
Supplementary Information1

Details about experimental data acquisition and analysis2

All procedures complied with the European Communities Council Directive 2010/63/EU and the German3

Law for Protection of Animals, and were approved by local authorities, following appropriate ethics review.4

Animals5

Recordings were performed in 4 adult male Ntsr1-Cre mice (3 hemizygous Tg, 1 negative control, me-6

dian age at first recording session: 24.4 weeks; B6.FVB(Cg)-Tg(Ntsr1-cre)GN220Gsat/Mmcd; MMRRC,7

#030648-UCD) and 2 (1 male, 1 female) PV-Cre mice (median age: 17.9 weeks; B6.129P2-Pvalbtm1(cr e)Ar br /J;8

Jackson Laboratory, #017320).9

Surgery10

The surgical procedures are described in detail in [1]. In brief: mice were administered an analgesic11

(Metamizole, 200 mg/kg, sc, MSD Animal Health, Brussels, Belgium) and put under isoflurane anesthesia12

(5% in oxygen at start, then lowered to 0.5%–2% in oxygen, CP-Pharma, Burgdorf, Germany), the depth13

of which was constantly monitored. After shaving and disinfecting the scalp, a skin incision was performed14

and the skull cleaned of any remaining tissue. Upon positioning the head in a skull-flat position, a custom15

lightweight aluminium head bar with an opening over dLGN and V1 was placed on the skull and fixated using16

dental cement. For V1 recordings and optogenetic stimulation unrelated to this study in PV-Cre mice, a small17

craniotomy above V1 was performed and ∼ 0.2µL of pAAV9/1.EF1a.DIO.hChR2(H134R)-eYFP.WPRE.hGH18

(Addgene, #20298-AAV9) dyed with fast-green (Sigma-Aldrich, St. Louis, USA) was injected through the19

entire depth of the cortex. In the Ntsr1-Cre mice used for additional V1 and dLGN recordings, a similar20

craniotomy was performed and ∼ 0.35µL of stGtACR2 (rAAV2/1-pAAV-hSyn1-SIO-stGtACR2-FusionRed,21

Addgene, #105677) were injected in the infragranular layers of cortex for experiments with suppression22

of corticothalamic feedback unrelated to the current study. Post-injection, the opening was filled with Kwik-23

Cast (WPI Germany, Berlin, Germany). Long-term analgesic (Meloxicam, 2 mg/kg, sc, Böhringer Ingelheim,24

Ingelheim, Germany) was administered and continued to be administered for 3 consecutive days. After at25

least 1 week of recovery, animals were gradually habituated to the experimental setup, by first handling26

them and then simulating the experimental procedure. To allow for virus expression, neural recordings27

started no sooner than 3 weeks after injection. On the day prior to the first day of recording, mice were28

fully anesthetized using the same procedures as for the initial surgery, and a craniotomy (ca. 1.5 mm2) was29

performed over dLGN and/or V1, and re-sealed with Kwik-Cast. As long as the animals did not show signs30

of discomfort, the long-term analgesic Metacam was administered only once at the end of surgery, to avoid31

any confounding effect on experimental results. Recordings were performed daily and continued for as long32

as the quality of the electrophysiological signals remained high.33

Experimental setup34

Our experimental configuration for in-vivo recordings is described in detail in [1]. In brief: mice were head-35

fixed and could run freely on an air-suspended styrofoam ball while stimuli were presented to the right36

visual field on a gamma-corrected LCD screen. Extracellular neural signals were recorded with 32-channel37

silicon probes (Neuronexus, A1x32Edge-5mm-20-177-A32, Ann Arbor, USA) for the 4 Ntsr1-Cre mice, a38

32-channel silicon probe for one PV-Cre mouse (A1x32-Edge-5mm-20-177-A32 and A1x32Edge-5mm-20-39

177-A32), and a 64-channel silicon probe (A1x64-Poly2-6mm-23s-160-A64) for the other PV-Cre mouse.40

Ball movements were registered at 90 Hz by two optical mice connected to an Arduino-type microcontroller.41

Eye movements were monitored under infrared light illumination.42

For photostimulation of V1 PV+ inhibitory interneurons, an optic fiber (910 µm diameter, Thorlabs, Newton,43

USA) was coupled to a light-emitting diode (LED, center wavelength 470 nm, M470F1, Thorlabs, Newton,44

USA) and positioned with a micromanipulator less than 1 mm above the exposed surface of V1. A black45
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metal foil surrounding the tip of the head bar holder prevented the photostimulation light from reaching the46

animal’s eyes.47

Perfusion and histology48

After the final recording session, mice were first administered an analgesic (Metamizole, 200 mg/kg, sc,49

MSD Animal Health, Brussels, Belgium) and following a 30 min wait period were transcardially perfused50

under deep anesthesia using a cocktail of Medetomidin (0.5 mL/kg), Midazolam (1 mL/kg), and Fentanyl51

(1 mL/kg) (ip). Perfusion was first done with Ringer’s lactate solution followed by 4% paraformaldehyde52

(PFA) in 0.2 M sodium phosphate buffer (PBS).53

To verify recording site and virus expression, we performed histological analyses. Brains were removed,54

postfixed in PFA for 24 h, and then rinsed with and stored in PBS at 4◦C. Slices (40 µm) were cut using55

a vibrotome (Leica VT1200 S, Leica, Wetzlar, Germany), mounted on glass slides with Vectashield DAPI56

(Vector Laboratories, Burlingame, USA), and coverslipped. A fluorescent microscope (BX61 Systems Mi-57

croscope, Olympus, Tokyo, Japan) was used to inspect slices for the presence of yellow fluorescent protein58

(eYFP) and DiI. Recorded images were processed using FIJI [2], [3].59

Stimulus60

We used custom software (EXPO, https://sites.google.com/a/nyu.edu/expo/home) to present visual stimuli61

on a gamma-calibrated liquid crystal display (LCD) monitor (Samsung SyncMaster 2233RZ; mean lumi-62

nance 50 cd/m2, 60 Hz) at 25 cm distance to the animal’s right eye (spanning ∼ 108x66◦, small angle63

approximation). Mice were presented with three 12 min random sequences of briefly flashed (84 ms),64

full-screen grating stimuli. The random sequences were drawn from 2304 unique gratings covering 12 ori-65

entations (0, 15, 30, 45, 60, 75, 90, 105, 120, 135, 150, 165◦), 8 contrasts (0, 0.04, 0.10, 0.19, 0.30, 0.46, 0.69,66

1), 6 spatial frequencies (0.01, 0.02, 0.06, 0.14, 0.33, 0.80 cyc/◦) and 4 spatial phases (0, 90, 180, 270◦).67

One sequence consisted of 9216 gratings. Between the sequences, a blank gray screen was displayed68

for 1 min. For V1 recordings in PV-Cre mice expressing ChR2, light pulses (10 Hz, 1 ms pulses) were69

delivered from the optical fiber during these periods; analyses of the blank screen responses or photostim-70

ulation effects were not included in the current study. Typically, the stimulus sequence was presented once71

per electrode penetration, except in two cases, where the sequence was run twice during one electrode72

penetration but data from each run was analyzed separately.73

Experimental data pre-processing and spike sorting74

Wideband extracellular signals were digitized at 30 kHz (Blackrock microsystems, Blackrock Microsystems75

Europe GmbH, Hannover DE). To obtain single unit activity from extracellular recordings, the open source,76

Matlab-based, automated spike sorting toolbox Kilosort [4] was used. Resulting clusters were manually77

refined using Spyke [5], a Python application that allows the selection of channels and time ranges around78

clustered spikes for realignment, as well as representation in 3D space using dimension reduction (multi-79

channel PCA, ICA, and/or spike time). Exhaustive pairwise comparisons of similar clusters allowed merg-80

ing of potentially over-clustered units. All further analyses were performed using an SQL data base and a81

custom-made analysis pipeline programmed in python [6] and managed via datajoint [7].82

Spike waveshape analysis83

From the mean waveform of the maximum-response electrode channel of each single unit, the time between84

trough and peak (rise time) and the half-width at half-height of the peak were calculated. Exploiting the85

waveshapes of all V1 units processed using the same pipeline (N = 428 from 10 mice), a k-means algorithm86

was used to cluster the data into 2 populations.87

Optogenetic tagging88

To test whether our spike waveshape-based classification method was able to identify PV+ interneurons, we89
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performed a quantitative analysis of optogenetic tagging. We used the stimulus-associated spike latency90

test (SALT) method [8] to identify PV+ interneurons via short-latency, light-induced spikes. The algorithm91

compares the latency distribution of the first spike in a 10 ms window after an optical pulse with baseline92

distributions before the optical pulse via the Jensen-Shannon divergence. We adapted the algorithm to93

sample baseline distributions during continuous pulse trains and required identified neurons to have low94

latency (L < 4 ms), high reliability (R > 0.1) and small jitter (J < 2 ms). Using this method, we found that95

with the exception of one significantly tagged neuron, all putative PV+ interneurons were contained in the96

cluster with narrow waveshapes.97

Laminar location98

We used current source density (CSD) analysis [9] for recordings in area V1 to determine the laminar99

position of electrode contacts. To obtain the LFP, we first down-sampled the signal to 1 kHz before applying100

a bandpass filter (3–90 Hz, second-order Butterworth filter). We computed the CSD using the iCSD method101

[10] implemented in elephant [(RRID:SCR_003833) 11]. We assigned the base of layer 4 to the contact102

that was closest to the earliest CSD polarity inversion. The remaining contacts were assigned to layers103

based on relative layer thickness reported by [12], assuming a thickness of 1.2 mm for mouse visual cortex.104

Across all V1 sessions with CSD analysis, the resulting distribution of neurons across layers was: L2/3 -105

10/131 (7.6%), L4 - 29/131 (22.1%), L5 - 47/131 (35.9%), L6 - 45/131 (34.4%).106

Temporal response kernels via reverse correlation
After eliminating units with overall very low firing rate (<0.1 Hz), the probability of a stimulus preceding a
spike by a time δt from -50 to 350 ms was computed for each unique grating stimulus. This was done by
binning spike times in 1 ms windows and then counting how often a specific stimulus occurred δt before a
spike. After normalizing this histogram by dividing by the total number of spikes, the posterior distribution
was calculated according to Bayes’ theorem by multiplying with the probability of a spike occurring and
dividing by the probability of the stimulus occurring:

P (Spike|Grating) = P (Grating|Spike) · P (Spike)
P (Grating)

=

Grating And Spike Bins
Total Spike Bins · Total Spike Bins

Total Bins
Grating Bins

Total Bins

=
Grating And Spike Bins

Grating Bins

By dividing by the 1 ms bin duration, the resulting probabilities could be directly converted to firing rates and107

thus give a temporal response kernel for each unique grating stimulus.108

Determining visual responsiveness109

To eliminate non-responsive or noise-dominated units, the variance of the temporal kernels across stimuli110

was calculated and tested for non-randomness using the Wald-Wolfowitz-Test (WWT). The WWT uses the111

distribution of consecutive ones and zeros in a binary sequence, which should follow a normal distribution112

in a random sequence, to statistically determine randomness of the sequence. The test can be applied to113

a non-binary sequence by converting it to a binary sequence via a threshold criterion, typically the mean or114

median. Before applying the WWT, global trends in the sequence should be removed by either filtering or115

applying an approximation of the derivative. As the response to grating contrast is a robust indicator of visual116

responsiveness, the analysis was performed using the aggregate variance across grating contrast, which117

was computed by averaging the kernels across grating orientation, spatial frequency and spatial phase,118

before computing the variance across the resulting contrast kernels. To further increase signal-to-noise119

ratio, the partial variance was squared before computing the differences across time to remove any global120

trends. On the resulting sequence, the WWT was performed using the median as cutoff criterion. Because121

the WWT can miss narrow peaks, even if they are high, a second WWT was computed on the absolute122

values of the sequence. A unit was classified as visually responsive if one of the WWT’s was significant and123
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the test statistic of both WWT’s was negative, indicating fewer sign changes than expected by chance.124

Determining optimal time point125

The time point of optimal response was determined via the peak of the summed aggregate variances across126

stimuli. First, the partial variances were computed for all four stimulus parameters as described above for127

grating contrast. The resulting partial variances were then summed and the time point of the first peak128

exceeding half the modulation depth of the result was selected as the optimal response time point δtopt129

[peak detection using scipy, 13]. For the V1 data set, we removed 7 neurons for which the analysis130

revealed implausibly short optimal response latencies (≤ 25 ms). We based this minimal latency cutoff on131

the distribution of optimal time points (5 ms bins) of all recorded V1 neurons, and chose as the cutoff the132

first bin with at least 3 neurons (> 25 ms). For the dLGN neurons, this minimal latency cutoff removed133

3 neurons.134

Response profiles135

In a 20 ms window around δtopt , responses were averaged over grating spatial phase and frequency,136

resulting in two-dimensional response matrices covering grating orientation and contrast.137

Contrast-invariance138

Contrast-invariance of a unit was assessed by applying a singular value decomposition (SVD) to its re-139

sponse matrix, separating the SVD’s principle component and residual, and computing the Gamma index140

of spatial autocorrelation on the residual [14]. The Gamma index is computed by computing a similarity141

matrix for all data points and then masking the similarity matrix with a contiguity matrix that considers data142

points that share an edge to be neighbors. The index itself is the sum of all entries in the masked similarity143

matrix. Patterns are detected by randomly shuffling data points and comparing the original index against the144

resulting distribution. The strength of the first SVD component was assessed as its power in the SVD: the145

quotient between the squared first singular value and the sum of squares over all singular values. Residual146

strength was then computed as one minus first component power. The SVD was calculated using numpy147

[15] and the Gamma index using pysal [16]. Neurons with a z-scored Gamma index gz > 1.96 and148

residual strength p > 0.05 were classified as contrast-dependent.149

Tuning model150

Contrast invariant units were fitted with a two-dimensional tuning model consisting of a hyperbolic ratio151

function with supersaturation parameter [17] and a wrapped Gaussian [18]:152

r (c,ψ, θ) = r0 + (rmax − r0) ·
cn

cs ·n50 + cs ·n
·
m=∞∑
m=−∞

exp
{
−(ψ − θ + πm)2

2σ2

}
, (S1)

where c is stimulus contrast, ψ is the stimulus orientation, θ the preferred orientation, r0 the baseline re-153

sponse and rmax the peak response of the neuron. The tuning model was fitted to each neuron’s response154

matrix in a least-squared sense using the scipy.optimize library. Quality of fit was assessed via the155

coefficient of determination (r 2) and only units with r 2 > 0.4 were used for further analysis. For character-156

izing the selectivity of neurons to orientation and contrast, we considered the individual tuning components157

of the fitted 2D tuning model, after normalizing by the maximal response.158

Width parameters of orientation tuning functions, σ in our case, scale non-linearly when tuning is either159

strong or weak, depending on the specific function. When quantitatively analysing data that contains a160

broad spectrum of tuning, it is thus advisable to use measures that are not distorted by such non-linear161

scaling. Accordingly, orientation selectivity [19], [20] was quantified as162

OSI =

√
(∑Rk sin(2θk ))2 + (

∑
Rk cos(2θk ))2∑

Rk
(S2)

where Rk is the response to the k th direction given by θk .163
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Contrast sensitivity was quantified as contrast at half height of the contrast response function. Since some of164

our recorded contrast response functions did not saturate, even for full contrast, we preferred this measure165

as opposed to the parameter c50 of the hyperbolic ratio function.166

For our sample of recorded neurons, the analysis of contrast response functions revealed neurons in both167

dLGN and V1 whose response was suppressed by contrast (SbC, Fig. S2). Considering our dataset of168

contrast-invariant dLGN and V1 neurons, which were well-fit by our descriptive, separable model, SbC169

neurons amounted to 19% of the dLGN population, and 19% of the V1 E population, with no SbC neurons170

in the V1 I population. The function of SbC neurons is not well understood: 1) it seems likely that V1 SbC171

neurons might constitute both E and I neurons, being contained within the L6 corticothalamic pyramidal cell172

population [21], the inhibitory vasoactive intestinal peptide-expressing (VIP) population [22], [23] or a so-far173

minimally studied class of Sncg inhibitory interneurons [23], 2) stimulus selectivity of SbC neurons is broad174

and their response latencies are long, and 3) SbC neurons currently are not considered in computational175

models of V1 [24] such as the SSN. In control analyses, we have repeated our inference procedure with176

dLGN and V1 E populations additionally containing the SbC neurons (data not shown). These analyses177

revealed that the order of inferred weigths was largely preserved, even when SbC neurons were included178

in the populations. Given the uncertainty in terms of V1 cell type associated to SbC neurons, and the179

conceptual difficulties of incorporating into the SSN one or more potentially distinct populations of SbC180

neurons, we decided to continue our analyses using only neurons whose responses were enhanced by181

contrast.182

To construct population tuning curves for orientation and contrast, individual orientation and contrast tuning183

curves were averaged, after aligning individual neurons to their preferred orientation. Population contrast-184

invariance was assessed by applying the above explained SVD and spatial autocorrelation analysis to the185

population tuning curves.186

Statistics187

All statistics were performed using functions from scipy.stats and statsmodels.188

Determining populations’ responses from the recorded data for the SSN model fit189

The hyperbolic ratio function used to describe and quantify the recorded contrast responses imposes a190

sigmoidal shape on the contrast response. However, the output of the SSN model itself can explain how191

S-shaped contrast responses arise from a recurrent network wiring. Therefore, to avoid an additional fitting192

bias, we did not use the hyperbolic ratio function to represent the recorded populations’ responses before193

we fitted the SSN model to the data. To determine E, I and thalamic population responses to a stimulus of194

orientation ψ, the function195

R (ci ,ψ − θ) = r0 + (r (ci ) − r0) ·
∞∑

m=−∞
exp

{
−(ψ − θ + πm)2

2σ2

}
(S3)

was fitted to the two-dimensional contrast and orientation responses of individual units to determine the196

contrast response functions r (ci ) at eight contrast values ci as well as the width σ of orientation tuning197

curves (see Swindale [18] for justification of wrapped Gaussian fit). Then the responses of the units were198

aligned such that their preferred orientations θ coincided with 0◦. The E, I, and thalamic population contrast199

responses at each contrast value ci in (Fig. 3) were computed as an average r (ci ) in the corresponding200

population. The population orientation tuning widths were computed as an average σ over the correspond-201

ing population.202

SSN model with two populations, stability of steady states203
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The two population SSN model is given by the equations204

τX ·
drX (t ,C )

d t
+ rX (t ,C ) =

(
JXE · rE (t ,C ) − JXI · rI (t ,C ) +TdLGN(C ) · gX

)n
+
, X ∈ {E , I }. (S4)

The steady states rE (C ) and rI (C ) defined by the equations (drX /d t = 0)

rX (C ) =
(
JXE · rE (C ) − JXI · rI (C ) +TdLGN(C ) · gX

)n
+
, X ∈ {E , I }. (S5)

are stable exactly when the inequalities

JEE r
1−1/n
E − (n · det J · r 1−1/nE + JI I )r 1−1/nI < 1/n (S6)

and

τE + τI + τE JI I nr
1−1/n
I − τI JEE nr 1−1/nE > 0 (S7)

are fulfilled [25]. To guarantee stability of the fitted firing rates, we incorporated the inequality in Eq. S6 in205

the parameter inference algorithm. We note that the second inequality in Eq. S7 can always be fulfilled if206

we choose sufficiently large τE and/or small τI .207

Determining the two-population SSN parameters from contrast responses208

The SSN model with the initially unknown parameters JXY , gX , and n was required to generate stable209

steady states rX (C ) (Eq. S5 - Eq. S7), which closely approximated the average recorded cortical and210

thalamic contrast responses (Eq. S3). For each fixed n and eight contrasts C , Eq. 1 represented an over-211

determined system of 16 linear equations with six unknown connectivity weights JXY , gX , which always has212

a unique solution. We called this solution valid, if additionally, the constants JXY , gX were positive and lead213

to a stable steady state of the SSN model. We note that the weights computed directly from the average214

V1 and thalamic contrast responses did not lead to any valid solutions for the exponents n ranging from 1.1215

to 5. Therefore, we randomly generated triplets of V1 and thalamic contrast response curves within ±sem216

error bar areas of the contrast responses and computed corresponding sets of the connectivity weights217

JXY , gX as solutions of the over-determined linear system in Eq. 1 for each triplet. Overall, the fraction of218

valid connectivity weights was less than 0.1% for all n , and was a monotonically increasing function of n219

with few valid fits found for n close to 1 (Fig. S5A). Since the initial SSN parameters JXY , gX , and n were220

computed for random response triplets and not for the average contrast responses, we optimized them to221

closely approximate the average responses by minimizing the score function222

Scorefit(J , g , n) =
1

F (n)

8∑
i=1

(r fit
E (Ci ) − r

av
E (Ci ))

2

σ2
E (Ci )

+
(r fit
I (Ci ) − r

av
I (Ci ))

2

σ2
I (Ci )

+
(T fit

dLGN(Ci ) −T
av

dLGN(Ci ))
2

σ2
dLGN(Ci )

. (S8)

Based on the score function (Eq. S8), the contrast responses with smaller standard deviation σX were223

approximated with higher precision than those with larger standard deviation. We note that as expected,224

lower firing rates had lower variability in our recordings. We divided the difference between the fit and the225

recorded average by the fraction of valid fits F as a function of n to reinforce the exponents n leading to a226

larger fraction of initial valid fits. Each parameter set JXY , gX , n in the final distribution of 103 fits was a227

parameter set with the best score out of 104 optimized randomly generated valid initial fits.228

The external input weight gI exceeds gE according to experimental connectivity measurements in229

Ji et al. [26]230

We determined the relation between the parameters gE and gI based on the connectivity measurements231

published in Ji et al. [26]. The V1 E neurons received direct thalamic input with the probabilities 15/19 in232

6



layer 2/3, 19/19 in layer 4, 8/8 in layer 5, and 7/9 in layer 6 [26]. The V1 I neurons received direct thalamic233

input with the probabilities 14/17 in layer 2/3, 15/15 in layer 4, 15/15 in layer 5, and 9/11 in layer 6 [26]. The234

adjusted peak amplitudes of postsynaptic potentials amounted to 190±78pA for E and 475±178pA for I V1235

populations in layer 2/3, 430± 97pA for E and 1111± 260pA for I cortical populations in layer 4, 190± 73pA236

for E and 596 ± 178pA for I cortical populations in layer 5, and 160 ± 49pA for E and 412 ± 167pA for I237

cortical populations in layer 6 [26]. In total, the experimentally measured gI was higher than gE in all layers238

2/3, 4, 5 and 6 (Fig. 4A).239

The connectivity weight JEE exceeds the external input weight gE based on activity recordings in240

Lien et al. [27]241

Lien et al. [27] reported that the upper bound for the contribution of thalamic inputs compared to the total
postsynaptic charge of the E cortical neurons was 36 + 2% for full screen, 100% contrast drifting gratings,
[see also 28], [29]. We used the upper bound of 38% to estimate an experimentally plausible region for the
relation gE /JEE in Fig. 4B. Here, we assumed that the relative contribution of the thalamic input gE ·TdLGN

to the E population with respect to the total input to E population JEE · rE − JEI · rI + gE ·TdLGN was smaller
than 38%. Using the estimate

gE ·TdLGN

JEE · rE + gE ·TdLGN
<

gE ·TdLGN

JEE · rE − JEI · rI + gE ·TdLGN
< 0.38,

we computed the approximate upper bound for the relation gE /JEE

gE
JEE
<

0.38

1 − 0.38 ·
rE

TdLGN
≈ 0.55.

Here we used the firing rates rE and TdLGN recorded in our experiments for 100% of contrast.242

Connectivity weights JXY computed from the experimental connectivity measurements reviewed in243

Table S1244

The weights of the network connectivity matrix JXY were computed as a product of connection proba-245

bility (CP), strength of postsynaptic potential (PSP), and the fraction of neurons in the source population246

with respect to the total number of neurons included in the network model. The data was extracted from247

experimental sources introduced in the first rows of Table S1 for the layers 2/3, 4, 5, and 6. We note248

that only two experimental reports contained complete information on both connectivity measures for all249

four V1 connections in layers 2/3 and 5 [30], [31], and only one source on connectivity measures in lay-250

ers 4 and 6 [30]. We assumed that our network contained 89% of excitatory and 11% of PV+ neurons,251

based on the following calculation: The V1 network consists of approximately 80% of excitatory and 20%252

of inhibitory neurons. A survey of inhibitory subpopulations in V1 [32] reported that PV+ neurons con-253

stitute 37, 49, 53, and 42% of inhibitory neurons in layers 2/3, 4, 5, and 6, respectively. 10 out of 131254

recorded neurons belonged to the layer 2/3, 29 to layer 4, 47 to layer 5, and 45 to layer 6. We computed255

the fraction of PV+ neurons in inhibitory population as the weighted percentage of the recorded neurons256

(10 · 0.37+29 · 0.49+47 · 0.53+45 · 0.42)/131 ≈ 0.47. Thus, the percentage of PV+ neurons in our cortical257

network is 0.47 · 20/(80 + 0.47 · 20) · 100% ≈ 11%.258

The external input weight gI exceeds gE in the SSN model if the firing rate rI increases faster than259

rE for low contrasts260

We express the thalamic input TdLGN using both equations in Eq. 1261

TdLGN(C ) =
rE (C )

1
n − JEE · rE (C ) + JEI · rI (C )

gE
=
rI (C )

1
n − JI E · rE (C ) + JI I · rI (C )

gI
. (S9)
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Eq. S9 implies262

rE (C )
1
n + (gE JI E /gI − JEE ) · rE (C ) = gE /gI · rI (C )

1
n + (gE JI I /gI − JEI ) · rI (C ). (S10)

For low contrasts and small firing rates, the terms rX are much smaller than r
1
n

X and have a negligible impact263

on Eq. S10 (Fig. S6A). Since r
1
n

I > r
1
n

E , the inequality gE < gI has to be satisfied to fulfill Eq. S10 for small264

contrasts.265

The ISN condition for SSN model implies that JEI exceeds the external input weight gE in the SSN266

model267

Experiments show that the V1 circuit in mouse operates as an inhibition stabilized network [33]. The condi-268

tion [34]269

JEE >
1

n
r

1
n −1
E (S11)

guaranties that the network given by the SSN model is inhibition stabilized. The 100% of the inferred270

connectivity weights satisfied the ISN condition Eq. S11 starting from the smallest contrast value of 4%,271

Fig. S5C. To derive the relation between the weights JEI and gE , we compute the derivative with respect to272

the contrast of the first SSN steady state equation in Eq. 1273

( 1
n
r

1
n −1
E − JEE ) · r ′E = −JEI · r ′I + gE ·T

′
dLGN. (S12)

We observe in our recorded data that for small and intermediate values of the contrast the dLGN contrast274

response grows faster than the I firing rate rI meaning that here T ′dLGN exceeds r ′I (Fig. S6B). Thus, using275

the ISN condition Eq. S11 and the SSN steady state equation in Eq. S12 we obtain for these contrast values276

0 > ( 1
n
r

1
n −1
E − JEE ) · r ′E > (gE − JEI ) · r

′
I . (S13)

Since both E and I firing rates of cortical populations increase monotonically with contrast, their derivatives277

r ′E and r ′I are positive. Thus, the Eq. S13 implies that the connectivity weight JEI exceeds gE in the SSN278

model when the SSN satisfies ISN condition and there exist and interval of contrasts, for which the dLGN279

firing rate grows faster than the I population firing rate as in our activity recordings (Fig. S6B).280

The shapes of contrast responses in V1 and dLGN imply relations JEI < JEE , gE < JEE , JI I < JI E281

and gI < JI E282

Let f [0, 1] → [0,∞) with f (0) = 0 denote the contrast response function. The recorded contrast response283

functions are typically nonlinear, resembling the logistic function in their shape. They deviate from the line284

connecting the points 0 and f (1) given by Cf (1) for every contrast C . The function Lf defined by285

Lf (C ) = f (C )/C − f (1) (S14)

quantifies how far the contrast response f (C ) at a contrast value C deviates from the line which connects286

the points 0 and f (1). If Lf (C ) is positive (negative) at C , the recorded contrast response f (C ) lies above287

(below) the line connecting 0 and f (1).288

We use the SSN steady state equations Eq. S9 to obtain

−
LTdLGN (C )
LrE (C )

gE +
LrI (C )
LrE (C )

JEI +
L
r
1/n
E
(C )

LrE (C )
= JEE ,

−
LTdLGN (C )
LrE (C )

gI +
LrI (C )
LrE (C )

JI I +
L
r
1/n
I
(C )

LrE (C )
= JI E . (S15)
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If for some C

LTdLGN (C ) > 0, LrE (C ), LrI (C ) < 0, LTdLGN (C ) > |LrI (C ) | > |LrE (C ) |, (S16)

and in the case of positive L
r
1/n
E
(C ) and L

r
1/n
I
(C )

min{gE , JEI , gI , JI I } ≥ 1, min{LTdLGN (C ), |LrI (C ) |} > max{L
r
1/n
I
(C ), L

r
1/n
I
(C )} (S17)

we obtain JEI < JEE , gE < JEE , JI I < JI E and gI < JI E .289

The conditions in Eq. S16 and Eq. S17 hold for the contrast values 30% and 46%, while 99.8% of all inferred290

connectivity weights satisfy Eq. S17.291

Contrast invariance constrains connectivity and input profiles292

We denote φ ≡ ψ − θ, φ ′ ≡ ψ − θ ′ and show that the property of contrast invariance (Eq. 3)293

RX (φ,C ) = rX (C )r̃X (φ), X ∈ {E , I } (S18)

combined with steady state equations Eq. 2 leads to equations in Eq. 4, which relate orientation tuning294

curves r̃X with connectivity and input profilesWXY and LX .295

The steady-state equations of the extended SSN model in Eq. 2 are given by296

RX (φ,C ) =
( π/2∫
−π/2

WXE (φ−φ ′)RE (φ ′,C )dφ ′−
π/2∫

−π/2

WXI (φ−φ ′)RI (φ ′,C )dφ ′+TdLGN(C )LX (φ)
)n
+
. (S19)

We insert the contrast invariant representation of steady states (Eq. S18) into (Eq. S19) and divide Eq. S19297

by r̃X (φ) to obtain298

rX (C ) =
(
JXE (φ)rE (C ) − JXI (φ)rI (C ) +TdLGN(C )gX (φ)

)n
+
, (S20)

where JXY (φ) =
π/2∫
−π/2

WXY (φ − φ ′)r̃Y (φ ′)dφ ′/(r̃X (φ))1/n and gX (φ) = LX (φ)/(r̃X (φ))1/n .299

Now we show that gX are constants independent of φ, then we show that JXY are constants provided the300

contrast response functions are not exactly linearly dependent, i.e. rE and rI do not satisfy rE (C ) = a ·rI (C )301

for all contrasts C with some constant a . We prove this statement by contradiction, i.e. we assume there is302

at least one parameter JXY or gX such that JXY (φ) , JXY (φ ′) or gX (φ) , gX (φ ′) for some φ , φ ′, and303

derive a contradiction.304

First, we show that gX are independent of φ. We substitute S = TdLGN(C ) into Eq. S20305

r̂X (S ) =
(
JXE (φ)r̂E (S ) − JXI (φ)r̂I (S ) + SgX (φ)

)n
+
. (S21)

Here, r̂X (S ) = rX (C ) = rX (T −1dLGN(S )). Since r̂X are non-negative, the content of the bracket on the right306

side of the equations is positive and we can remove the sign +. Next, we apply the exponent 1/n to both307

sides of Eq. S21 to obtain308

(r̂X (S ))1/n = JXE (φ)r̂E (S ) − JXI (φ)r̂I (S ) + SgX (φ). (S22)
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Now we denote ĴXY (φ) = JXY (φ) − JXY (φ ′) and ĝX (φ) = gX (φ) − gX (φ ′) and subtract from Eq. S22 the309

same equation with φ substituted by φ ′ to obtain310

0 = ĴXE (φ)r̂E (S ) − ĴXI (φ)r̂I (S ) + SĝX (φ). (S23)

Next, we compute a derivative of Eq. S23 with respect to S and set S = 0. We obtain311

0 = ĴXE (φ)r̂ ′E (S ) − ĴXI (φ)r̂
′
I (S ) + ĝX (φ). (S24)

We note that r̂ ′X (0) = 0 always holds for the zero steady state of Eq. S21 corresponding to S = 0 input.312

Then we obtain ĝX (φ) = 0 from Eq. S24, which by definition implies gX (φ) = gX (φ ′) for all φ. We have313

shown that gE and gI are constants independent of φ.314

Now we show when JXY are independent of φ. From ĝE (φ) = ĝI (φ) = 0, we obtain that Eq. S23 is315

equivalent to316

r̂E (S )/r̂I (S ) = ĴEI (φ)/ĴEE (φ). (S25)

Since the left side of Eq. S25 depends only on S and the right side only on φ, both sides are equal to the317

same constant which we denote by a . In particular, this last observation implies exact linear dependence of318

the contrast response functions: rE (C ) = a · rI (C ).319

We have shown that the property of contrast-invariance Eq. 3 restricts the shape of the input functions LE320

and LI and the interaction profilesWEE ,WEI ,WI E andWI I accordingly to the following relations321

LE (φ) = gE · (r̃E (φ))1/n , LI (φ) = gI · (r̃I (φ))1/n , (S26)

∫ π/2

−π/2
WEE (φ − φ ′)r̃E (φ ′)dφ ′ = JEE · (r̃E (φ))1/n ,

∫ π/2

−π/2
WEI (φ − φ ′)r̃I (φ ′)dφ ′ = JEI · (r̃E (φ))1/n ,∫ π/2

−π/2
WI E (φ − φ ′)r̃E (φ ′)dφ ′ = JI E · (r̃I (φ))1/n ,

∫ π/2

−π/2
WI I (φ − φ ′)r̃I (φ ′)dθ ′ = JI I · (r̃I (φ))1/n ,

(S27)

where the constants gX and JXY depend on the shape of contrast responses rE and rI that are steady322

states of the two population SSN model.323

Determining connectivity and input profiles of the extended SSN model324

To determine the input and connectivity profiles LX and WXY from Eq. S26 and Eq. S27, we used the
wrapped Gaussian approximation of orientation tuning curves. The wrapped Gaussian function is given by

G (σ) (φ) =
∞∑

m=−∞
exp

{
− (φ + πm)2

2σ2

}
.

The widths of the orientation tuning curves r̃E and r̃I were σE ≈ 0.31π ≈ 56◦ and σI ≈ 0.34π ≈ 62◦325

(Fig. 5B), the orientation tuning curves are represented by326

r̃E (φ) = G (σE ) (φ)/max
φ
G (σE ) , r̃I (φ) = G (σI ) (φ)/max

φ
G (σI ) . (S28)

To derive the input profiles LE and LI using Eq. S26, we fitted normalized wrapped Gaussian functions to327

the power-law transformations of orientation tuning curves (r̃E )1/n and (r̃I )1/n , where n were the power-law328

exponents inferred from the recorded contrast responses. We obtained that the mean widths of the curves329
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(r̃E )1/n and (r̃I )1/n were σ inp
E ≈ 0.36π ≈ 65◦ and σ inp

I ≈ 0.39π ≈ 70◦, respectively, and the input profiles LE330

and LI (Fig. 5C) were represented by331

LE (φ) = gE · G (σ inp
E
) (φ)/max

φ
G (σ inp

E
) , LI (φ) = gI · G (σ inp

I
) (φ)/maxG (σ inp

I
) . (S29)

Our next goal was to determine the connectivity profiles WXY using Eq. S27. To this end, we used the332

formula for the convolution of two wrapped Gaussian functions [35]333

σ2√
2πσ1(σ2

2 − σ
2
1 )1/2

∫ π/2

−π/2
G ( (σ2

2−σ
2
1 )1/2)
(φ − φ ′)G (σ1) (φ ′)dφ ′ = G (σ2) (φ). (S30)

Next, we combined Eq. S27 and Eq. S30 to obtain the wrapped Gaussian representation ofWXY . Using

(r̃X (φ))1/n = G (σ inp
X
) (φ)/max

φ
G (σ inp

X
) , r̃Y (φ) = G (σY ) (φ)/max

φ
G (σY ) ,

Eq. S27, and Eq. S30, we obtained334

WXY (φ) =
JXY · σ inp

X√
2π · σY · ((σ inp

X )2 − σ
2
Y )1/2

·
maxφ G (σY )
maxφ G (σ inp

X
)
· G ( ( (σ inp

X
)2−σ2

Y
)1/2) (φ) (S31)

and335

σXY = ((σ inp
X )

2 − σ2
Y )

1/2. (S32)

For our recorded data, we obtained σEE = 33◦, σEI = 19◦, σI E = 42◦, and σI I = 33◦.336

Ascending order between the widths of connectivity profiles337

The widths of connectivity profiles follow the order σEI < σEE < σI I < σI E in each inferred parameter set.338

However, this result would also follow for a specific order between only σE , σI and σ inp
E . Here we show that339

the above derivations constrain the possible order of connectivity widths: independently of the exact values340

of σE and σI , the assumptions341

σE < σI , σI < σ
inp
E , n > 1 (S33)

always imply the relations
σEI < σEE < σI E σEI < σI I < σI E .

Indeed, since σE < σI , we always have σ inp
E < σ

inp
I for n > 1. Based on this inequality and Eq. S33, we

obtain σ2
E < σ

2
I < (σ

inp
E )

2 < (σ inp
I )

2. Next, we obtain

(σ inp
E )

2 − σ2
I < (σ

inp
E )

2 − σ2
E < (σ

inp
I )

2 − σ2
E

and
(σ inp
E )

2 − σ2
I < (σ

inp
I )

2 − σ2
I < (σ

inp
I )

2 − σ2
E .

Together with Eq. S32, these chains of inequalities are equivalent to the relations σEI < σEE < σI E and342

σEI < σI I < σI E . In particular, inequalities in Eq. S33 always imply that σEI is the smallest and σI E the343

largest connectivity profile width, while σEE and σI I are constrained between σEI and σI E .344

The widths of the connectivity profiles need to follow the rank σEI < σEE ≈ σI I < σI E to balance out
the widths of the inputs to the populations in the recurrent network and achieve that the ultimate widths of
populations’ activity profiles coincide with the observed ones. Precisely, the connectivity profile modifies
the width of the orientation-dependent activity profile RY of the populationY , together they shape the input
from the population Y to the population X . The total input to the population X , in the recurrent network
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represented by the SSN model, is the sum of orientation-dependent inputs from E, I, and dLGN populations,
Eq. 2 ∫

WXE · RE −
∫
WXI · RI +TdLGN · LX .

This input is then transformed by the neuronal nonlinearity (power-law with the exponent n ≈ 2) and results345

in the orientation-dependent activity profile RX of the population X . Hereby, the width of each orientation-346

dependent term (
∫
WXE r̃E ,

∫
WXI r̃I and LX ) in the sum needs to be approximately equal to the width347

of the activity profile r̃ 1/nX . We show this in Eq. 4 using the contrast-invariance of orientation-dependent348

response.349

The parameter σ of the wrapped Gaussian fit describes the width of orientation-dependent activity and350

connectivity profiles, Eq. S3. The wrapped Gaussian fit conveniently represents orientation-dependent351

activity and connectivity profiles because an analytical formula relates the widths σ of all the profiles in352

Eq. 4. Precisely, the relation
∫
WXY · r̃Y = JXY r̃

1/n
X implies that σ2

XY + σ2
Y = σ2

X ,1/n , whereby σXY ,353

σY , and σX ,1/n are the widths of the profiles WXY , r̃Y , and r̃X ,1/n . In particular, σ2
EE + σ2

E = σ2
E ,1/n and354

σ2
EI +σ

2
I = σ2

E ,1/n . Both expressions are equal to the same number σ2
E ,1/n . However, σE is smaller than σI ,355

meaning that σEI has to be smaller than σEE . Analogously, σ2
I E + σ2

E = σ2
I ,1/n and σ2

I I + σ
2
I = σ2

I ,1/n . Both356

expressions are equal to the same number σI ,1/n which is larger than σE ,1/n . Thus, together with σE < σI ,357

we obtain that σI I is smaller than σI E , but both are larger than σEI and σEE , respectively, because σI ,1/n358

is larger than σE ,1/n .359
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Fig. S1. Reverse correlation and optimal response time point (related to Fig. 2). A, Reverse correlation analysis
for an example V1 neuron. Reverse correlation computes the firing rate at a time point δt relative to stimulus occur-
rence, yielding temporal kernels for each stimulus combination (Middle: orientation; bottom: contrast; average across
all other stimulus dimensions for visualization). The optimal response time was calculated by using the sum of the
aggregated variances in firing rate across stimulus conditions (top, see Supplementary Information) and selecting its
peak as the latency of optimal response (vertical line) [41]. B, Distribution of optimal response times (after application
of a latency cutoff of > 25 ms, which removed 7 neurons with implausibly short latencies) (teal : inhibitory, orange: ex-
citatory, black : cumulative distribution). Inhibitory neurons had a significantly lower optimal response time (69± 3 ms)
than excitatory neurons (89 ± 3 ms; mean ± sem; two-tailed Welch’s t -Test: t=5.18, p < .001; 174 neurons.
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Fig. S2. Suppressed-by-contrast neurons (SbC) (related to Fig. 2). A, Four example SbC neurons, characterized
by their stronger response to low contrast and an increasing suppression with higher contrasts. B, Two-dimensional
tuning model fitted to an SbC neuron. C, Distribution of response amplitudes, defined as the difference between
responses to 100% and 0% contrast. SbC neurons, defined by their negative response amplitude, were found within
the broad-spiking, putative excitatory neurons (24/125, transparent). Since SbC neurons might correspond to VIP
interneurons [22], [23] or a so-far minimally studied class of Sncg interneurons [23], SbC neurons were excluded from
further analysis (see also Results).
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Fig. S3. Contrast-invariance of V1 population response (related to Fig. 2 –Fig. 5. Top: excitatory, bottom inhibitory.
A, Population response for two-dimensional tuning model using hyperbolic ratio function and wrapped Gaussian.
Residuals are shown once on the same scale as the data and once on a separate scale. The residuals show a
significant, but very weak pattern (E: gz = 10.41, residual strength < 0.1%; I: gz = 14.31, residual strength = 0.1%).
B, Same as (A) for two-dimensional tuning model using model-free contrast response and wrapped Gaussian, as
used in Fig. 3 and Fig. 5 (E: gz = 11.58, residual strength < 0.1%; I: gz = 15.07, residual strength < 0.1%). We
suspect that the small, albeit significant, spatial pattern in the residual suggests a contribution of supersaturating units,
which cannot be captured by a separable model of orientation and contrast. In addition, in our population of recorded
neurons, contrast sensitivity is not entirely equally distributed Fig. 2L, which could contribute to the small residual.
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Fig. S4. Responses in dLGN (related to Fig. 2). A, Responses of two dLGN example neurons to combinations of
orientation and contrast (left), first SVD component (middle) and SVD residual (right). For both examples, the absence
of significant spatial patterns indicate that contrast invariance is not substantially violated (Top: gz = −0.66, p = 0.96;
bottom: gz=-0.91, p = 0.98). B, Violations of contrast invariance were assessed by the power of the SVD residual
(> 5%) and significance of spatial autocorrelation (gz > 1.96). Light dots: contrast-dependent neurons (2/98 dLGN
neurons); solid dots: contrast-invariant neurons; pink dots: example neurons from (A) (96/98 dLGN neurons). C, Two-
dimensional tuning fit consisting of a product of a hyperbolic ratio function and a wrapped Gaussian [18] for an example
dLGN neuron. D, Distribution of fit quality across dLGN neurons. Dashed line: fit quality threshold (0.4). Solid bars:
neurons considered for further analysis (89/96 dLGN neurons; mean R 2 = 0.79 ). E, Normalized orientation tuning
component of the dLGN neurons with rising contrast response functions (72/89 neurons). F, Averaged normalized
orientation tuning component. G, Cumulative distribution of orientation selectivity [OSI; 19], [20]. Mean OSI of the
contrast-invariant dLGN population: 0.14 ± 0.02 (mean ± sem). Inset: Density histogram of orientation selectivity.
Same x-axis as cumulative distribution, y-scale bar represents 2 neurons per bin of OSI. H–J, Same as (E–G) for
normalized contrast response component and cumulative distribution of contrast sensitivity (contrast at which the
contrast response function reaches half height). Mean contrast at half-height 0.39 ± 0.02, 72 dLGN neurons.
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there exists an interval of contrasts, for which the dLGN firing rate grows faster than the I population firing rate rI ,
as found in our activity recordings. C, There exist an interval of contrasts for which the recorded thalamic contrast
responseTdLGN lies above (left panels), while the firing rates rE and rI lie below the straight lines (red lines) connecting
their zero and 100% contrast values (right panels). Additionally, the deviation of the I contrast response from its linear
increase exceeds that of the E response. These properties of contrast responses can explain why JI E is the strongest
connectivity weight targeting the I population, and JEE is the strongest weight targeting the E population in the inferred
connectivity sets (Eq. S15-Eq. S17 in Supplementary Information).
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Table S1: Connectivity matrix for pyramidal and PV+ neurons in layers 2/3, 4, 5, and 6, summarized from
recent in vitro studies. The entries of the connectivity matrix JXY are computed for each layer based on the exper-
imentally measured connection probability (CP) and amplitude of the postsynaptic potential in mV (PSP) using the
formula JXY = CP ∗ PSP ∗ NY /N ∗ 100%, where NY /N is the proportion of neurons in the population NY . Here we
use NE /N = 0.89 and NI /N = 0.11 [32] (see Results).
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