SUPPLEMENTARY INFORMATION

This PDF file includes:

Figures S1 to S8 Tables S1 to S14 Supplementary Methods Supplementary References

Supplementary Figures

Fig. S1. Particle-tracking PALM imaging of Pol IV-PAmCherry and SSB-PAmCherry molecules and standard near-TIRF fluorescence imaging of SSB-mYPet and Pol III ε -mYPet foci. Representative brightfield micrographs of cells containing (*A*) PAmCherry (*pamcherry1*) fusions to the endogenous copy of the Pol IV gene *dinB* (left) or a second copy of the singlestranded DNA-binding protein gene *ssb* at the *lacZ* locus (right) and (*B*) mYPet (*mypet*) fusions to a second copy of *ssb* at the *lacZ* locus (left) or the endogenous copy of the ε subunit of Pol III *dnaQ* (right). Representative fluorescence micrographs of (*C*) single activated Pol IV-PAmCherry (left) or SSB-PAmCherry (right) molecules and (*D*) SSB-mYPet (left) and ε -mYPet (right) foci recorded with 250 ms integration times with overlays of the cell outlines.

A +MMS MMS 0 mM 2 mM 4 mM 6 mM Dilution -1 -2 -3 -4 -5 -6 -1 -2 -3 -4 -5 -6 -1 -2 -3 -4 -5 -6 -1 -2 -3 -4 -5 -6 ΛlexA ∆lexA ∆dinB +0.5 mM IPTG ∆lexA dinB-PAmCherry ssb-mYPet ΔlexA dinB^{R,C}-PAmCherry ssb-mYPet ΔlexA dnaQ-mYPet ssb-PAmCherry В +HU 7 mM 10 mM HU 0 mM 4 mM -1 -2 -3 -4 -5 -6 -1 -2 -3 -4 -5 -6 -1 -2 -3 -4 -5 -6 -1 -2 -3 -4 -5 -6 Dilution ΔlexA $\Delta lexA \Delta dinB$ +0.5 mM IPTG ΔlexA dinB-PAmCherry ssb-mYPet ΔlexA dinB^{R,C}-PAmCherry ssb-mYPet ΔlexA dnaQ-mYPet ssb-PAmCherry С +MMS MMS 0 mM 2 mM 4 mM 6 mM -1 -2 -3 -4 -5 -6 Dilution -1 -2 -3 -4 -5 -6 -1 -2 -3 -4 -5 -6 -1 -2 -3 -4 -5 -6 lexA^{*} lexA⁺ priA-PAmCherry +0.5 mM IPTG ∆lexA ∆lexA ssb-mYPet ΔlexA priA-PAmCherry ssb-mYPet

Fig. S2. (*A*) Serial 10-fold dilutions of *E. coli* strains with mutants and fusions to Pol IV (*dinB*) grown on LB agar plates with and without methyl methanesulfonate (MMS) added at 0, 2, 4, and 6 μ M concentration. (*B*) Serial 10-fold dilutions of *E. coli* strains with mutants and fusions to Pol IV (*dinB*) grown on LB agar plates with and without hydroxyurea (HU) added at 0, 4, 7, and 10 μ M concentration. Serial 10-fold dilutions of *E. coli* strains with fusions to (*C*) PriA (*priA*) or (*D*) RecG (*recG*) grown on LB agar plates with and without MMS added at 0, 2, 4, and 6 mM concentration.

Fig. S3. Single-cell colocalization of Pol IV-PAmCherry and SSB-mYPet under different treatment conditions. (*A*) Radial distribution function g(r) between each static Pol IV-PAmCherry track and the nearest SSB-mYPet focus for untreated cells (black, N = 1,482) and cells treated with 10 mM (red, N = 1,273) or 100 mM (green, N = 2,754) MMS. (*B*) g(r) for untreated cells (black, N = 320) and cells treated with 100 mM MMS (red, N = 963) in the non-constitutive SOS-induced *lexA*⁺ background. (*C*) g(r) for untreated cells (black, N = 1,482) and fixed cells (red, N = 5,596). (*D*) g(r) for untreated cells (black, N = 1,482) and cells treated with 100 mM HU (green, N = 1,539), 20 mM HU (red N = 2,267), and 100 mM guanazole (blue, N = 2,259. The untreated, 100 mM MMS, and 100 mM HU g(r) curves are replotted from Fig. 1 to enable comparison.

Fig. S4. Population fits to the distributions of the apparent diffusion coefficient (D^*) for SSB-PAmCherry in (A) untreated cells (N = 9,251) and cells treated with (B) 100 mM MMS (red, N = 11,797), (C) 30 J/m² UV light (green, N = 16,542), and (D) 100 mM HU (blue, N = 5,690). See Methods and Table S6 for fit equations and parameters.

Fig. S5. Lifetime distributions of static SSB-PAmCherry tracks. Continuous imaging in (*A*) untreated cells (white, N = 2,965) and (*B*) cells treated with 100 mM MMS (red, N = 6,924). Stroboscopic imaging with a 1-s interval in (*C*) untreated cells (white, N = 1,403) and cells treated with (*D*) 100 mM MMS (red, N = 3,837), (*E*) 30 J/m² UV light (green, N = 2,922), and (*F*) 100 mM HU (blue, N = 1,659). Stroboscopic imaging with a 2-s interval in (*G*) untreated cells (white, N = 545) and cells treated with (*H*) 100 mM MMS (red, N = 1,171), (*I*) 30 J/m² UV light (green, N = 1,755), and (*J*) 100 mM HU (blue, N = 956).

Fig. S6. Survival curves of static SSB-PAmCherry tracks fit to double-exponential decay functions. (*A*) Continuous imaging in untreated cells (white, N = 2,965) and cells treated with 100 mM MMS for 20 min (red, N = 6,924). (*B*) Stroboscopic imaging with a 1-s interval in untreated (white, N = 1,403) cells and cells treated with 100 mM MMS (red, N = 3,837), 30 J/m² UV light (green, N = 2,922), and 100 mM HU (blue, N = 1,659). (*C*) Stroboscopic imaging with a 2-s interval in untreated cells (white, N = 545) and cells treated with 100 mM MMS (red, N = 1,171), 30 J/m² UV light (green, N = 1,755), and 100 mM HU (blue, N = 956).

Fig. S7. Photobleaching correction to estimated SSB-PAmCherry binding lifetimes. Measured apparent dissociation rate constants k_{net} from exponential fits to survival curves (see Figure S6) multiplied by the stroboscopic interval T_{tot} plotted against T_{tot} for untreated cells (black circles) and cells treated with 100 mM MMS (red circles), 30 J/m² UV light (green circles), and 100 mM HU (blue circles). Linear fits (solid lines) for each condition give the photobleaching-corrected SSB-PAmCherry off rate as the slope and the PAmCherry photobleaching rate as the intercept (see Methods).

Fig. S8. Binding number distributions of static SSB-PAmCherry molecules for continuous imaging in (*A*) untreated cells (white, N = 164) and (*B*) cells treated with 100 mM MMS (red, N = 181). Stroboscopic imaging with a 1-s interval in (*C*) untreated cells (white, N = 539) and cells treated with (*D*) 100 mM MMS (red, N = 538), (*E*) 30 J/m² UV light (green, N = 285), and (*F*) 100 mM HU (blue, N = 387). Stroboscopic imaging with a 2-s interval in (*G*) untreated cells (white, N = 437) and cells treated with (*H*) 100 mM MMS (red, N = 581).

Supplementary Tables

Table S1: Value of the mean radial distribution function $g(r)$ for Pol IV, PriA, or RecG
colocalization with SSB at the smallest value of r, and the standard error of the mean (S.E.M.)
at that r value for the 100 calculated $g(r)$ curves

Fig.	Protein	Condition	$g(r) \pm S.E.M.$	Fig.	Protein	Condition	$g(r) \pm$ S.E.M.
1A	Pol IV ^{WT}	Untreated	1.46 ± 0.04	S3A	Pol IV ^{WT}	Untreated	1.46 ± 0.04
	Pol IV ^{R,C}		0.68 ± 0.03			10 mM MMS	4.1 ± 0.2
	Pol		0.73 ± 0.04			100 mM MMS	7.8 ± 0.2
	IV ^{T120P}						
1B	Pol IV ^{WT}	100 mM MMS	7.8 ± 0.2	S3B	Pol IV ^{WT}	Untreated	See note
	Pol IV ^{R,C}		5.4 ± 0.1		$(lexA^+)$	100 mM MMS	8.9 ± 0.3
	Pol		3.04 ± 0.07	S3C	Pol IV ^{WT}	Untreated	1.46 ± 0.04
	IV ^{T120P}						
1C	Pol IV ^{WT}	30 J/m ² UV	5.1 ± 0.1			Fixed	1.21 ± 0.02
	Pol IV ^{R,C}		2.79 ± 0.05	S4C	Pol IV ^{WT}	Untreated	1.46 ± 0.04
	Pol		1.7 ± 0.1			100 mM HU	7.7 ± 0.2
	IV ^{T120P}						
1D	Pol IV ^{WT}	100 mM HU	7.7 ± 0.2			20 mM HU	5.2 ± 0.1
						100 mM GUA	6.3 ± 0.1
	Pol IV ^{R,C}		4.4 ± 0.1				•
	Pol		1.02 ± 0.08	Note:	The first $g(r)$	bin is not populated	for this dataset
	IV ^{T120P}			due to	the smaller n	umber of trajectories	5.
4A	PriA	Untreated	1.4 ± 0.1				
		100 mM MMS	3.24 ± 0.08]			
4B	RecG	Untreated	1.60 ± 0.06	1			
		100 mM MMS	10.1 ± 0.3]			

 Table S2: Estimated SSB-PAmCherry diffusion coefficients (± S.E.M.)

Treatment condition	Mean ± S.E.M. (μm ² /s)	Median (µm²/s)	N (events)	N per cell	Wilcoxon rank-sum <i>P</i> -value relative to untreated
Untreated	0.743 ± 0.007	0.638	9,251	5.1	-
100 mM MMS	0.266 ± 0.004	0.095	11,797	12.9	0.00000
30 J/m ² UV	0.245 ± 0.003	0.094	16,542	23.2	0.00000
100 mM HU	0.246 ± 0.005	0.118	5,690	6.8	0.00000

Table S3: Estimated SSB-PAmCherry diffusion coefficients sorted by distance from the replisome

Treatment condition	$N(D^* < 0.25 \mu m^2/s, static)$	$N(D^* > 0.25 \ \mu m^2/s, mobile)$
Untreated (all)	2,947	5,753
Untreated (< 200 nm replisome)	1,014	262
Untreated (> 200 nm replisome)	1,933	5,491
100 mM MMS (all)	8,763	2,681
100 mM MMS (< 200 nm replisome)	4,405	371
100 mM MMS (> 200 nm replisome)	4,358	2,310
30 J/m ² UV (all)	12,268	3,077
$30 \text{ J/m}^2 \text{ UV} (< 200 \text{ nm replisome})$	2,771	232
$30 \text{ J/m}^2 \text{ UV} (> 200 \text{ nm replisome})$	9,497	2,845
100 mM HU (all)	3,854	1,201
100 mM HU (< 200 nm replisome)	511	84
100 mM HU (> 200 nm replisome)	3,343	1,117

Table S4: SSB-PAmCherry diffusion coefficient distribution fit parameters (± uncertainties from 95% fit confidence intervals)

Treatment	$D_1 (\mu m^2/s)$	A_1	$D_2 (\mu m^2/s)$	A ₂	$D_3 (\mu m^2/s)$	A3
condition						
Untreated	$0.0752 \pm$	0.242 ±	$0.236 \pm$	$0.149 \pm$	$1.150 \pm$	$0.609 \pm$
	0.004	0.021	0.038	0.023	0.06	0.044
100 mM MMS	$0.0664 \pm$	0.470 ±	0.163 ±	0.274 ±	$0.972 \pm$	0.256 ±
	0.0094	0.116	0.051	0.11	0.308	0.226
30 J/m ² UV	$0.0689 \pm$	0.501 ±	$0.184 \pm$	$0.287 \pm$	$1.256 \pm$	0.212 ±
	0.0086	0.113	0.056	0.101	0.644	0.214
100 mM HU	$0.0756 \pm$	0.452 ±	0.213 ±	0.346 ±	1.069 ±	0.202 ±
	0.008	0.083	0.051	0.082	0.52	0.165

 Table S5: Integrated SSB-mYPet focus intensity (± S.E.M.)

Treatment condition	Mean ± S.E.M. (AUe-5)	Median (AUe-5)	N (foci)	Wilcoxon rank-sum <i>P</i> -value relative to untreated
Untreated	2.40 ± 0.05	1.61	2,138	-
100 mM MMS	3.16 ± 0.07	2.53	1,309	0.00000
30 J/m ² UV	6.6 ± 0.2	3.57	2,015	0.00000
100 mM HU	2.87 ± 0.08	2.04	1,207	0.00000

Treatment condition	Mean ± S.E.M.	Median	N (cells)	Wilcoxon rank-sum P-
				value relative to untreated
Untreated	1.06 ± 0.02	1	2,021	-
100 mM MMS	1.11 ± 0.02	1	1,182	0.00311
30 J/m ² UV	1.22 ± 0.02	1	1,646	0.00000
100 mM HU	1.29 ± 0.03	1	938	0.00000

Table S6: Number of SSB-mYPet foci per cell (± S.E.M.)

Table S7: SSB-PAmCherry binding lifetimes (± S.E.M.)

Treatment condition	Mean ± S.E.M.	N (events)	N (cells)	Wilcoxon rank-sum P-
(Stroboscopic interval)	(s)			value relative to untreated
Untreated	1.7 ± 0.1	545	437	-
(2 s)				
100 mM MMS	5.2 ± 0.3	1,171	380	0.00000
(2 s)				
30 J/m ² UV	3.6 ± 0.2	1,755	512	0.00001
(2 s)				
100 mM HU	2.3 ± 0.1	956	581	0.69151
(2 s)				
Untreated	1.41 ± 0.06	1,403	539	-
(1 s)				
100 mM MMS	2.66 ± 0.07	3,837	538	0.00000
(1 s)				
30 J/m ² UV	2.08 ± 0.07	2,922	285	0.00003
(1 s)				
100 mM HU	1.62 ± 0.08	1,659	387	0.29163
(1 s)				
Untreated	0.72 ± 0.02	2,965	164	-
(continuous)				
100 mM MMS	0.94 ± 0.01	6,924	181	0.00000
(continuous)				

	2 s inte	erval			1 s inte	erval			Contin	uous		
Treatment	A	T_1	B	T ₂ (s)	A	<i>T</i> ₁ (s)	B	T ₂ (s)	A	<i>T</i> ₁ (s)	B	T ₂ (s)
condition		(s)										
Untreated	0.1±	0±4	0.9±	3.4±	$0.40\pm$	0.9±	$0.60\pm$	3.3±	0.30±	$0.27\pm$	$0.70\pm$	$1.01\pm$
	0.6		0.2	0.4	0.07	0.2	0.09	0.3	0.02	0.05	0.07	0.05
100 mM	0.38±	2.7±	0.61±	11.3±	0.31±	1.1±	0.68±	5.5±	$0.44\pm$	$0.44\pm$	0.56±	1.49±
MMS	0.06	0.5	0.07	0.8	0.03	0.2	0.03	0.2	0.02	0.03	0.03	0.04
30 J/m ² UV	0.47±	3.0±	0.52±	10±	0.32±	0.9±	0.68±	4.7±	-	-	-	-
	0.08	0.5	0.09	1	0.02	0.1	0.03	0.2				
100 mM	0.3±	1.7±	0.7±	5.7±	$0.45\pm$	1.1±	$0.55\pm$	4.8±	-	-	-	-
HU	0.1	0.8	0.1	0.5	0.05	0.2	0.06	0.4				

 Table S8: SSB-PAmCherry survival fit parameters (± uncertainties from 95% fit confidence intervals)

Table S9: Photobleaching-corrected SSB-PAmCherry survival times (± uncertainties from95% fit confidence intervals)

Treatment condition	$k_{\rm off}(\rm s^{-1})$	$T_{\rm off}(s)$	kbleach (s ⁻¹)
Untreated	0.22±0.07	4±1	0.7±0.2
100 mM MMS	0.031±0.009	32±9	0.7±0.2
30 J/m ² UV	0.018 ± 0.04	60±10	1.0±0.2
100 mM HU	0.11±0.06	9±5	0.7±0.4
Mean kbleach	0.8±0.6		

Treatment condition	Mean ± S.E.M.	Median (events)	N (cells)	Wilcoxon rank-sum P-
(Stroboscopic interval)	(events)			value relative to untreated
Untreated (2 s)	1.4 ± 0.1	0	437	-
100 mM MMS (2 s)	3.1 ± 0.2	2	380	0.00000
30 J/m ² UV (2 s)	4.7 ± 0.2	3	512	0.00000
100 mM HU (2 s)	1.8 ± 0.1	1	581	0.00086
Untreated (1 s)	3.0 ± 0.2	1	539	-
100 mM MMS (1 s)	7.6 ± 0.3	5	538	0.00000
30 J/m ² UV (1 s)	11.8 ± 0.5	10	285	0.00000
100 mM HU (1 s)	4.6 ± 0.2	3	387	0.00000
Untreated (continuous)	18 ± 1	15	164	-
100 mM MMS (continuous)	38 ± 1	37	181	0.00000

 Table S10: Number of SSB-PAmCherry binding events (± S.E.M.)

Number	Designation	Sequence (5'-3')
oET110	recG-G4S-PAmC-KI-for	CTGATAGAACGCTGGATGCCGGAGACGGAACGTTACTCGAATG
		CGGGTGGTGGTGGTTCTGGTGG
oET111	recG-PAmC-KI-rev	GGAAGGTAGGGTAACCTGAAATGGCGGTCTTCTCACTGCCGCC
		TTTCTTATGAATATCCTCCTTAGTTCC
oET114	priA-G4S-PAmC-KI-for	TCCCGTAAGGTGAAATGGGTGCTGGATGTTGATCCGATTGAGG
		GTGGTGGTGGTGGTTCTGGTGG
oET115	priA-PAmC-KI-rev	GTGATGAATATTGAATTTTTCGATCCGCCTCGCATCGTGAGCG
		GTTCTTATGAATATCCTCCTTAGTTCC
oJK022	Lambda red P1	GTGTAGGCTGGAGCTGCTTC
oJK197	lacZ-SSB-mYpet-KI_for	TGTGGAATTGTGAGCGGATAACAATTTCACACAGGAAACAGCT
		ATGGCCAGCAGAGGCGTAAA
oJK198	lacZ-SSB-mYpet-KI_rev	TCATCATATTTAATCAGCGACTGATCCACCCAGTCCCAGACGA
11/077	WD4 0 20	AGATGAATATCCTCCTTAGTTCCTA
oJK277	rc_pKD4_9_30	
SO572	pKD3/4-recG-KO-for	
0.0572		
SO573	pKD3/4-recG-KO-rev	GTCTTCTCACTGCCGCCTTTTACGCATTCGAGTAACGTTCTAT
1 0000		GAATATCCTCCTTAGT
gbS282	Gblock-pKD4-ssb-linker-	
	Pamcherry	
		GTCAGGACCUGGAAGTACGCTACATGUCAAATGGTGGCGCAGT
		TGCCAACATTACGCTGGCTACTTCCGAATCCTGGCGTGATAAA
		GCGACCGGCGAGATGAAAGAACAGACTGAATGGCACCGCGTTG
		TGCTGTTCGGCAAACTGGCAGAAGTGGCGAGCGAATATCTGCG
		TAAAGGTTCTCAGGTTTATATCGAAGGTCAGCTGCGTACCCGT
		AAATGGACCGATCAATCCGGTCAGGATCGCTACACCACAGAAG
		TCGTGGTGAACGTTGGCGGCACCATGCAGATGCTGGGTGGTCG
		TCAGGGTGGTGGCGCTCCGGCAGGTGGCAATATCGGTGGTGGT
		CAGCCGCAGGGCGGTTGGGGTCAGCCTCAGCAGCCGCAGGGTG
		GCAATCAGTTCAGCGGCGCGCGCGCAGTCTCGCCCGCAGCAGTC
		CGCTCCGGCAGCGCCGTCTAACGAGCCGCCGATGGACTTTGAT
		GATGACATTCCGTTCAGCTCGGCTGGCTCCGCTGCTGGTTCTG
		GCGAATTCATGGTTAGCAAGGGCGAGGAGGATAACATGGCCAT
		CATTAAGGAGTTCATGCGCTTCAAGGTGCACATGGAGGGGTCC
		GTGAACGGCCACGTGTTCGAGATCGAGGGCGAGGGCGAGGGCC
		GCCCCTACGAGGGCACCCAGACCGCCAAGCTGAAGGTGACCAA
		GGGTGGCCCCCTGCCCTTCACCTGGGACATCCTGTCCCCTCAA
		TTCATGTACGGCTCCAATGCCTACGTGAAGCACCCCGCCGACA
		TCCCCGACTACTTTAAGCTGTCCTTCCCCGAGGGCTTCAAGTG
		GGAGCGCGTGATGAAATTCGAGGACGGCGGCGTGGTGACCGTG
		ACCCAGGACTCCTCCCTGCAGGACGGTGAGTTCATCTACAAGG
		TGAAGCTGCGCGGCACCAACTTCCCCTCCGACGGCCCCGTAAT
		GCAGAAGAAGACCATGGGCTGGGAGGCCCTCTCCGAGCGGATG
		TACCCCGAGGACGGCGCCCTGAAGGGCGAGGTCAAGCCGAGAG
		TGAAGCTGAAGGACGGCCGGCCCACTACGACGCCTGAGGTCAAGAC

Table S11: Oligonucleotides and Gene Blocks used in this study

	AACGTCAACCGCAAGTTGGACATCACCTCACAACGAGGACT
	ACACCATCGTGGAACAGTACGAACGTGCCGAGGGCCGCCACTC
	CACCGGCGGCATGGACGAGCTGTACAAGTAAGTGTAGGCTGGA
	GCTGCTTCGAAGTTCCTATACTTTCTAG

Table S12: Plasmids used in this study

Designation	Containing Strain	Source or Reference
pKD3	JEK42	(1)
pKD4	JEK45	(1)
pSIM5	JEK168	(2)
pCP20	JEK169	(3)
pKD4-G4S-PAmCherry	JEK573	(4)
pKD3-ssb-linker-PAmCherry	SE99	This study
pSIM6	S235	(2)

Table S13: Escherichia coli bacterial strains used in this study

Number	Designation or description	Relevant genotype	notype Construction or source strain designation	
ET227	$\Delta lexA$ Pol IV ^{T120P} -PAmCherry	RW542 <i>dinB</i> ^{T120P} -	Same	(5)
	SSB-mYPet	PAmCherry-frt-kan-frt lacZ::ssb-mypet-frt		(-)
ET240	$\Delta lexA$ SSB-PAmCherry	RW542 lacZ::ssb- PAmCherry-frt-cat-frt	P1 <i>vir</i> : S146 → JEK418	This study
ET340	$\Delta lexA$ SSB-PAmCherry	RW542 lacZ::ssb- PAmCherry-frt	ET240 pCP20 Flp-FRT recombination	This study
ET350	Δ <i>lexA</i> SSB-PAmCherry ε- mYPet	RW542 lacZ::ssb- PAmCherry-frt dnaQ- mypet-frt-cat-frt	P1 <i>vir</i> : JEK466 → ET340	This study
ET352	$\Delta lexA \Delta dinB$	RW542 ∆dinB∷frt-kan- frt	P1 <i>vir</i> : JEK337 → JEK418	This study
JEK5	E.coli K-12 type strain	MG1655	—	
JEK168	<i>E.coli</i> K-12 type strain with Cm ^R recombineering plasmid	pSIM5 in MG1655	Same	(2, 4)
JEK170	<i>E.coli</i> K-12 type strain with Amp ^R recombineering plasmid	pKD46 in MG1655	Same	(1, 4)
JEK337	$\Delta dinB$	MG1655 ∆dinB∷frt-kan- frt	Same	(4)
JEK418	ΔlexA	lexA51(Def) rpsL31 xyl-5 mtl-1 galK2 lacY1 tsx-33 supE44 thi-1 hisG4[Oc]	RW542	(6)

		argE3[Oc] araD139 thr-		
		1 ∆[gpt-proA]62 sulA211		
JEK466	ε-mYPet	CH1358 dnaQ-mypet-frt-	Same	(4)
		cat-frt		
JEK625	Pol IV-PAmCherry	MG1655 dinB-	Same	(4)
		PAmCherry-frt-kan-frt		
JEK726	Pol IV ^{R,C} -PAmCherry	MG1655 <i>dinB</i> ^{<i>R</i>,<i>C</i>} -	Same	(4)
		PAmCherry-frt-kan-frt		
JEK762	$\Delta lexA$ SSB-mYPet	RW542 lacZ::ssb-mypet-	Same	(4)
		frt		
JEK766	Δ <i>lexA</i> Pol IV-PAmCherry	RW542 dinB-	Same	(4)
	SSB-mYPet	PAmCherry-frt-kan-frt		
		lacZ::ssb-mypet-frt		
JEK784	<i>lexA</i> +Pol IV-PAmCherry	RW118 dinB-	Same	(4)
	SSB-mYPet	PAmCherry-frt-kan-frt		
		lacZ::ssb-mypet-frt		
JEK790	$\Delta lexA$ Pol IV ^{K,C} -PAmCherry	RW542 $dinB^{R,C}$ -	Same	(4)
	SSB-mYPet	PAmCherry-frt-kan-frt		
		lacZ::ssb-mypet-frt		
S146	SSB-PAmCherry	MG1655 lacZ::ssb-	λ Red: SSB-PAmCherry-	This study
		PAmCherry-frt-cat-frt	$FRT-Cat-FRT \rightarrow$	
			MG1655 pSIM5	
S235	E.coli K-12 type strain with	pSIM6 in MG1655	Transformation: pSIM6 \rightarrow	(2)
	Amp ^R recombineering		JEK5	
	plasmid			
S473	$\Delta recG$	MG1655 ∆ <i>recG∷frt-kan-</i>	λ Red: Δ recG::FRT-Kan-	This study
		frt	$FRT \rightarrow MG1655 \text{ pSIM5}$	
SCP004	RecG-PAmCherry	MG1655 recG-	λ Red: RecG-PAmCherry-	This study
		PAmCherry-frt-kan-frt	FRT -Kan- $FRT \rightarrow$	
			MG1655 pSIM5	
SCP007	PriA-PAmCherry	MG1655 priA-	λ Red: PriA-PAmCherry-	This study
		PAmCherry-frt-kan-frt	FRT-Kan-FRT \rightarrow	
			MG1655 pSIM5	
SCP008	ΔlexA PriA-PAmCherry SSB-	RW542 priA-	P1 <i>vir</i> : SCP007 \rightarrow JEK762	This study
	mYPet	PAmCherry-frt-kan-frt		_
		lacZ::ssb-mypet-frt		
SCP012	$\Delta lexA$ RecG-PAmCherry	RW542 recG-	P1 <i>vir</i> : SCP004 \rightarrow JEK762	This study
	SSB-mYPet	PAmCherry-frt-kan-frt		
		lacZ::ssb-mypet-frt		

Table S14: Imaging dataset size

Dataset	Fig.	Number	Number of	Number	Number of
	5	of Days	Replicates	of Cells	Tracks or Foci
Pol IV ^{WT} untreated $g(r)$	1A, S3A, S3C – D	2	2	343	1,482
Pol IV ^{R,C} untreated $g(r)$	1A	3	4	539	1,090
Pol IV ^{T120P} untreated $g(r)$		2	2	269	878
Pol IV ^{WT} 100 mM MMS $g(r)$	1B, S3A	2	2	360	2,754
Pol IV ^{R,C} 100 mM MMS $g(r)$	1B	4	5	562	2,894
Pol IV ^{T120P} 100 mM MMS $g(r)$		3	3	690	2,331
Pol IV ^{WT} 30 J/m ² UV $g(r)$	1C	2	3	630	2,681
Pol IV ^{R,C} 30 J/m ² UV $g(r)$		4	4	899	3,261
Pol IV ^{T120P} 30 J/m ² UV $g(r)$		2	3	581	1,142
Pol IV ^{WT} 100 mM HU $g(r)$	1D, S3D	2	3	439	1,539
Pol IV ^{R,C} 100 mM HU $g(r)$	1D	2	4	630	1,479
Pol IV ^{T120P} 100 mM HU $g(r)$		2	4	866	1,207
SSB untreated D^* (only cells with	2A – C	3	3	631	8,772
an ϵ -mYPet focus)					,
SSB untreated D^*	2C – F. S4A	3	3	631	9,251
SSB 100 mM MMS D*	2D. S4B	3	3	705	11.797
SSB 30 J/m ² UV <i>D</i> *	2E. S4C	3	3	581	16.542
SSB 100 mM HU <i>D</i> *	2E, S4D	3	4	653	5.690
SSB untreated focus intensity	3A - C	6	6	2021	2,138
SSB 100 mM MMS focus	3A	3	3	1182	1.309
intensity		5	C	1102	1,000
SSB 30 J/m ² UV focus intensity	3B	2	3	1646	2.015
SSB 100 mM HU focus intensity	3C	2	3	938	1.207
SSB untreated survival and	3D – F. S4G.	4	4	437	545
binding events (2-s stroboscopic)	S6C, S7, S8G	-	-		
SSB 100 mM MMS survival and	3D. S4H. S6C.	3	3	380	1,171
binding events (2-s stroboscopic)	S7, S8H	-	-		
SSB 30 J/m ² UV survival and	3E, S4I, S6C, S7,	2	3	512	1,755
binding events (2-s stroboscopic)	S8I				,
SSB 100 mM HU survival and	3F, S4J, S6C, S7,	5	5	581	956
binding events (2-s stroboscopic)	S8J				
PriA untreated $g(r)$	4A	2	3	755	781
PriA 100 mM MMS $g(r)$		3	3	1105	2,412
RecG untreated $g(r)$	4B	2	3	577	1,189
RecG 100 mM MMS $g(r)$		2	3	492	1,694
Pol IV ^{WT} 10 mM MMS $g(r)$	S3A	1	2	402	1,273
Pol IV ^{WT} <i>lexA</i> ⁺ untreated $g(r)$	S3B	4	6	536	320
Pol IV ^{WT} <i>lexA</i> ⁺ 100 mM MMS		4	6	647	963
g(r)					
Pol IV ^{WT} untreated fixed $g(r)$	S3C	4	6	168	5,596
Pol IV ^{WT} 20 mM HU $g(r)$	S3D	2	3	587	2,267
Pol IV ^{WT} 100 mM GUA $g(r)$	1	3	4	800	2,259
SSB untreated survival and	S5A, S6A, S7,	1	1	164	2,965
binding events (continuous)	S8A				
SSB 100 mM MMS survival and	S5B, S6A, S7,	1	1	181	6,924
binding events (continuous)	S8B				
SSB untreated survival and	S5C, S6B, S7,	4	4	539	1,403
binding events (1-s stroboscopic)	S8C				

SSB 100 mM MMS survival and	S5D, S6B, S7,	5	5	538	3,837
binding events (1-s stroboscopic)	S8D				
SSB 30 J/m ² UV survival and	S5E, S6B, S7,	2	3	285	2,922
binding events (1-s stroboscopic)	S8E				
SSB 100 mM HU survival and	S5F, S6B, S7,	5	5	387	1,659
binding events (1-s stroboscopic)	S8F				

Supplementary Methods

Overview of strain construction strategy:

Bacterial strains containing fluorescent protein fusions were constructed using Lambda Red recombineering(1) and P1vir transduction as previously described.(4) In brief, the E. coli K-12 type strain, MG1655, was transformed with the temperature-sensitive recombineering plasmids pSIM5 (chloramphenicol) or pSIM6 (ampicillin).(2) Recombineering fragments bearing approximately 50 bp length homology arms were generated by PCR amplification (Q5 polymerase, New England Biolabs) of pKD3- or pKD4-based plasmids and transformed into MG1655 pSIM5 or pSIM6 by electroporation. Recombinants were selected on LB agar plates containing the appropriate antibiotic (chloramphenicol for pKD3, kanamycin for pKD4) and the recombineering plasmids were cured by growth at 37 °C. The modified alleles were then moved into the appropriate strain background for imaging using P1vir transduction. When required for further strain construction steps, FRT-flanked antibiotic cassettes were removed using Flp-FRT recombination with the temperature-sensitive plasmid pCP20, leaving a scar of approximately 80 bp containing a single FRT site.(3) Fusions were validated at each step by PCR amplification of genomic DNA and Sanger DNA sequencing. All oligonucleotides, plasmids, and bacterial strains used in this study are listed in Tables S11 - S13 and construction details for individual strains are given below.

The photoactivatable fluorescent protein PAmCherry1(7) was used to make Pol IV, SSB, PriA, and RecG fusions for PALM imaging, and the monomeric YFP variant mYPet(8) was used to make SSB and ε replisome marker fusions. All fusions contained a linker between the C-terminus of the protein and the N-terminus of the fluorescent protein: (GGGS)₄ for PamCherry fusions to Pol IV, PriA, and RecG; SSAGSAAGSGEF for the mYPet and PAmCherry fusions to SSB; and SAGSAAGSGEF for the mYPet fusion to ε .

Detailed strain construction information:

ET240/ET340: $\Delta lexA$ SSB-PAmCherry. P1*vir* transduction was used to transfer the *ssb-PAmCherry* allele from strain S146 to strain JEK418. Plasmid pCP20 was then transformed into strain ET240 and Flp-FRT recombination was used to remove the Cm cassette, giving strain ET340.

ET350: $\Delta lexA$ SSB-PAmCherry ε -mYPet. P1*vir* transduction was used to transfer the *dnaQ*-*mYPet* allele from strain JEK466 to strain ET340.

ET352: $\Delta lexA \Delta dinB$. P1*vir* transduction was used to transfer the $\Delta dinB$::*frt-kan-frt* allele from strain JEK337 to strain JEK418.

S146: MG1655 SSB-PAmCherry. In this construct, nucleotides nt1-1697 of *lacZ* were replaced with *ssb-PAmCherry-frt-cat-frt*. A backbone fragment of the plasmid pKD3 was amplified using the oligonucleotides Lambda red P1 and rc_pKD4_9_30 and combined with a Gene Block containing the SSAGSAAGSGEF linker and PAmCherry (Gblock-pKD4-ssb-linker-Pamcherry) by Gibson assembly, yielding plasmid pKD3-ssb-linker-PAmCherry. A recombineering fragment was then generated by amplifying this plasmid with primers lacZ-SSB-mYpet-KI_for and lacZ-SSB-mYpet-KI_rev and transformed into strain MG1655 pKD46 (JEK170), then pKD46 was cured to give strain S146.

S473: MG1655 $\Delta recG$. In this construct, recG was replaced with *frt-kan-frt*, leaving only the first amino acid and the last 6 amino acids of recG. A recombineering fragment was generated by amplifying pKD4 with primers pKD3/4-recG-KO-for and pKD3/4-recG-KO-rev and transformed into S235 (MG1655 pSIM6), then pSIM6 was cured to give strain S473.

SCP004: MG1655 RecG-PAmCherry. A recombineering fragment was generated by amplifying pKD4-G4S-PAmCherry with primers recG-G4S-PAmC-KI-for and recG-PAmC-KI-rev and transformed into JEK168 (MG1655 pSIM5), then pSIM5 was cured to give strain SCP004.

SCP007: MG1655 PriA-PAmCherry. A recombineering fragment was generated by amplifying pKD4-G4S-PAmCherry with primers priA-G4S-PAmC-KI-for and priA-PAmC-KI-rev and transformed into JEK168 (MG1655 pSIM5), then pSIM5 was cured to give strain SCP007.

SCP008: $\Delta lexA$ PriA-PAmCherry SSB-mYPet. P1*vir* transduction was used to transfer the *priA*-*PAmCherry* allele from strain SCP007 to strain JEK762.

SCP012: $\Delta lexA$ RecG-PAmCherry SSB-mYPet. P1*vir* transduction was used to transfer the *recG-PAmCherry* allele from strain SCP004 to strain JEK762.

Supplementary References

- 1. K. A. Datsenko, B. L. Wanner, One-step inactivation of chromosomal genes in *Escherichia coli* K-12 using PCR products. *Proc. Natl. Acad. Sci. U.S.A.* **97**, 6640–6645 (2000).
- S. K. Sharan, L. C. Thomason, S. G. Kuznetsov, D. L. Court, Recombineering: a homologous recombination-based method of genetic engineering. *Nat. Protoc.* 4, 206–223 (2009).
- 3. P. P. Cherepanov, W. Wackernagel, Gene disruption in Escherichia coli: TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant. *Gene* **158**, 9–14 (1995).

- E. S. Thrall, J. E. Kath, S. Chang, J. J. Loparo, Single-molecule imaging reveals multiple pathways for the recruitment of translession polymerases after DNA damage. *Nat. Commun.* 8, 2170 (2017).
- 5. S. Chang, E. S. Thrall, L. Laureti, V. Pagès, J. J. Loparo, "Compartmentalization of the replication fork by single-stranded DNA binding protein regulates translesion synthesis" (bioRxiv, 2020) https://doi.org/10.1101/2020.03.03.975086 (April 29, 2021).
- A. R. Fernández de Henestrosa, *et al.*, Identification of additional genes belonging to the LexA regulon in Escherichia coli: Novel LexA-regulated genes in E. coli. *Mol. Microbiol.* 35, 1560–1572 (2002).
- 7. F. V. Subach, *et al.*, Photoactivatable mCherry for high-resolution two-color fluorescence microscopy. *Nat. Methods* **6**, 153–159 (2009).
- 8. A. W. Nguyen, P. S. Daugherty, Evolutionary optimization of fluorescent proteins for intracellular FRET. *Nat. Biotechnol.* 23, 355–360 (2005).