sidow,
Ziming Weng, et al. 2016. "Extensive sequencing of seven human genomes to characterize
benchmark reference materials." Scientific Data (Nature) 160025.

