

Supplementary Information for

A solution to the long-standing problem of actin expression and purification

Rachel H. Ceron, Peter J. Carman, Grzegorz Rebowski, Malgorzata Boczkowska, Robert O. Heuckeroth, Roberto Dominguez

Correspondence: Roberto Dominguez Email: droberto@pennmedicine.upenn.edu

This PDF file includes:

- Fig. S1 Prediction of high-specificity chymotrypsin cleavage sites in skeletal α -actin Fig. S2 Western blot analysis of Nt-acetylation of tissue-purified and recombinant α -actin Fig. S3 (Two parts) Annotated MS2 spectra of post-translationally modified β-actin peptides Fig. S4 (Two parts) Annotated MS2 spectra of post-translationally modified α -actin peptides Fig. S5 Actin sequence alignment and MS2 spectrum of y-actin N-terminal peptide Table S1 Published actin expression methods and their limitations Table S2 Primers used in this study Table S3 Antibodies used in this study Legend for Datasets S1 and S2
- SI Appendix references

Other supplementary materials for this manuscript include the following:

Dataset S1 Complete list of MS peptides observed for endogenous and recombinant β -actin Dataset S2 Complete list of MS peptides observed for tissue-purified and recombinant α -actin

10	20	30	40	50	60	70	80	90	100
MCDEDETTAL	VCDNGSGLVK	AGEAGDDAPR	AVFPSIVGRP	RHQGVMVGMG	QKDSYVGDEA	QSKRGILTLK	YPIEHGIITN	WDDMEKIWHH	TEYNELRVAP
110	120	130	140	150	160	170	180	190	200
EEHPTLLTEA	PLNPKANREK	MTQIMEETEN	VPAMYVAIQA	VLSLYASGRT	TGIVLDSGDG	VTHNVPIYEG	$\overset{\texttt{YALPHAIMRL}}{\pmb{\Delta}}$	DLAGRDLTDY	LMKILTERGY
210	220	230	240	250	260	270	280	290	300
SEVTTAEREI	VRDIKEKLCY	VALDEENEMA	TAASSSSLEK	SYELPDGQVI	TIGNERERCP	ETLEOPSEIG	MESAGIHETT	YNSIMKCDID	IRKDLYANNV
310 MSGGTTMYPG	320 IADRMQKEIT	330 ALAPSTMKIK	340 IIAPPERKYS	350 VWIGGSILAS	360 LSTEQQMWIT	370 KQEYDEAGPS	377 IVHRKCF		

Fig. S1. Prediction of high-specificity chymotrypsin cleavage sites in skeletal α-actin (UniProt P68133)

Fig. S2. Western blots of tissue-purified (endogenous) and recombinant α -actin. Left, Western blots using α -actin Nt-acetylation specific antibody. Right, Western blots using pan-actin antibody.

Fig. S3 (part 1 of 2). Annotated MS2 spectra of PTM peptides of endogenous β -actin with an FDR <1%. Modifications occurring during sample preparation for proteomics analysis, such as carbamylation and carbamidomethylation, are shown but not named. The title of each MS2 spectrum refers to common PTMs occurring in cells, such as phosphorylation, methylation and acetylation. See also Fig. 4*B* for MS2 spectra of Nt-acetylated and H73-methylated peptides.

Fig. S3 (part 2 of 2). Annotated MS2 spectra of PTM peptides of recombinant β -actin.

Fig. S4 (part 1 of 2). Annotated MS2 spectra of PTM peptides of tissue-purified α -actin with an FDR <1%. Modifications occurring during sample preparation for proteomics analysis, such as carbamylation and carbamidomethylation, are shown but not named. The title of each MS2 spectrum refers to common PTMs occurring in cells, such as phosphorylation, methylation and acetylation.

Fig. S4 (part 2 of 2). Annotated MS2 spectra of PTM peptides of recombinant α-actin.

β-actin	C-DDD	ΙΑΑ	LVV	DN	G S C	GMC	KAC	G F A	G D	DA	PR/	A V I	FPS	ΙV	GR	ΡR	HQ	GV	MVQ	ΞM	47
γ -actin	C-EEE	ΙΑΑ	LV	DN	G S C	БМС	KAC	5 F A	G D	DA	PR/	A V I	F P S	IV	G R	ΡR	HQ	GV	MVC	δM	47
β-actin	GQ K D	SYV	GDE	AQ	SKF	GI	LTL	. K Y	ΡΙ	EH	GΙN	/ T I	NWD	DN	I E K	IW	ΉН	ΤF	YNE	ΞL	94
γ-actin	GQ K D	S Y V	GDE	AQ	SKF	RG I	LTL	- K Y	ΡΙ	EHO	GΙN	/ T I	NWD	DN	I E K	IW	ΉH	ΤF	YNE	EL	94
β-actin	RVAP	EEH	IPVL	. L T	EAP	LN	РКА	N R	ΕK	MTO	2 N	ΛFI	ETF	ΝT	ΡА	MY	VA	IQ	ΑΥΙ	_ S	141
γ-actin	RVAP	EEH	IPVL	LT	EAF	P L N I	РКА	A N R	ΕK	MTO	2 N	ΛFI	ETF	NT	РА	MY	VA	IQ	AVL	_ S	141
β-actin	LYAS	G R T	ΤGΙ	VΜ	DSO	GDG	VTF	HT V	ΡΙ	ΥE	GY/	A L F	РНА	IL	RL	DL	A G	R D	LTC	ΟY	188
γ-actin	LYAS	G R T	ΤGΙ	VΜ	DSC	GDG	VTF	IT V	ΡΙ	ΥE	GY/	A L F	РНА	IL	RL	DL	A G	R D	LTC	ΟY	188
β-actin	LMKI	LTE	RGY	ŚF	ТТТ	AE	REI	VR	DΙ	ΚΕ	KLO	CY۱	/ A L	DF	ΕQ	ΕM	ΑT	ΑΑ	SSS	5 S	235
γ-actin	LMKI	LTE	RGY	SF	ТТТ	AE	REI	VR	DI	ΚΕΙ	KLO	ΞΥ\	/ A L	DF	ΕQ	ΕM	ΑT	ΑΑ	555	5 S	235
β-actin	LEKS	YEL	PDC	GQV	ITI	GΝ	ERF	RC	ΡΕ	ΑL	FQF	SI	FLG	M E	S C	GΙ	ΗE	ТΤ	FNS	51	282
γ-actin	LEKS	YEL	PDC	GQ V	ITI	GΝ	ERF	RC	ΡE	A L	FQF	> S	FLG	i M E	S C	GΙ	ΗE	ΤT	FNS	51	282
β -actin	МКСД	VDI	RKD	ΡLΥ	ΑΝΤ	V L	SGO	G T T	ΜY	ΡG	ΙΑ[DRN	NQ K	ΕI	ΤА	LA	ΡS	ТМ	KIK		329
γ-actin	МКСД	VDI	RKD	ΟLΥ	A N T	V L	SGO	GΤΤ	ΜY	ΡG	ΙΑ[DRN	NQ K	ΕI	ТА	LA	ΡS	ТМ	KIK		329
β-actin	ΙΑΡΡ	ERK	Y S ∖	W I	GGS	5 I L	ASL	_ S T	FQ	QM	NI S	SKC	QEY	DE	SG	P S	IV	HR	KCF	-	375
γ-actin	ΙΑΡΡ	ERK	YS V	W I	GGS	SIL	ASL	. S T	FQ	QM	NIS	SKC	QEY	DE	SG	i P S	IV	HR	KCF	-	375

Nt-acetylated peptide (amino acids 2-18) of endogenous γ-actin purified from untransfected Expi293F cells

Fig. S5. Sequence alignment of cytoplasmic β - and γ -actin (top). A dashed green box highlights the Ntacetylated N-terminal peptide (amino acids 2-18) of endogenous γ -actin whose MS2 spectrum is shown at the bottom. Note that endogenous β - and γ -actin co-purify from untransfected Expi293F cells.

		Limitations								
Expression system	Reference	Folding concerns or insolubility	Missing demonstration of native PTMs	Missing demonstration of endogenous actin removal	lssues with tag removal	Missing demonstration of native-like polymerization	Low yields			
	(1)	х	x			x	x			
E. coli	(2)	х	x			x	x			
	(3)		x		х	x	x			
S. corovisioo	(4, 5)		x	Unreliable		x	x			
S. Cereviside	(6, 7)		x			x	х			
P. pastoris	(8, 9)			x	х		х			
	(10)		x	х		x				
	(11)		x	х		x				
	(12)		x	х	х	x	х			
Incost collo	(13)	х	x	х		x	х			
insect cens	(14)		x	х	х	x	х			
	(15)		x	х						
	(16)		x	х	х	х	х			
	(17)		x	х	х	х				
D. discoideum	(18)		Missing evidence	Missing evidence	х					
Suptratio	(19)		x			x	x			
Synthetic	(20)		x			x	х			
Expi293F	(21)				х		х			

 Table S1. Published actin expression methods and their limitations.

Table S2. Primers used in this study

Primer name	Primer sequence	Purpose
ACTA1_HisFLAGtev_for1	acgatgacaagactagtgagaacctgtatttccaggacgaagacgagaccaccgccctc	Cloning His-FLAG-TEV α-actin
ACTA1_HisFLAGtev_for2	atcaccacagtggagattacaaggatgacgatgacaagactagtgagaacctgtatttc	Cloning His-FLAG-TEV α-actin
ACTA1_HisFLAGtev_for3_Sal1	ttcgtcgacgccaccatggcgcatcaccatcatcaccacagtggagattacaaggatgac	Cloning His-FLAG-TEV α-actin
ACTA1_stop_rev_BamH1	ttcggatccctagaagcatttgcggtggacgatg	Cloning His-FLAG-TEV α-actin
ACTB_TEV_Spe1_for	ttcactagtgagaacctgtatttccaggacgatgatattgctgctctggttgtc	Cloning His-FLAG-TEV β-actin
ACTB_stop_BamH1_rev	ttcggatccttagaagcacttgcggtgcacaatg	Cloning His-FLAG-TEV β-actin
ACTG2_for_Spe1TEV	ttcactagtgagaacctgtatttccaggaagaggagaccaccgcgc	Cloning His-FLAG-TEV γ-actin
ACTG2_stop_Bcl1_rev	ttctgatcactagaagcacttcctgtggacaatgg	Cloning His-FLAG-TEV γ-actin
hNat78s_Nde1_for	cttcatatgagcctgggttgaccc	Cloning His-Naa80∆
hNat308_Xho1_rev	cttctcgagtcagatgtctttttccatccagaatatggg	Cloning His-Naa80∆
Intein_His_Nde1_rev	cttcatatggtgatgatggtgatgaccagcattctgtacaacaacctgg	Cloning His-Naa80∆
Intein_Nhe1_for	cttgctagcacaaatcctggtgtatccg	Cloning His-Naa80∆
MBPG4G6_Pst1_for	ttcctgcagatgaaaatcgaagaaggtaaactggtaatctgg	Cloning His-MBP-G4G6
MBPG4G6_Hind3_rev	ttcaagctttcaggcagccagctcagc	Cloning His-MBP-G4G6
G4s_Xho1	ttcctcgaggccgcccagcacgg	Cloning His-MBP-G4G6
G4G6_Sal1_rev	ttcgtcgactcaggcagccagctcagc	Cloning His-MBP-G4G6

Table S3. Antibodies	used in this study
----------------------	--------------------

Antibody	Dilution	Description	Source	Cat #				
Primary antibodies								
Pan-actin	1:5000	Rabbit monoclonal recombinant anti-actin Ig	Abcam	ab179467				
α-Actin	1:1000	Mouse monoclonal anti-alpha skeletal muscle actin Ig	Abcam	ab28052				
β-Actin	1:5000	Mouse monoclonal anti-human actin beta Ig	Bio-Rad	MCA5775GA				
Ac-α-actin	1:2000	Biotinylated monoclonal anti-alpha skeletal actin Ig	Novus Biologicals	NBP1-97723B				
Ac-β-actin	1:5000	Mouse monoclonal anti-beta actin Ig	Abcam	ab6276				
Secondary antibodies								
Anti-rabbit IgG-HRP	1:10000	Anti-rabbit HRP-linked Ig	Cell Signaling Technology	7074S				
Anti-mouse IgG-HRP	1:10000	Anti-mouse HRP-linked Ig	Cell Signaling Technology	7076S				
Streptavidin-HRP	1:5000	HRP-conjugated streptavidin	ThermoFisher Scientific	N100				

Other supplementary materials for this manuscript not included in this file:

Dataset S1 (separate Microsoft Excel file). Complete list of MS peptides observed for recombinant β -actin and endogenous β/γ -actin. See below for a description of the dataset.

Dataset S2 (separate Microsoft Excel file). Complete list of MS peptides observed for tissue-purified and recombinant α -actin. See below for a description of the dataset.

For both **Dataset S1** and **S2**:

Rows correspond to actin peptides observed by MS, including the specific actin sample, digestion enzyme, and MS2 scan number. The full sequence displays the base amino acid sequence and the location of all modifications, while the essential sequence omits common fixed and variable modifications that occur as a result of sample preparation for MS analysis. The score, Q value, PEP, and PEP Q value are measures of confidence in the peptide assignment. PSM (peptide spectral match) count reports the number of times a given peptide was observed. More information about peptide assignment statistics can be found at the MetaMorpheus website (https://github.com/smith-chem-wisc/MetaMorpheus). Note that for β -actin (Dataset S1) the residue numbers in column X must be increased by one to match the conventional actin numbering. Sheets two and three of each dataset report the PTM occupancy of endogenous and recombinant actin, sorted by amino acid number. For each PTM, the occupancy is defined as the number of peptides (PSM count) containing the PTM divided by the total number of peptides that cover the residue site. The remaining sheets compile all the peptides covering PTM-containing residues.

SI Appendix references:

- 1. S. E. Hitchcock-DeGregori, Structure-function analysis of thin filament proteins expressed in Escherichia coli. *Cell Motil Cytoskeleton* **14**, 12-20 (1989).
- 2. S. Frankel, R. Sohn, L. Leinwand, The use of sarkosyl in generating soluble protein after bacterial expression. *Proc Natl Acad Sci U S A* **88**, 1192-1196 (1991).
- 3. M. Tamura, K. Ito, S. Kunihiro, C. Yamasaki, M. Haragauchi, Production of human beta-actin and a mutant using a bacterial expression system with a cold shock vector. *Protein Expr Purif* **78**, 1-5 (2011).
- 4. R. Karlsson, Expression of chicken beta-actin in Saccharomyces cerevisiae. *Gene* **68**, 249-257 (1988).
- 5. P. Aspenstrom, R. Karlsson, Interference with myosin subfragment-1 binding by site-directed mutagenesis of actin. *Eur J Biochem* **200**, 35-41 (1991).
- 6. R. Karlsson, P. Aspenstrom, A. S. Bystrom, A chicken beta-actin gene can complement a disruption of the Saccharomyces cerevisiae ACT1 gene. *Mol Cell Biol* **11**, 213-217 (1991).
- 7. M. McKane *et al.*, A mammalian actin substitution in yeast actin (H372R) causes a suppressible mitochondria/vacuole phenotype. *J Biol Chem* **280**, 36494-36501 (2005).
- 8. T. Hatano, L. Sivashanmugam, A. Suchenko, H. Hussain, M. K. Balasubramanian, Pick-ya actin a method to purify actin isoforms with bespoke key post-translational modifications. *J Cell Sci* **133** (2020).
- 9. T. Hatano *et al.*, Rapid production of pure recombinant actin isoforms in Pichia pastoris. *J Cell Sci* **131** (2018).
- 10. P. Anthony Akkari *et al.*, Production of human skeletal alpha-actin proteins by the baculovirus expression system. *Biochem Biophys Res Commun* **307**, 74-79 (2003).
- 11. P. B. Joel, P. M. Fagnant, K. M. Trybus, Expression of a nonpolymerizable actin mutant in Sf9 cells. *Biochemistry* **43**, 11554-11559 (2004).
- 12. L. A. Rutkevich, D. J. Teal, J. F. Dawson, Expression of actin mutants to study their roles in cardiomyopathy. *Can J Physiol Pharmacol* **84**, 111-119 (2006).
- 13. B. M. Miller, K. M. Trybus, Functional effects of nemaline myopathy mutations on human skeletal alphaactin. *J Biol Chem* **283**, 19379-19388 (2008).
- 14. A. H. Iwane, M. Morimatsu, T. Yanagida, Recombinant alpha-actin for specific fluorescent labeling. *Proc Jpn Acad Ser B Phys Biol Sci* **85**, 491-499 (2009).
- 15. S. E. Bergeron, M. Zhu, S. M. Thiem, K. H. Friderici, P. A. Rubenstein, Ion-dependent polymerization differences between mammalian beta- and gamma-nonmuscle actin isoforms. *J Biol Chem* **285**, 16087-16095 (2010).
- 16. B. Barua, P. M. Fagnant, D. A. Winkelmann, K. M. Trybus, S. E. Hitchcock-DeGregori, A periodic pattern of evolutionarily conserved basic and acidic residues constitutes the binding interface of actin-tropomyosin. *J Biol Chem* **288**, 9602-9609 (2013).
- 17. H. Lu, P. M. Fagnant, C. S. Bookwalter, P. Joel, K. M. Trybus, Vascular disease-causing mutation R258C in ACTA2 disrupts actin dynamics and interaction with myosin. *Proc Natl Acad Sci U S A* **112**, E4168-4177 (2015).
- 18. T. Q. Noguchi, N. Kanzaki, H. Ueno, K. Hirose, T. Q. Uyeda, A novel system for expressing toxic actin mutants in Dictyostelium and purification and characterization of a dominant lethal yeast actin mutant. *J Biol Chem* **282**, 27721-27727 (2007).
- 19. T. L. Solomon, L. R. Solomon, L. S. Gay, P. A. Rubenstein, Studies on the role of actin's aspartic acid 3 and aspartic acid 11 using oligodeoxynucleotide-directed site-specific mutagenesis. *J Biol Chem* **263**, 19662-19669 (1988).
- 20. C. F. Costa *et al.*, Myopathy mutations in alpha-skeletal-muscle actin cause a range of molecular defects. *J Cell Sci* **117**, 3367-3377 (2004).
- 21. M. A *et al.*, Regulation of INF2-mediated actin polymerization through site-specific lysine acetylation of actin itself. *Proc Natl Acad Sci U S A* **117**, 439-447 (2020).