
1 June 2022 
 
To Dr. Mohamed Hammad 
Academic Editor, PLOS ONE 
 
Thank you for your consideration of our manuscript. We have addressed all the comments 
provided, which we think have certainly improved the manuscript. Below, we provide the 
original comments and include our point-by-point responses. 
 
Comments: 
 
Reviewer #1: 
 
The major problem of this work is that its novelty and the theoretical contribution are so limited. 
So, the authors should modify it carefully and improve the novelty of this paper. Also, the 
authors should provide solid motivation for their work based on the existing literature. 
 
We thank the reviewer for the comment. The novelty of this paper arises from its technical 
extension of existing domain adaptation approaches but more importantly its extensive 
application of an algorithm toward general amelioration of dataset shift and characterization of 
domain spread as an a priori estimate of the prevalence of domain shift in a given dataset. 
Further, we contextualize our paper within these papers with the following paragraph included in 
the introduction, and cite the papers referenced as recommended by the reviewer. 
 
“Prior work has utilized variations of adversarial domain adaptation on a spectrum of different 
tasks including medical image segmentation, lung nodule detection, prostate MRI segmentation, 
and federated learning. For example, previous methods have trained on augmented big data in 
the domains of prostate, left atrial, and left ventricular and shown that augmentation reduces the 
degradation in performance significantly.(14) In our study, we primarily focus on an in-hospital 
vs out-of-hospital cohort, rather than differing tasks altogether. A second method has utilized 
adaptive transition module (ATM) to learn a frequency attention map that can align different 
domain images in a common frequency domain. By backpropagating with differentiable fast 
fourier transform, lung nodule detection performance was significantly improved.(15) We do not 
use a frequency domain, but we anticipate that applying a frequency-based normalization may 
also improve performance. Shape-aware meta learning utilizes a network that can learn shape 
compactness and shape smoothness to provide domain-invariant embeddings.(16) Similar to 
ATMs, shape-aware meta-learning is primarily focused on different objectives rather than 
learning out-of-sample embeddings.  Finally, some methods are able to combine Fourier 
transforms and shape-aware meta learning, demonstrating improved performance on out-of-
sample objectives.(17) In context, our paper focuses on investigating the a priori assumption of 
dataset shift, and how it can be utilized to improve performance across centers rather than 
generating a novel machine learning methods to combat domain shift.” 
 
14. Zhang, Ling, et al. "Generalizing deep learning for medical image segmentation to unseen 
domains via deep stacked transformation." IEEE transactions on medical imaging 39.7 (2020): 
2531-2540. 



15. Yin, Baocai, et al. "AFA: adversarial frequency alignment for domain generalized lung 
nodule detection." Neural Computing and Applications (2022): 1-12. 
16. Liu, Quande, Qi Dou, and Pheng-Ann Heng. "Shape-aware meta-learning for generalizing 
prostate MRI segmentation to unseen domains." International Conference on Medical Image 
Computing and Computer-Assisted Intervention. Springer, Cham, 2020. 
17. Liu, Quande, et al. "Feddg: Federated domain generalization on medical image segmentation 
via episodic learning in continuous frequency space." Proceedings of the IEEE/CVF Conference 
on Computer Vision and Pattern Recognition. 2021. 
 
The figures need to be amended. For example, the font is too small, and the resolution is not 
clear which makes it difficult to read. 
 
Thank you for the feedback. We have provided figures at the highest vectorized resolution. We 
are happy to reformat figures further if zooming does not enable adequate viewing. 
 
All the equations are missing. 
 
Thank you for the comment. It appears the formulas were accidentally redacted upon initial 
submission. They have now been incorporated with additional details. The summary equations of 
the generator and the discriminator are listed in lines 442 and 443. Equations specific to the 
StarGAN are listed in line 404, 408, 413, 416, and 423. The task and semantic loss are defined in 
line 433 and 439.  
 
Please add Figure or Table about the optimal structure of the proposed method.  
 
Thank you for the comment. Given the various training regimes utilized, we have provided 
Figure 1C as a generalizable illustration of the algorithm used across experiments. The authors 
believe creating an exhaustive table of all parameters would be unwieldy (especially given they 
were not custom tuned as mentioned in the next comment). However, in order to add further 
clarity, we have made the equations more explainable by adding thorough descriptions for each 
in the text. 
 
For example for equation 1, we have added.  
In other words, we want the generator, given a sample and a target domain to map to an image in 
the sample domain (xs) to an equivalent image in the the target domain (xc) 𝐺(𝑥!, 𝑐) → 𝑥". Our 
discriminator, on the other hand, produces a probability distribution over both the source sources 
and domain labels. 𝐷: 𝑥 → {𝑃!(𝑥), 𝑃"(𝑥)}, where Ps and Pc is the probability that the sample 
belongs in the source or target domain, respectively 
For equation 2, we have added  
“𝐸#～$[𝐷!%"(𝑥)] is the expected loss of the discriminator on the source data, 
𝐸(#,")～($,))[𝐷!%"(𝐺(𝑥, 𝑐))] is the expected loss of the discriminator of the source data on 
generated data in the target domain, and  𝜆*+𝐸#,～-!"[(||𝛻#,𝐷(𝑥3)||. − 1)

.] is a regularization term 
to minimize the gradient as described in 41. All experiments use ƛgp = 10, which was optimized 
via grid-search.” 
For equation 3 and 4, we have simplified the equation to the negative log-likelihood loss. 
. A simple classification loss over real images (𝐿%"/0!!121"03145) is used to optimize D 



𝐿%"/0!!121"03145(𝐷, 𝑋, 𝐶) = 	𝐸(#,)～($,)[𝑁𝐿𝐿(𝐷(𝑥), 𝑐)]                 (3) 
Where, c is the domain of the sample x, and N𝐿𝐿(𝐷(𝑥), 𝑐), is a negative log-likelihood loss of 
the discriminator 𝐷(𝑥), which predicts a given class, and the true class c. Conversely, the 
classification of D with respect to the fake images generated by the generator network G(x,c) is 
used to optimize G, as is standard for generative adversarial networks.  
  𝐿2"/!(𝐷, 𝐺, 𝑋, 𝐶) = 𝐸(#,")～($,))[𝑁𝐿𝐿(𝐷(𝐺(𝑥, 𝑐)), 𝑐) ]                (4) 
For equation 5, we have defined the L1 loss 
[||𝑥	 − 	𝐺(𝐺(𝑥, 𝑐), 𝑐′)||6 is a reconstruction loss with an absolute-value based normalization.  
For equation 6, we provide the definition of semantic similarity to clarify the meaning behind the 
equations.  
Images generated in the target domain that correspond to the source domain should have similar 
labels. In other words, we use the labels that have already been prescribed in the source domain 
to guide the generator G. First, a classifier (Fs) is trained on the labeled source data with cross 
entropy loss.  
For equation 7, we explain the reasoning behind the additive losses.  
Ablation studies from the CYCADA paper have shown that this step leads to improvements in 
domain adaptation. Subsequently, the semantic loss – where the goal is the maintain a semantic 
relationship between the images in the target domain and the source domain can be defined with 
respect to FS  and FT. This loss is simply the addition of for the classifier  for images from the 
source domain (𝐿30!7(𝐹8, 𝐺(𝐺(𝑋8, 𝐶), 𝐶′), 𝑌8), the classifier  for images from the target domain 
(𝐿30!7(𝐹9 , 𝐺(𝑋8, 𝐶), 𝑌8)	and the classifier for the images from the source domain with respect to 
the predictions generated by the classifier of images in the target domain 
𝐿30!7(𝐹8, 𝐺(𝑋9 , 𝐶), 𝐹9(𝑋9)).   

𝐿!:;(𝐺, 𝐹8, 𝐹9 , 𝑋8, 𝑌8, 𝑋9 , 𝐶) = 𝐿30!7(𝐹9 , 𝐺(𝑋8, 𝐶), 𝑌8) + 𝐿30!7(𝐹8, 𝐺(𝐺(𝑋8, 𝐶), 𝐶′), 𝑌8) 
     +	𝐿30!7(𝐹8, 𝐺(𝑋9 , 𝐶), 𝐹9(𝑋9))          (7) 
By generating a loss function that combines all three aspects, can generate a semantic 
relationship between the classifications generated by the source samples and the classifications 
of samples in target domain.  
 
In addition, provide the values of all parameters of proposed method in table. Please specify how 
the parameters of proposed method were selected. Please specify if the proposed methods 
parameters were optimized. If so, please write how proposed parameters were optimized? 
 
Thank you for this important point of clarification. Truthfully, we did not use a systematic 
method for hyperparameter tuning for three reasons: 1) GAN training is often extremely unstable 
and there are few (if any) a prior hyperparameter settings to narrow the search space, 2) each 
experiment required many hours to conduct given the extent of our dataset and the number of 
adaptation pairs simulated which made a broad hyperparameter search unfeasible, and 3) our 
focus was not to overoptimize our algorithm but instead to provide a generalizable approach for 
domain adaptation among diverse adaptation tasks (digits and CXRs) and adaptation pairs. As 
such, we leveraged insights raised by members of the team given our prior experience applying 
GANs to medical image data to conduct targeted adjustments of hyperparameter settings. Many 
of the parameters leveraged are consistent with those in the literature. For example, the beta_1 
value of 0.5 was the optimized value used by authors of the StarGAN paper upon which our 
algorithm is built. This value has been shown in prior work (Radford et al. ICLR 2016: 
Unsupervised representation learning with deep convolutional generative adversarial networks) 



to stabilize generator training and has been adopted in other work as well (Gulrajani et al. NIPS 
2017: Improved training of Wasserstein GANs). 
 
More details about the simulation software exploited should be added. 
 
Thank you for this point of clarification. No simulation software was utilized in this study. 
Figure 1 details the training regime whereby images from a single dataset (or hospital in the case 
of chest radiographs) were adapted to mirror that from another dataset or hospital, which resulted 
in improved classification efficacy. We are happy to provide additional details as requested. 
 
The results should be further analyzed, more details and further discussion of the simulation 
results is needed. 
 
Thank you for this request. We have included the following in the results for digit adaptation: 
 
“For example, adaptations between MNIST and MNISTM yielded significant improvements in 
classification performance due to the similar baseline character style across the two datasets. 
Adaptations between MNIST and USPS were similarly efficacious due to transition across 
grayscale domains whereas adaptations between MNISTM and USPS were less successful given 
the more difficult task of adaptation across character styles and color domains.” 
 
I recommend the authors to review below works and incorporate them while revising the paper: 
15. Zhang, Ling, et al. "Generalizing deep learning for medical image segmentation to unseen 
domains via deep stacked transformation." IEEE transactions on medical imaging 39.7 (2020): 
2531-2540. 
16. Yin, Baocai, et al. "AFA: adversarial frequency alignment for domain generalized lung 
nodule detection." Neural Computing and Applications (2022): 1-12. 
17. Liu, Quande, Qi Dou, and Pheng-Ann Heng. "Shape-aware meta-learning for generalizing 
prostate MRI segmentation to unseen domains." International Conference on Medical Image 
Computing and Computer-Assisted Intervention. Springer, Cham, 2020. 
18. Liu, Quande, et al. "Feddg: Federated domain generalization on medical image segmentation 
via episodic learning in continuous frequency space." Proceedings of the IEEE/CVF Conference 
on Computer Vision and Pattern Recognition. 2021. 
 
We enjoyed reviewing these manuscripts and have included them into the paragraph per our 
response to the first comment. 
 
The conclusions section should conclude that you have achieved from the study, contributions of 
the study to academics and practices. In addition, list the advantages and disadvantages of the 
proposed solution, as well as indicate the limitations of work. Further, mention the 
recommendations of future works. 
 
Thank you for the comment. For the advantages, we have included, “By measuring domain 
spread, we can determine a priori whether a global model provides a distinct advantage over 
domain-specific models. Improvements in domain adaptation such as shape-aware meta learning, 



and federated frequency attention maps may reduce the value of the domain spread, so domain 
spread can serve as an important marker for cross-site generalizability.” 
For the disadvantages, “Nevertheless, we anticipate that biases that exist within datasets such as 
those in label quality or underdiagnosis bias will need solutions that expand beyond purely 
computational approaches.” For recommendations regarding future work, we have included 
“Future research should investigate these biases and further utilize unsupervised learning as 
sparsely labeled datasets and high-quality, resource-intensive labelling become increasingly 
important.” 
 
The list of references should be reformatted and checked again to be matched with the journal 
requirement where a different styles and types are used. 
 
Thank you for the comment. We have verified that the citations are in an appropriate 
(Vancouver) citation style.  
 
Reviewer #2: 
 
In this manuscript, the authors develop a general technique for ameliorating the effect of dataset 
shift using generative adversarial networks (GANs) on a dataset of 149,298 handwritten digits 
and a dataset of 868,549 chest radiographs obtained from four academic medical centers. They 
assess efficacy by comparing the area under the curve (AUC) pre-and post-adaptation. 
Adversarial domain adaptation leads to improved model performance on radiographic data 
derived from multiple out-of-sample healthcare populations. Their work can be applied to other 
medical imaging domains to help shape the deployment toolkit of machine learning in medicine. 
 
Before its acceptance for publication, the authors must arrange all the proposed models to be 
readable. Indeed, from line 357 to line 408, all equations are not readable. Also, the presentation 
of the manuscript must be improved. 
 
Thank you for noting the absence of equations and lack of clarity. It appears the formulas were 
accidentally redacted upon initial submission. Given the various training regimes utilized, we 
have provided Figure 1C as a generalizable illustration of the algorithm used across experiments. 
We did not use a systematic method for hyperparameter tuning for three reasons: 1) GAN 
training is often extremely unstable and there are few (if any) a prior hyperparameter settings to 
narrow the search space, 2) each experiment required many hours to conduct given the extent of 
our dataset and the number of adaptation pairs simulated which made a broad hyperparameter 
search unfeasible, and 3) our focus was not to overoptimize our algorithm but instead to provide 
a generalizable approach for domain adaptation among diverse adaptation tasks (digits and 
CXRs) and adaptation pairs. As such, we leveraged insights raised by members of the team given 
our prior experience applying GANs to medical image data to conduct targeted adjustments of 
hyperparameter settings. Many of the parameters leveraged are consistent with those in the 
literature. For example, the beta_1 value of 0.5 was the optimized value used by authors of the 
StarGAN paper upon which our algorithm is built. This value has been shown in prior work 
(Radford et al. ICLR 2016: Unsupervised representation learning with deep convolutional 
generative adversarial networks) to stabilize generator training and has been adopted in other 
work as well (Gulrajani et al. NIPS 2017: Improved training of Wasserstein GANs). 



 
In order to add further clarity, we have made the equations more explainable by adding thorough 
descriptions for each in the text. 
 
For example for equation 1, we have added.  
In other words, we want the generator, given a sample and a target domain to map to an image in 
the sample domain (xs) to an equivalent image in the the target domain (xc) 𝐺(𝑥!, 𝑐) → 𝑥". Our 
discriminator, on the other hand, produces a probability distribution over both the source sources 
and domain labels. 𝐷: 𝑥 → {𝑃!(𝑥), 𝑃"(𝑥)}, where Ps and Pc is the probability that the sample 
belongs in the source or target domain, respectively 
For equation 2, we have added  
“𝐸#～$[𝐷!%"(𝑥)] is the expected loss of the discriminator on the source data, 
𝐸(#,")～($,))[𝐷!%"(𝐺(𝑥, 𝑐))] is the expected loss of the discriminator of the source data on 
generated data in the target domain, and  𝜆*+𝐸#,～-!"[(||𝛻#,𝐷(𝑥3)||. − 1)

.] is a regularization term 
to minimize the gradient as described in 41. All experiments use ƛgp = 10, which was optimized 
via grid-search.” 
For equation 3 and 4, we have simplified the equation to the negative log-likelihood loss. 
. A simple classification loss over real images (𝐿%"/0!!121"03145) is used to optimize D 
𝐿%"/0!!121"03145(𝐷, 𝑋, 𝐶) = 	𝐸(#,)～($,)[𝑁𝐿𝐿(𝐷(𝑥), 𝑐)]                 (3) 
Where, c is the domain of the sample x, and N𝐿𝐿(𝐷(𝑥), 𝑐), is a negative log-likelihood loss of 
the discriminator 𝐷(𝑥), which predicts a given class, and the true class c. Conversely, the 
classification of D with respect to the fake images generated by the generator network G(x,c) is 
used to optimize G, as is standard for generative adversarial networks.  
  𝐿2"/!(𝐷, 𝐺, 𝑋, 𝐶) = 𝐸(#,")～($,))[𝑁𝐿𝐿(𝐷(𝐺(𝑥, 𝑐)), 𝑐) ]                (4) 
For equation 5, we have defined the L1 loss 
[||𝑥	 − 	𝐺(𝐺(𝑥, 𝑐), 𝑐′)||6 is a reconstruction loss with an absolute-value based normalization.  
For equation 6, we provide the definition of semantic similarity to clarify the meaning behind the 
equations.  
Images generated in the target domain that correspond to the source domain should have similar 
labels. In other words, we use the labels that have already been prescribed in the source domain 
to guide the generator G. First, a classifier (Fs) is trained on the labeled source data with cross 
entropy loss.  
For equation 7, we explain the reasoning behind the additive losses.  
Ablation studies from the CYCADA paper have shown that this step leads to improvements in 
domain adaptation. Subsequently, the semantic loss – where the goal is the maintain a semantic 
relationship between the images in the target domain and the source domain can be defined with 
respect to FS  and FT. This loss is simply the addition of for the classifier  for images from the 
source domain (𝐿30!7(𝐹8, 𝐺(𝐺(𝑋8, 𝐶), 𝐶′), 𝑌8), the classifier  for images from the target domain 
(𝐿30!7(𝐹9 , 𝐺(𝑋8, 𝐶), 𝑌8)	and the classifier for the images from the source domain with respect to 
the predictions generated by the classifier of images in the target domain 
𝐿30!7(𝐹8, 𝐺(𝑋9 , 𝐶), 𝐹9(𝑋9)).   

𝐿!:;(𝐺, 𝐹8, 𝐹9 , 𝑋8, 𝑌8, 𝑋9 , 𝐶) = 𝐿30!7(𝐹9 , 𝐺(𝑋8, 𝐶), 𝑌8) + 𝐿30!7(𝐹8, 𝐺(𝐺(𝑋8, 𝐶), 𝐶′), 𝑌8) 
     +	𝐿30!7(𝐹8, 𝐺(𝑋9 , 𝐶), 𝐹9(𝑋9))          (7) 



By generating a loss function that combines all three aspects, can generate a semantic 
relationship between the classifications generated by the source samples and the classifications 
of samples in target domain.  


