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Fig. S1. Id2 gene expression reconstructed from Allen Developing Mouse brain slice data. 
(A) Allen ISH images are colored and sagitally sliced, in contrast to our data which are 
monochrome stains of coronally sliced brains. In the Allen data, dark purple indicates Id2 gene 
expression. (B) Extracting the signal from the image. The Allen images are provided with an 
associated image which shows 'expressing pixels' in a colormap but without information 
allowing the expression levels to be converted to a number. We set about determining a 
technique to convert from color values in the original images to a signal value. (i) Pixels plotted 
in red-green-blue 3D space. Allen-specified non-expressing pixels have a green outline, 
expressing pixels have a purple outline. We made a linear fit to the expressing pixels. (ii) To 
achieve this, we rotated the data in color space until the linear fit through the expressing pixels 
lies on the 'blue' axis. We allowed some variation in color about the fit by encircling the axis 
with an ellipse. Pixels falling within this elliptical tube were deemed to be 'expressing'. (iii) The 
expression level is inversely proportional to the brightness of the pixel and we set a cut-off 
brightness above which the expression is set to 0.  (C) The resulting signal corresponding to 
panel A. (D) Three dimensional Layer II-III expression surfaces for the Allen data (left) and our 
data. Key: a: anterior, p: posterior, m: medial, l: lateral. (E) Digitally unwrapped surfaces 
generated from the 3D data in D. Both datasets have the same anatomically determined 
landmarks and the Allen data has been linearly transformed to match our data, so length scales 
are unified. The Allen dataset is partial (some lateral slices are missing) and so the Allen map 
appears 'wide and narrow'. The dotted rectangle marks the region for which both maps have data. 
Visual inspection of the content of the rectangles suggests that there is good correlation between 
the images, with a dark region of low expression from the bottom left to the middle right 
apparent in both maps. A Pearson correlation of the pixel values within the rectangle of 0.42 
lends support for this interpretation. References: Lein, E.S. et al. (2007) Genome-wide atlas of 
gene expression in the adult mouse brain, Nature 445: 168-176. doi:10.1038/nature05453. 
Image used for E18.5 Id2 experiment: https://developingmouse.brain-
map.org/experiment/show/100076267. Slice shown in panels A and C: http://api.brain-
map.org/api/v2/image_download/101267565. 
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Fig. S2. Percent Change Correlations. Line graphs (left) show Id2 expression profiles of layers 
through a single 200uM profile taken from post-transform posterior cortex: Layer II/II (L23) 
gray, Layer V (L5) purple, Layer VI (L6) green. Vole (solid line). Mouse (dotted line). Line 
graphs are presented as mean with bootstrapped 95% confidence intervals. Scatter plots (right) 
with line of best fit and 95% confidence intervals show correlations between expression percent 
change in mice (x-axis) compared to voles (y-axis) at each location along the expression profile 
of each layer. 
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Fig. S3. Depth profiles for laminar analysis. (A) User-supplied curve is shown in green, and 
sampling boxes in yellow. The linear distance along the green curve is marked in black 
annotations (units are mm). The boxes have depth 0.6 mm. (B) Gene expression as a function of 
box depth for sample boxes at 1 through 6 mm of linear distance along the green line in A. Grey 
dots are the individual pixel values of the pixels within the sampling box, the blue line is a 
histogrammed mean expression (100 bins). (C) A heat map of Id2 gene expression as a function 
of linear distance along the green curve in A. The depth values are extracted from the blue 
histogram values show in B for 6 selected linear distances. 
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Fig. S4. Collecting layer-specific data using Stalefish We defined individual curves to collect 
expression data from different cortical layers. Here, we show Frame 42 of 54 for the P9 Mouse 
‘Pup 5’ for the three curves that we defined to collect Id2 expression from layer 2/3 (A), layer 5 
(B) and layer 6 (C). The upper row of images show the user-defined points for the curves, the 
lower row indicates the curve fit in green and the sample boxes in yellow. Defining three 
different curves allowed us to closely follow the shape of each layer. 
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Fig. S5. A demonstration of the use of Stalefish in an alternative brain structure. Our initial 
motivation for developing the Stalefish technique was to learn about interspecies differences in 
gene expression in the mammalian neocortex. The ability to examine depth-based expression is 
ideal for studying layer-specific expression in the neocortex. However, the technique is 
applicable to any structure in the body and so we applied it to Id2 gene expression in the spiral 
structure of the Hippocampus. (A) Spiral sampling curves allow the digital unwrapping of the 
hippocampus to examine and compare Id2 expression in mouse and vole. Curves were marked 
out in a clockwise direction; the start is marked with S and the end of each curve is marked with 
E. Axismarks were carefully chosen (visible the Mouse DS4 examples) to provide 'zero-angle' 
marks along the dorso-lateral Hippocampus. (B) Unwrapped hippocampi for three mouse brains. 
Each brain was marked with three landmarks, although these were based on gene expression 
rather than on specific anatomical features. The landmarks have allowed the mouse samples to 
be transformed onto the coordinate frame of one of the vole brains (66_6B). Assuming that 
illumination and stain response are similar for each dataset, the signals have been normalized as 
a group (the colorbar applies to all three maps). The Id2 expression in the dentate gyrus is visible 
in the top half of the maps; there is also widespread expression in the lower half of each map.  
(C) Similar unwrapped hippocampi for the vole, transformed onto the coordinate frame of 
sample 66_6B. The vole hippocampus has strong expression in the dentate gyrus, but minimal 
expression in the bottom half (CA1) of the maps. (D) Pearson correlation coefficients for mouse 
to mouse, vole to vole and mouse to vole comparisons show that the maps are well correlated 
within a species group, but that the expression present in the lower half of the maps for mouse 
destroy the correlation between species. Error bars are standard deviations for the correlations of 
all possible map pairs.  
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Fig. S6. Thalamic gene expression in the ventral posterior nucleus in mouse. (A) Coronal 
section of vole brain tissue hybridized for RZRβ mRNA. Green circle denotes which region was 
analyzed using the freehand tool in Stalefish. (B) 3D graph representing various sections 
(Anterior-Posterior Plane). Green highlighted section is data retrieved from (A). Axes denote the 
3 spatial dimensions of the brain. (C) Average expression maps (n=3 per slice), of serial coronal 
sections (akin to those shown in A, but averaged over multiple cases), for RZRβ and Id2. Note 
how RZRβ expression is limited to the lateral portion of VP (black number 1), while Id2 is 
restricted to the dorsal aspect of VP (black number 2). (D) A simple principal components 
analysis showing how dimensionality reduction can be used to show the relationship between the 
spatial expression of Id2 (black) and RZRβ (grey).  
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Fig. S7. Defining putative cortical regions from the Allen P56 mouse atlas  
From https://atlas.brain-map.org/atlas?atlas=602630314, we obtained anatomically annotated 
atlas slices of a P56 mouse brain (we used a script which queried the Allen HTTP API). A We 
loaded the images into Stalefish and defined cortical curves that would pick out the colors that 
define the different anatomical regions. We edited the images to modify the colors for the barrel 
cortex and area V1 (to purple and red, respectively) to make them easy to distinguish. The inset 
shows that our sample boxes were set to be very shallow, picking out the identity near the 
cortical surface. (B) After defining the same landmarks as for our own mouse and vole data, we 
were able to generate a 3D surface with anatomical region info. (C) The unwrapped cortical map. 
(D) Finally, we transformed our P3 and P9 mouse and P1 and P7 vole RZRβ and Id2 expression 
data onto the P56 mouse brain map shown in C. D shows  
P1 Vole Id2 expression in layer 5 (dataset 64_8A_id2_L5) with freehand-drawn sampling loops 
at the location of the barrel cortex and area V1, as defined by the P56 atlas. (E) The expression 
values found in this way are given in two tables, one for Id2 expression, the second for RZRβ 
expression. Values are given as the regional expression signal divided by the overall mean 
expression signal across the map (and are thus dimensionless). The numbers in brackets give the 
standard deviations. BC: barrel cortex; V1: primary visual cortex; L2/3: cortical layers 2 and 3 
L5: cortical layer 5 L6: cortical layer 6. 
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Fig. S8. Defining a secondary Curve to define sample box depth The technique of sampling 
from a fixed-depth box can result in sample box overlap, especially when analyzing highly 
curved structures. We investigated an extension to our technique, in which a second curve is 
defined, beyond which sample boxes will not extend. To determine whether this extension was 
useful, we applied it to the Hippocampus data, selecting one mouse dataset to modify. A shows 
the primary curve for slice 27 in the mouse DS4 data in light green, with the secondary curve 
shown in slightly darker green. Inset (i) shows fixed-depth sample boxes. Each sample box is 
created from the normal vector to the primary curve which extends 60 pixels. Inset (ii) 
demonstrates the use of the secondary curve. If the normal vector defining the edge of a sample 
box contacts the secondary curve, it ends at a depth < 60 pixels. Sample box overlap is reduced 
and fewer pixels are double-sampled (although some overlay remains near the sharpest part of 
the curve). B shows the flattened maps obtained from the DS4 slices both without (left and with 
(right) the secondary curve. The use of a secondary curve in this case makes very little difference 
to the flattened map obtained.  
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Fig. S9. Reconstructing barrels from the Allen P56 mouse atlas It is possible to obtain 
annotated brain atlases for mouse, such as those from the Allen Brain Institute. Here, we 
downloaded the ‘Average Template’ images for the P56 mouse coronal atlas, id 602630314 
(https://atlas.brain-map.org/atlas?atlas=602630314) and loaded the images into Stalefish. (A) As 
the whisker barrels in cortical layer 4 were clearly visible (dashed ellipse) we proceeded to 
extract a surface from the dataset to display the map. We traced curves around the cortical 
surface (blue/red/green lines) and set the sampling boxes to start and end at fixed depths from the 
curve, covering the region in which the barrels were visible. The resulting surface, shown in (C, 
i)  reveals an ordered whisker barrel map. (B) To compare the maps obtained by tracing the 
anatomy directly (as in A) and those obtained using anatomical annotations from the atlas, we 
loaded the annotated images into Stalefish and drew primary curves (i & ii) following the 
annotated boundaries between L2/3 and L4, with secondary curves marking the bottom of the 
sampling region (as in Fig. S8). These curves were then overlaid upon the ‘Average Template’ 
images (iii) and the 3D surface map was created (C ii). (D) shows the 2D maps obtained by each 
method, and indicates that the correlation between the images was 0.90. The ‘dual curves’ 
method extracts slightly crisper data, with both the distinct barrels that emerge with either 
method and also structures to the rostral side of the barrel field. This straightforward method 
produces a cortical map that compares well with those presented in eLife 2017;6:e18372 doi: 
10.7554/eLife.18372 . 
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Fig. S10. Using RZRβ expression to define cortical regions. Here, we used  RZRβ expression 
to define sampling regions in Mouse and Vole at each age. Id2 and RZRβ expression was then 
sampled in these areas, with results given in the two tables. As in Fig. S7, values are given as the 
regional expression signal divided by the overall mean expression signal across the map and are 
dimensionless.   
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Supplementary Text 

 

Introduction 

This document provides an extended description of the Stalefish analysis process described in 

the main paper and available at https://github.com/ABRG-Models/Stalefish. Because the 

technique requires no special equipment, it is accessible to any lab already equipped to image 

histologically processed brain slices. To help other researchers create similar analyses using their 

own data, in the first section of this document, we present a tutorial style description of the 

process used to create coordinate-centered expression maps from a set of brain slices along with 

details of the algorithms used in the program. 

 

The central idea of the process is to fit smooth, anatomically relevant curves to the structures 

visible in the 2D slices, sampling the image luminance in the region below the curve at equally 

spaced locations along its length. These curved sets of 'luminances below the curve' for each of 

the slices are then joined together so that a 3D surface is created. An algorithm makes an 

approximation to the 'pre-sliced' alignment of the individual slice images, by aligning each curve 

with respect to its neighbor (the best alignment is achieved if, during the experimental procedure 

a visible alignment mark is made by inserting a needle through the brain mount material). The 

3D surface is then 'digitally unwrapped'. The researcher defines a 'brain axis' and an angle about 

this axis which forms a 'center line' through the surface. The curves are 'digitally straightened', 

each one being clamped to the center line. The resulting 2D map can be linearly transformed so 

that its coordinates match those of another brain. This is achieved by marking three anatomically 

identifiable locations on each brain, ideally close to the curve surfaces. The linear transform 
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required to transform one triplet of coordinates into the template coordinates is computed and 

then applied also to the luminance 'data pixel' coordinates. Finally, the map of irregularly sized, 

quadrilateral data pixels is resampled onto a Cartesian grid of square pixels making a regular, 

quantitative image which is easy to submit to standard point-by-point analysis methods. 

 

Although we present this technique as it is applied in the main paper to in-situ hybridization 

(ISH) stains for the genes Id2 and RZRB, it could be applied to any stain in which there is a 

reliable, monotonic relationship between image luminance and the value of a variable of interest. 

For example, this technique could be applied to cytochrome oxidase or nissl stains. Although the 

data presented in this work is based on monochrome ISH images, the software can also be used 

to interpret colored stains. As a demonstration, we include 3D reconstructions of data from the 

Allen Developing Mouse Brain Atlas. 

 

In addition to a detailed description of the process in the first two sections, we provide here a 

step-by-step protocol for capturing expression surfaces from slice sets, and we present a number 

of additional analyses and visualizations to demonstrate what can be achieved once a set of 

expression maps have been transformed onto a common coordinate system. 

 

Sample preparation and image capture 

Samples are prepared in a conventional manner, with brains (Fig S11 A) fixed in gelatin-albumin 

(Fig S11 B) and sliced on a vibratome. The one extension to the usual method is to optionally 

introduce 'alignment landmarks' into the samples. This was achieved by positioning a straight, 

21-gauge needle through the mold in which brains were fixed in the gelatin-albumin solution 
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(dissolved in 1X phosphate buffered saline and fixed with 25% glutaraldehyde). When the 

gelatin-albumin fixing medium solidified, the needle was removed which resulted in the circular 

marks (visible in Fig S11 C), which shows the resulting brain slice images. This sequence of 

images serves to illustrate the wide range of shapes formed by the brain as the slices are viewed 

in a rostral (left) to caudal (right) progression. 

 

 
Fig. S11. (A) whole vole brain (B) The brain is positioned ready to be set in gelatin-albumin 
solution, with a needle in place to define the circular alignment landmarks (C) a selection of the 
51 coronal sections into which another vole brain was sliced illustrating the diversity of 
structural shapes of the cortical region. 
 

Bezier curves 

To allow the researcher to define arbitrarily shaped, smooth curves that follow anatomical 

feature lines such as those shown in Fig. 1, B-D (main paper), we employed Bezier curves; a 

form of polynomial curve. Commonly used in drawing software, Bezier curves are typically 

defined by start and end locations and a series of user-editable 'control points' that lie away from 

the curve and determine the curvature. However, it's also possible to define a Bezier curve that 

best fits a sequence of points. The control points still exist but are analytically determined from 

the points, and thus can be assigned automatically once the user has identified several points 

along the edge of an anatomical feature. The number of 'user points' in the sequence determines 

the order of the polynomial which forms the Bezier curve. Three points gives a quartic curve; 

four give a cubic and N+1 points give an Nth order curve. In principle, an unlimited number of 
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user points could be placed along an anatomical structure and an Nth order Bezier curve fitted to 

them. In practice, the Bezier curve suffers from overfitting for N greater than about 5, and the 

curve becomes 'wobbly', passing exactly through the N+1 user points, but failing to follow the 

smooth curve of the structure (Fig. S12 A). However, a low order polynomial curve is limited in 

the complexity of the curve it can fit (Fig S12 B). The most effective curve fitting is achieved for 

low order polynomials applied to 'short sections' of an overall curve as in Fig. S12 C. This fails 

to fulfil our need to fit smooth curves to structures with complex shapes, such as the 

hippocampus shown in Fig S12.  

 

 
 
Fig. S12. (A) This 7th order Bezier curve demonstrates the problem of overfitting. The curve 
passes through each of the blue points perfectly, but fails to follow the real shape of the structure 
that the points are marking out. (B) The converse issue of underfitting, where a 2nd order curve 
cannot reproduce the curve around the Hippocampus. (C) A 3rd order curve fits a shorter section 
of the hippocampal curve. 
 
One way to fit curves to complex structures while avoiding overfitting is to allow the user to 

chain several separate Bezier curves together, with each curve spanning a section of the structure 

that is short and 'uneventful' enough to be fit by a low-order polynomial. However, this presents 

the immediate problem that two curves joined together at a common point are not guaranteed to 

have an identical gradient at the join. As we wish to sample from boxes which extend along the 
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normal to the curve, this would lead to non-parallel sampling boxes at the joins. To join the 

Bezier sub-curves, and provide an overall smooth curve with no discontinuities in its gradient, 

we used a simple algorithm which modifies the control points closest to the join of the two 

Bezier curve segments in order that the gradient at the end of one matches the gradient at the 

start of the next. The algorithm is described visually in Fig. S13. In practice, the researcher adds 

two or three new points along the curve of the structure she is tracing (we did not fix the order of 

the individual 'sub-curves', allowing the user to experiment), presses a key to 'commit' the curve, 

then adds a few more points for another curve, repeating the process until the entire structure has 

been traced. It does not always produce an excellent result at the first attempt, but by cancelling 

and re-drawing points that express the curve of the structure, the researcher can quickly find a 

good fit. We have found this to be effective and straightforward enough to allow a structure to be 

traced across a set of 50 slices within about one hour. In future work, it may be possible to 

further optimize the modification of the control points at the join, to minimize the deviation of 

the modified curve from the user points.  

 

 
Fig. S13. Two cubic Bezier curves are shown in blue, fit to the black, user-defined points. The 
blue circles are the analytically determined Bezier control points that provide the best fit to the 
user defined points. To eliminate the discontinuity in the gradient at the join, the two closest 
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control points are rotated by equal and opposite angles about the join (green arrows) until they 
and the join lie on a straight line. The resulting, modified Bezier curve is shown in red. The 
modified curve no longer passes through all of the user supplied control points, but it has a 
smooth gradient throughout. 
 
Sample Boxes 

Once the curves have been defined, the Stalefish visualization tools can be used to display the 

sample boxes. N sample boxes are defined by drawing N+1 equally spaced normal vectors from 

the curve. To find N+1 equally spaced locations on the curve (which is made of 1 or more 

individual Bezier curves) we follow the following numerical procedure: 

l Compute the distance from the first point on the curve to the end point (that is, the very 

final point of the final Bezier curve). 

l Divide this by N to get a candidate spacing, s. 

l Up to N times: advance a Euclidean distance s along the curve, recording the coordinate 

at each step. Bezier curves are parameterized with t in the range [0,1], mapping 

coordinates on the curve from its start to its end. The increment of t which will advance a 

coordinate a distance s along the curve is computed via a simple binary search. The 

algorithm takes account of steps that cross the join of two Bezier curves. 

l Review the number of coordinates that could be fit onto the full curve for spacing s. If the 

number of coordinates is different from N+1, adjust s (by doubling/halving it) and repeat 

the previous step. Repeat this step until the number of coordinates on the curve is N+1. 

 

The start and end of adjacent vectors provide four corners of a box (Fig S14 A). Controls are 

provided to allow the sample boxes to extend above or below the curve (Fig S14 C/D). Note that 

sample boxes may overlap, if the curve is sharp and the boxes extend a long distance (Fig S14 
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B). In future work it may be desirable to define sample boxes between two user-defined curves 

to avoid this problem. 

 

 
Fig. S14. (A) 16 sample boxes along a curve comprised of three cubic Bezier sections which 
follows the outer edge of the isocortex. (B) When the sample boxes are over-extended, they 
overlap, meaning that some pixels of the image will form part of multiple sample boxes. (C) It is 
possible to use the same curve to sample multiple regions. This example samples a deeper region 
than the sample boxes in A, making use of the same curve. (D) If required, the sample boxes 
may be extended above as well as below the curve. 
 
The mean signal value in the box (and its standard deviation) is computed and stored in the 

Stalefish project file. Optionally, the value, coordinates and in-box depth of each pixel in each 

sample box can be saved into the project file. 

 

Freehand mode 

Freehand mode allows for the encircling of a region on each brain slice so that the signal 

encoded in pixels within the region can be saved into the HDF5 project file.  

 

Signal recovery 

The Stalefish technique assumes that there is some monotonic relationship between the value of a 

pixel in the brain slice image and a variable of interest (Id2/RZRB gene expression in the current 

study). The value of a pixel may be a simple luminance if the slice images are greyscale, or it 

may be that color information needs to be accounted for, such as in the Allen Developing Mouse 

Brain Atlas or in multiple-ISH staining techniques. We have implemented both a 
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luminance/greyscale color mapping and a color mapping which can be used with Allen ISH 

images; the choice of color mapping is selected with an entry in the project's JSON configuration 

file. The Allen color mapping is described in more detail in the section 'Allen mouse brain maps'. 

 

The luminance-based mapping is a straightforward mapping of the 8-bit value of any of the color 

channels in the image file (any image format supported by OpenCV can be used including TIFF 

and PNG). The stains used here are darker where there are more mRNA molecules coding for the 

protein of interest, thus lower pixel luminance values correlate with higher signals. The simplest 

possible mapping would be to assign to the pixel value 0 the signal 1.0 and to the maximum 

pixel value 255 the signal 0. This would work well if the image capturing process guaranteed 

uniform illumination of the sample. We found that samples illuminated with a Zeiss KL1500 

LCD light source and captured using a Zeiss AxioCam camera mounted to a Zeiss Stereo 

Discovery V12 microscope in our lab generated slight variations in luminance across the sample, 

which were significant enough to upset the signal extraction if some sample slices were imaged 

in one orientation (say, medial to the left and lateral to the right of the image) but others were 

imaged in the opposite orientation (lateral-medial) and then inverted in the software to match the 

medial-lateral slices. In these mirrored slices, the systematic overall illumination gradient was 

reversed making it difficult to compare the signal in adjacent slices. To counter for such 

inhomogeneities in the illumination, we adopted a post-processing approach. We make a copy of 

the image, blur it with a very wide Gaussian kernel, then subtract this from the image leaving the 

signal, ps according to 
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where pi is the image pixel's 8-bit greyscale value, pb is the pixel value from the Gaussian blurred 

image and o is a constant parameter (bg_blur_subtraction_offset) chosen to keep ps in the range 

[0,255]. Separate windows in the Stalefish visualization can show the blurred image and the 

image signal. An example is shown in Fig S15. 

 

 
Fig. S15. (A) The main image window shows the original Id2 ISH image of slice 26 of Vole 
65_7E. This is the image upon which curves, landmarks and freehand loops are drawn. (B) 
Gaussian blur of A with kernel width set to 1/6 of the width of the original image. Little structure 
is apparent because the illumination inhomogeneities in this image are small. (C) Enhanced 
contrast version of B indicates that subtracting the blurred image will have a small effect on true 
signals as well as countering any systematic illumination inhomogeneities. (D) The signal 
window. Signal is drawn in greyscale with higher signals towards white and so this looks like the 
photographic negative of the original image. The signal window can be viewed with the 'e' key in 
Stalefish; the blurred image with the 'r' key. Note that the sample boxes are shown on the signal 
window using thin black lines.  
 

Landmarks 

Landmarks are coordinates defined on the brain slice image matching either anatomical features 

or researcher-added alignment marks. We distinguish between landmarks which are expected to 

be found on every slice and those which are present on only one or a few slices. Landmarks 

present on every slice are used for slice alignment or for tracking structures when the 3D 

reconstruction has been made. Landmarks are added using Stalefish’s ‘Landmark’, ‘Circlemark’, 

‘Axismark’ and ‘Globalmark’ modes. 
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Fig. S16. Landmarks. (A) 'Circlemarks': The centre of a full circle is estimated by placing three 
points around its circumference and finding their circumcircle. This defines a landmark, which in 
this slide is numbered '1' as it is the first one. It is red because there is not a corresponding 
landmark '1' on every one of the other slices in the set.  (B) It is possible to estimate the circle 
centre even if only a part of the needle-created circle is visible in the frame. (C) A regular 
landmark is defined by the user as a point. This landmark is marking the dentate gyrus in the 
hippocampus. (D) Axismarks mark the ends of the brain axis. They are marked by orange dots. 
(E) Three slices from a set on which are marked 3 global landmarks. The green line of the user-
defined curves are shown; note that the global landmarks are defined by anatomical features but 
lie close to the curve in each case. The three dimensional render of the brain shows the three 
landmarks as spheres. These are the three landmarks which were used to make linear 
transformations of the digitally unwrapped map in the current study: Global landmark 1 is 200 
um beyond where the olfactory bulb and frontal cortex have a less distinct boundary; Global 
landmark 2 is found on the slice immediately after the indent of the rhinal fissure becomes 
indistinct (the size and orientation of the hippocampus can be used as a guide). It is found about 
200 um after a clear appearance of the hippocampus; Global landmark 3 is found at the most 
medial point of the medial wall, when the tip of the dentate gyrus creates a zero-degree 
horizontal line drawn from the medial geniculate nucleus. This mark is also associated with a 
change from a rounded medial wall to a more angular turn down the media aspect. 
 
 
Globalmarks 

'Globalmarks' are landmarks which are used for linear transforms. Globalmarks are stored in a 

data structure in the HDF5 file in the order in which they were added to the project. 
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Axismarks 

'Axismarks' are landmarks which define a brain axis. A defined axis which passed through a 

brain surface is important for the digital unwrapping of the surface. The brain axis may not be 

aligned with any of the coordinate axes and even if it is, the user must supply a piece of 

information to declare which this would be as the brain may have been coronally or sagitally 

sliced (our convention is to say that the brain slices lie in the y-z plan and are stacked along the x 

axis). The user can add two coordinates to a brain slice set using 'Axismark' mode to define the 

endpoints of a brain axis. The use of the brain axis is described in the section 'Digital 

unwrapping', below. 

 

Landmark Alignment 

Once curves, or freehand regions have been drawn on all slices, we want to align adjacent brain 

images so that the aligned curves will form a three dimensional surface. The most reliable way to 

achieve alignment is to form visible markers in each slice preparation. As previously described, 

we used a needle to form circular marks on each slice. These circular marks were used for a 

'landmark alignment' process proceeding as follows: The user marks three points on each circular 

landmark. The best estimate of the alignment landmark is given by the center of the circumcircle 

passing through the three marked points. A two-dimensional coordinate offset is applied to each 

slice to place the alignment landmarks in a line in 3D space that is parallel with the x-axis to 

form an 'alignment axis'. Then, starting with the second slice image, each slice is rotated about 

the alignment axis so that the points on the curve are as close as possible to the points on the 

curve in the previous slice. This is determined by minimizing the sum of squared distances 

between N equally spaced locations on the curve on slice i and the corresponding N locations on 
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the curve of slice i-1. We call this alignment technique 'landmark alignment'. It is based on the 

assumption that the anatomist has marked curves which correspond to the same anatomical 

structure on each brain slice. 

 

We note that the best alignment accuracy using a landmark based alignment method would be to 

form two needle-formed alignment marks in the fixing medium and then perform an affine 

transformation of each slice image to align both alignment marks. This is left as a future 

enhancement to be developed in the software. 

 

Auto Alignment 

As an alternative to landmark alignment, if an existing slice set is to be analysed which does not 

have the necessary alignment marks, we developed an 'auto-alignment' algorithm. This uses only 

the two dimensional sample curves on each slice. For each slice, i, a translation, r and rotation, 

𝜙, are found which will position the curve points optimally with respect to the previous slice and 

a single 'target' slice. We used a Nelder-Mead optimization process (30), which finds a minimum 

for the following cost function: 

 

 

 

where the first term computes the sum of squared distances between N transformed candidate 

points, xj (which are evenly distributed points on the curve of slice i that have had the translation 

r and rotation 𝜙 applied) and N candidate points xj,t which are evenly distributed points on the 

target (middle) curve in the slice set; the second term computes the sum of squared distances 
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between xj and N neighboring points, xj,n on slice i-1. The first term ensures that the slice 

positions do not 'drift' by penalizing large translations away from the centroid of the target slice. 

The second term ensures that each slice is closely aligned to its neighbor and the third term 

penalizes large rotations of any curve; it is a sigmoid curve whose parameters were set by hand 

to penalize rotations greater than about 0.2 radians, without affecting small rotations. wt, wn and 

wr are weights with the values 0.01, 1 and 0.1, respectively. 

Software dependencies 

Stalefish was developed using the image processing library OpenCV (31) together with Bezier 

curve processing features and other supporting code from morphologica 

(https://github.com/ABRG-Models/morphologica). OpenGL-based visualization in the tool 

sfview is also provided by morphologica. 

 

Data Analysis 

This section describes how the data generated from a Stalefish project - essentially a set of mean 

expression values with spatial coordinates - can be rendered as a three dimensional image or 

converted into a two dimensional expression map. All data for a project is written into a single 

project file, whose format we discuss first. 

 

Project file format 

Stalefish writes data in Hierarchical Data Format, version 5 (HDF5), a global standard file 

format. HDF5 files can be read with a multitude of software tools and code libraries, including 

Python, R, MATLAB, GNU Octave, C and C++. The HDF5 project file is named to match the 

JSON configuration file from which the project was created. Thus, if the JSON file is called 
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Mouse_DS4.json, then the resulting HDF5 project file will be named Mouse_DS4.h5. The HDF5 

format is standard, but the choice of variable containers in an HDF5 file is application specific. 

Data variable names in an HDF5 file look very much like folder paths on a computer filesystem 

and we refer to HDF5 variables as being contained in 'folders'. The data in a Stalefish project is 

divided into numbered folders; one for each slice frame; the first frame is contained in 

/Frame001, the second in /Frame002; etc. Each Frame folder contains a number of sub-folders 

containing location information, and a sub-folder which contains the extracted signal 

information. There is a full description of the Stalefish HDF5 format at  

https://github.com/ABRG-Models/Stalefish/tree/master/reading with example Python and GNU 

Octave code for reading (and plotting) the data available from the same location. 

 

3D Brain 

The Stalefish program allows the annotation of a set of brain slices, and saves information about 

the aligned data into an HDF5 file. To view and manipulate 3D renderings of the data in the 

HDF5 file, we wrote a simple viewer application called sfview, controlled by command line 

arguments. sfview can be used to visually inspect and verify the quality of the alignment of a set 

of slices and also to transform a set of digitally unwrapped surfaces onto a single individual 

example, writing out the transformed 'digital unwraps' into separate HDF5 files. 

 

To render a gene expression surface, we must decide how to plot the mean signal value for each 

sample box. We have used two methods. In each method, we use the sample box vertices that lie 

on the curve. The first method uses these vertices to define a series of 'ribbons', one for each 

brain slice. This view, shown in Fig S17 A & B, is useful for analyzing how well the chosen 
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alignment algorithm has arranged the slices and how the curve shape progresses across the 

sample. The second method takes the on-curve sample box vertices and uses these to define a 

triangular mesh (Fig S17 C). This results in a smoother expression surface (Fig S17 D). 

 

 
Fig. S17. Two ways to render the mean expression for the samples boxes into a three 
dimensional view. In each view the user-defined brain axis is shown as a white bar, the digital 
unwrapping 'zero marks' are shown as a row of small blue spheres and a landmark is displayed as 
a larger, burgundy sphere. The straight row of alignment landmarks is visible in pink at the 
bottom right of each panel. (A) Use two sample box vertices (each with a mean expression 
value) that lie on the curve, and extend along the x axis by the slice thickness to define two more 
vertices, forming a rectangular region of expression. The edges of each rectangle so defined are 
shown here to illustrate. The expression signal is shown using the color red, with the highest 
signal given by the most saturated red regions, but note that here, a shader that provides a diffuse 
lighting effect has been used and this distorts the expression colors slightly. (B) The same 
'ribbon' view of the slice data, where color is defined at each vertex, but varied linearly across 
each rectangle (a task performed automatically by the OpenGL shader). (C) To produce a 
smoother surface, we use the sample box vertices on each curve to define a triangular mesh. 
Here, the mesh is illustrated with lines and spheres. (D) The smoothed version of C, with 
OpenGL performing color interpolation between the vertices as in B. 
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Digital unwrapping 

Digital unwrapping is the process of straightening out a curved, three dimensional surface into a 

two dimensional map. The process begins with a set of aligned curves, as in Fig S18 A. The user 

provides axismarks that define a brain axis (white bar). An unwrapping axis of 'zero marks' is 

defined on the surface, by rotating a user-defined angle about the x-axis (centered on the brain 

axis), then locating the most distal point on each curve at this angle (blue/rainbow spheres in Fig 

S18 A). Each expression 'ribbon' is now straightened out, holding it fixed at its zero mark (Fig 

S18 B). In Fig S17 C, the straightened ribbons have been inverted and a further rotation shown in 

Fig S18 D shows that the data begin to resemble the two dimensional map in Fig S18 E, in which 

the zero marks have been arranged to lie on a straight line, which means that there are now no 

gaps between the ribbons. Note that the quadrilaterals which make up the 'pixels' in Fig S18 E 

are not of even size; those in the shorter ribbons are smaller than those in the longer ribbons 

(because in this example, there are the same number of sample boxes on each curve/ribbon). 

Furthermore, although this particular map has not been transformed; it is possible that a 

transformation may be applied to the map in Fig S18 E, transforming rectangular pixels into 

general quadrilaterals prior to resampling. The final step is to resample the image in Fig S18 E to 

produce an image consisting of square pixels, as shown in Fig S18 F. 
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Fig. S18. The digital unwrapping process. (A) To illustrate the process, we start with a Vole 
brain with Id2 expression shown as 'ribbons' which follow the curves defined in Stalefish. The 
brain axis is visible as a white bar and at a fixed angle about the x axis, a series of 'zero marks' 
are shown on the ribbons as rainbow colored spheres.  (B) The ribbons are straightened out using 
the zero marks as fixed points. The 3D view in A and B is identical; the brain axis and zero 
marks are unmoved. (C) The view is zoomed out and inverted with respect to panel B (compare 
the xyz coordinate arrows) (D) Further rotation of the 3D view. The gene expression pattern is 
now visible. (E) The unwrapped ribbons are now aligned by taking the zero marks and arranging 
them along a straight line. Note that this image still consists of quadrilaterals of varying size 
(inset). There are as many quadrilaterals in the short end ribbons as in the long central ribbons. 
(F) The image is resampled using a sum of Gaussians method to produce the final image, whose 
pixels are now square (inset). 
 
 
 
The resample algorithm finds a signal value, pk, for each square pixel in a resampled grid (Fig. 

S18 F). pk is a sum determined from the contributions of M quadrilaterals indexed by j, in each of 

N ribbons according to a 2D elliptical Gaussian distribution centered on each quadrilateral. The 

parameters of each elliptical Gaussian are determined by the shape of the quadrilaterals. This can 

be expressed as 
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where sj is the signal of quadrilateral j, (xk, yk) are the coordinates of the square pixel; (xj, yj) are 

the coordinates of quadrilateral and a, b and c are given by 

 

 

 

where σj,x and σj,y are the parameters of an ellipse rotated by the angle ϕj. We used 3 corner 

coordinates of the quadrilateral (c1, c2 and c3) to determine these parameters. Suitably chosen, 

these give two basis vectors, x' = c3 - c2 and y' = c1 - c2 for the quad which define the major and 

minor axes of the ellipse: 

 

 

 

The rotation of the ellipse, ϕj , is defined as the angle which x' makes with respect to the x axis, 

i.e. 

 

 

Min/max mode 

Stalefish allows the user to specify a minimum and maximum signal location on any given 

frame. These values are recorded in the HDF5 project file as 

/FrameN/signal/postproc/manual_min_signal and /FrameN/signal/postproc/manual_max_signal 

(where N is the frame number). These values can then be used to scale the frame's signal. 
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Protocol for processing images to generate 3D and 2D surface expression maps 

1. Create a text file with a .json suffix and populate it with the mandatory elements given in 

Table 1 and with reference to the example in Fig S19. 

2. Launch Stalefish with the path to the .json file as a single argument. It will load the images 

and present the first one to the user in two windows, one a 'working' window and a second which 

displays the mRNA signal to the user (after subtracting the blurred background). 

3. Cycle the input mode to 'Circlemark' mode (see Table 2 for a list of Stalefish functions). This 

allows the location of the alignment needle mark to be set for each slice. Place three marks 

around the circular boundary of the needle hole allowing the program to mark the center of the 

hole. Repeat for each slice in the set. 

 

4. Cycle the input mode to 'Axismark' mode. This is used to define a central axis through the 

brain samples. Mark exactly two axis marks in the entire slice set. 

5. Cycle to 'Curve' mode. Using the mouse, place 3 or 4 points to define a part of the curve on 

the slice. Press space to commit a curve portion; it will turn red or blue. Cancel points and 

replace them as necessary until the curve portion follows the anatomical structure satisfactorily. 

Define 3 or 4 more points along the curve and press space to commit a new curve portion. 

Continue until a full curve has been defined for the structure of interest. Repeat for all brain 

slices. 

6. Cycle to 'Global landmark' mode. Define exactly three global anatomic landmarks across all of 

the slices in the brain. Each landmark should ideally be relatively close to the curve. 

7. Use the save function to write the data to an HDF5 file (the structure of the data content in this 

file is described separately). Exit Stalefish. 
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8. If analyzing a single brain, open the HDF5 file using the sfview program to verify that the 

slice alignment and 2D map unwrapping was successful. Use the -m1 argument to view the 2D 

unwrapped map. For example, if the json file was named brain1.json, the HDF5 file will have 

been named brain1.h5 and the correct sfview command would be `./build/src/sfview brain1.h5 -

m1`  

9. If analyzing several brains, then follow steps 1 to 7 to define curves and global landmarks on 

each brain. The brain maps can be transformed onto the same coordinate axes using sfview's -T 

argument, which computes transformations based on the 3 global landmark coordinates provided 

on each brain. For three brains, an example sfview command is: 

./build/src/sfview brain1.h5 brain2.h5 brain3.h5 -m1 -T  

 

In this case, brain2 and brain3 would be linearly transformed to match brain1 (which would not 

be transformed). To transform to match brain2, brain2.h5 would be given as the first argument. 

sfview will write out the transformed and resampled data into separate .h5 files with a naming 

scheme showing which 2D brain map is stored and from which brain its transformation was 

computed ('Transformation From'). The example above would result in these files: 

 
brain1.TF.brain1.h5  
brain2.TF.brain1.h5 
brain3.TF.brain1.h5 
 
JSON element name Type Description 

Mandatory elements 

thickness real 
number 

The thickness, in mm, of the brain slices (assumed 
to be same for each slice). 

pixels_per_mm integer Conversion factor from pixels in the slice images to 
mm (slice image pixels are assumed to be square). 
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map_align_angle  real Angle in radians about the brain axis defining a 
center line about which the 2D brain map is 
unwrapped from the 3D brain. 

slices array of 
JSON 
objects 

Each member of this json array is a json object 
containing: "filename" (string), the filepath 
(relative or absolute) to a brain slice image file, 
and, "x" (real number), the position along the x axis 
at which the brain slice is located 

Optional elements 

scaleFactor real A factor to scale the images by as they are loaded 
into the program. Can help to display high 
resolution images on a lower resolution computer 
monitor. Note that the data signal is collected from 
the scaled image, not from the original image. For 
best results omit scaleFactor, or set it to 1. 

bg_blur_screen_proportion real bg_blur_screen_proportion is multiplied by the 
width of the image in pixels to get a sigma for the 
Gaussian which is used to blur the image to 
subtract the background. 

bg_blur_subtraction_offset real signal_img = 255 - (original_img + 
(bg_blur_subtraction_offset - blurred_bg)). Thus, 
possible range for bg_blur_subtraction_offset is 0 
to 255. 
 

save_per_pixel_data Boolean If true, then save out the signal values and 
coordinates of every individual pixel in each box 
and freehand loop. Not required to make surface 
maps and can lead to a very large HDF5 data file. 
Default is false. 

save_auto_align_data Boolean If false, then don't write coordinates in the 
autoaligned frame of reference into the HDF5 data 
file. Default is true. 

save_landmark_align_data Boolean If false, then don't write coordinates in the 
landmark aligned frame of reference into the HDF5 
data file. Default is true. 

rotate_landmark_one Boolean If true, and there is >1 landmark per slice, apply the 
'rotate slices about landmark 1' alignment 
procedure anyway. Normally, the rotational 
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alignment is applied by default only if there is 
EXACTLY 1 landmark per slice. Default is false. 

rotate_align_landmarks Boolean If true, then in 'rotate about landmark 1 mode' align 
the other landmarks, instead of the curves. Default 
is false. 

colourmodel Text If "allen" then apply Allen Developing Mouse 
Brain color mapping to convert color to scalar 
signal. If "raw_colour" then record the RGB color 
values in each pixel, rather than a scalar signal. If 
"sfview" then expect images in .h5 format. 
Otherwise, apply luminance/greyscale mapping 
with background offset to obtain a scalar signal. 

colour_trans Array 
(real) 

1x3 array specifying a color translation for the 
Allen color model. 

colour_rot Array 
(real) 

1x9 array specifying a color rotation for the Allen 
color model. 

ellip_axes Array 
(real) 

1x2 array specifying the dimensions of the ellipse 
used in the Allen color model. This is a red-green 
ellipse (after colour_trans and colour_rot have been 
applied to the data) for the "elliptical tube of 
expressing colors" 

luminosity_factor  The slope of the linear luminosity vs signal fit. 

luminosity_cutoff  Defines the luminosity at which the signal cuts off 
to zero. 

 
Table 1: mandatory and optional parameters which should be written into a Stalefish project's 
JSON configuration file. 
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Fig S19. An example Stalefish JSON configuration file. This example contains the mandatory 
elements, plus a few of the optional elements. The project contains four slice images. Images 
may be given in TIFF, PNG or JPEG formats, or they may be the 2D maps generated as HDF5 
files by sfview with the -m1 option. 
 
 

Function Key Description 

Box A user 
interface 
slider 

'Sample box position A'. Change the position of the 
start of the sample boxes 

Box B slider 'Sample box position B'. Change the position of the 
end of the sample boxes 

Num bins slider Change the number of sampling bins on the curve 
(range: 2-200) 

Toggle Bezier control points 1 Toggles the visibility of the Bezier control points 
for the curves 

Toggle user points 2 Hides/shows the user-supplied control points 

Toggle fit line 3 Hides/shows the green line of best fit to the user-
supplied control points 

Toggle the bins 4 Hides/shows the yellow sample bins 

Toggle text 5 Hides/shows text annotations 

Move to next curve Space Commits the green 'pending' user points to be a 
Bezier curve; new user points will become part of 
the next curve. 



 
 

36 
 

Cancel c Cancel the last point or freehand region, depending 
on context. If in Curve mode it cancels the last 
user-supplied curve point; if in Globalmark mode 
then the last global landmark is cancelled. 

Delete all curves C Clear all user-supplied points from the current 
project 

Update fit f Recompute the Bezier fit on the current frame 

Update fit (all frames) F Recompute the Bezier fit on the all frames 

Copy bin params B Copy the sample bin params to all other frames 

Copy objects from previous 
frame 

P Copy curves and freehand loops from the previous 
frame to the current frame 

Copy objects from next 
frame 

N Copy curves and freehand loops from the next 
frame to the current frame 

Write file/Save w Write the project to an HDF5 file 

Cycle mode o Cycles the input mode between: 1) Curve mode; 2) 
Freehand mode; 3) Landmark mode; 4) 
Globalmark mode; 5) Circlemark mode; 6) 
Axismark mode; 7) Min/max mode; 8) Curve2 
mode (secondary curve) 

Curve mode: start/end s When in curve mode, this switches the input to add 
(or cancel) user points to either the start or the end 
of the curve. Adding at the end is default. 

Export user points to tmp k Export data to /tmp/landmarks.h5, /tmp/curves.h5 
and /tmp/freehand.h5 

Export landmarks etc to tmp p Export mode-specific data to /tmp 

Export curves/loops to tmp 
for single frame 

[ Export mode-specific data to /tmp for the current 
frame. Mode specific data can then be imported to 
another frame in the same, or a different project. 

Import landmarks l Import landmarks from /tmp/landmarks.h5 

Import curve points i Import curve points from /tmp/curves.h5. If curves 
saved in /tmp/curves.h5 is from single frame 
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(saved with '['), then they will be imported into the 
current frame. 

Import freehand j Import freehand loops from /tmp/freehand.h5. If 
loops saved in /tmp/freehand.h5 is from single 
frame (saved with '['), then they will be imported 
into the current frame. 

Next frame n Move to the next frame in the brain slice set 

Back to previous frame b Move to the previous frame in the set 

Move frame backwards 8 Reorganize frames by moving the current frame 
backwards 

Move frame forwards 9 Reorganize frames by moving the current frame 
forwards in the set 

Mirror frame m Mirror the image (left-right) 

Toggle blur window r Toggle the window that shows the Gaussian-
blurred background 

Toggle signal window E Toggle the window that shows the final signal 

Toggle image data q Toggles the image in the main window, allowing 
the curves and landmarks to be viewed without the 
background data. 

Load example data e Load the built-in example project (Vole, Id2) 

Help h Displays a summary of the key functions on screen 

Exit x Exit the program (press twice to confirm) 

 
Table 2: Stalefish functions (accessed by key-press) 
 
Function Key Description 

Help h  Output a helpful key summary to stdout 

Exit x Exit sfview 

Scene lock l Toggle the scene lock to prevent mouse movements 
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from changing the view 

Mouse rotate mode t Toggle the axes about which the scene is rotated for 
mouse movements 

Coord arrows c Show/hide the small coordinate arrows 

Snapshot s Take a snapshot, which will be saved as picture.png 

Reset view a Reset to the default viewpoint 

Reduce field of view o Reduce the field of view of the virtual camera 

Increase field of view p Increase the field of view of the camera 

Save view z Saves the current view location to a temporary file, 
which will be restored on future runs of the program 

Reduce the near cutoff plane u Reduce the plane beyond which objects are rendered 

Increase near cutoff plane i  

Select model 0-9 When sfview is showing multiple expression 
surfaces, they can be individually selected with the 
number keys 

Decrease opacity Left Decrease the alpha channel value for the selected 
model, making it more transparent 

Increase opacity Right Increase the alpha channel value for the selected 
model, making it more opaque 

Toggle landmarks f Show/hide the landmark locations 

Toggle zero angle marks g Show/hide the zero angle marks which are used to 
digitally unwrap a 3D surface into a 2D map 

Toggle brain axis d Show/hide the user-defined brain axis 

Toggle 2D map j Show/hide the unwrapped 2D map 

Toggle 3D map k Show hide the 3D expression surface 

 
Table 3: sfview functions 
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Considerations 

The reconstruction of 3D expression data for the Allen Developing Mouse Brain Atlas was 

achieved by registering 2D brain slice images to their neighbours using a mutual information 

metric (Mattes et al. 2001), which compares each pixel in two neighbouring slices and finds a 

translation and rotation to apply to one slice such that the difference between the two images is 

minimised. To overcome a problem whereby the registration along the stack can 'drift', the slices 

were also registered to a reference mouse brain obtained by serial two-photon tomography 

(Ragan et al. 2012). Once aligned, the expression levels from the 2D images were resampled to 

produce a 3D cloud of expression levels. This 3D cloud can then be analysed and expression 

levels within different brain regions can be computed, with the help of the reference brain. The 

present technique is distinct in that rather than using the entire brain image to register 

neighbouring slices, it instead allows the researcher to trace out a structure of interest on each 

slice and then uses the shape of these structures to perform the alignment. By allowing the 

anatomist to trace the curve of a brain structure on each slice, this approach naturally yields 3D 

manifolds (or surfaces) of expression, rather than a 3D point cloud. In this way, our techniques 

make it possible to analyse the maps of expression to identify common features between brains. 

 

Stalefish helper programs 

There are two helper functions for Stalefish. sfgetjson extracts the JSON configuration from a 

Stalefish HDF5 project. sfmakejson will generate a Stalefish JSON project file from a collection 

of image files. 
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Future development of Stalefish 

Stalefish is a simple tool, implementing the well-defined and limited set of algorithms described 

in this work. We followed the design philosophy of doing a simple thing and doing it well. As 

such, we hope that significant future development of the software will not be necessary. 

However, some improvement may be desirable in the algorithm which joins separate Bezier 

curves together, with a more sophisticated optimization applied to the way that the algorithm 

adjusts the adjoining curves' control points. 

 

The data generated by Stalefish is intended to be rendered in any tool of the researcher's choice. 

One possibility would be to use the recently developed BrainRender (33), though we have not 

yet investigated any changes that may be necessary to make this work. 

 

An aspect of the technique that warrants future development is the definition of anatomical 

landmarks and the way that three dimensional surfaces are digitally unwrapped. We have one 

feature in particular in mind; 'manual unwrapping'. Here, rather than using the angle about the 

brain axis to define the 'zero marks' about which the surface is unwrapped, it might be possible to 

use manually placed landmarks on each brain slice. This might work for the Hippocampal data in 

Fig. S5 for which the dentate expression on each slice could be used to define the unwrap 'zero-

mark'. 
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