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A. Mean-field model of the concentration dynamics

Note that the dynamics of gene product numbers at each cell cycle stage is the classical discrete bursty model
proposed in [1]. It is interesting to understand the dynamics of gene product concentrations at each stage. To the
end, we make the approximation of large molecule number. Recall that the burst size distribution ξ = (ξn) is given
by ξn = pnB(1− pB), where pB = B′/(B′ + 1) with B′ = BV (t)β being the mean burst size. When the mean
burst size B′ is large, we have

− log pB = − log(1− 1/(B′ + 1)) ≈ 1/(B′ + 1) = 1− pB

and thus the burst size distribution is given by

ξn = pnB(1− pB) = en log pB (1− pB) ≈ e−(1−pB)n(1− pB),

which is approximately an exponential distribution with mean 1/(1 − pB) = (B′ + 1) ≈ B′. As a result, the
synthesis of the gene product at stage k can be described by a compound Poisson process with exponentially
distributed interarrival times with rate ρk and exponentially distributed burst sizes with mean B′. By the scaling
property of the exponential distribution, an exponentially distributed random variable with mean B′ = BV (t)β can
be viewed as an exponentially distributed random variable with mean B multiplied by V (t)β . Therefore, in the



large burst size limit, the stochastic gene expression dynamics at stage k can be approximated by the stochastic
differential equation (SDE) [2, 3]

ṅ(t) = V (t)β ṡk(t)− dn(t), (1)

where n(t) denotes the gene product number at time t and sk(t) denotes a compound Poisson process with arrival
rate ρk and an exponentially distributed jump distribution with mean B.

Let c(t) = n(t)/V (t) denote the gene product concentration at time t. Then Eq. (1) can be written as

V (t)ċ(t) + gV (t)c(t) = V (t)β ṡk(t)− dV (t)c(t),

where we have used the fact that V̇ (t) = gV (t) since cell volume grows exponentially with rate g. Thus the
dynamics of gene product concentrations at stage k is governed by the SDE

ċ(t) = V (t)β−1ṡk(t)− (d+ g)c(t) = V (t)β−1ṡk(t)− deffc(t),

where deff = d + g ≈ d + log(2)f is the effective decay rate of the gene product due to active degradation and
dilution at cell division. Under the mean-field approximation, we have V (t) ≈ vk and thus the concentration
dynamics at stage k can be described by the continuous bursty model

ċ(t) = vβ−1
k ṡk(t)− deffc(t). (2)

The remaining question is whether cell division affects the concentration dynamics. Actually, in the large
molecule number limit, the binomial partitioning of molecule number reduces to deterministic partitioning. This
is a direct consequence of the law of large numbers since a binomial random variable can be viewed as the i.i.d.
sum of Bernoulli random variables. At the moment of cell division, both the molecule number and the cell volume
undergo deterministic symmetric partitioning, and thus their ratio remains invariant. This shows that in the large
molecule number limit, cell division has no effect on concentration fluctuations.

Now we can construct a model describing concentration fluctuations across the cell cycle. At each cell cycle
stage k, the concentration dynamics is governed by Eq. (2) and the system can hop from stage k to the next with
rate qk. The stochastic dynamics of this system can be described by a hybrid Markovian model whose Kolmogorov
forward equation is given by [2, 4]

∂tp1(x) = deff∂x
(
xp(x)

)
+ ρ1

∫ x

0

w1(x− y)p(y)dy − ρ1p(x)

+ qNpN (x)− q1p1(x),

∂tpk(x) = deff∂x
(
xp(x)

)
+ ρk

∫ x

0

wk(x− y)p(y)dy − ρkp(x)

+ qk−1pk−1(x)− qkpk(x), 2 ≤ k ≤ N,

(3)

where pk(x) is the probability density of concentration when the cell is at stage k and

wk(x) =
1

Bvβ−1
k

e−x/(Bv
β−1
k )

is the burst size distribution at stage k. A special case occurs when the synthesis is balanced (β = 1) and dosage
compensation is perfect (κ = 1). In this case, both the burst frequency ρk = ρ and the burst size distribution
wk(x) = (1/B)e−x/B are independent of cell cycle stage k, and thus the concentration dynamics along the whole
cell lineage is governed by

∂tp(x) = deff∂x
(
xp(x)

)
+ ρ

∫ x

0

w(x− y)p(y)dy − ρp(x), (4)

where p(x) is the probability density of concentration. This is exactly the classical continuous bursty model
proposed by Friedman et al. [5].
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In summary, in the large burst size limit, the concentration dynamics of our model reduces to the classical
continuous gene expression model when β = κ = 1. In this case, the steady-state distribution of concentration can
be derived from Eq. (4) and is given by [5]

p(x) =
1

Bρ/deffΓ(ρ/deff)
xρ/deff−1e−x/B ,

which is a gamma distribution. In this case, the concentration mean ρB/deff and variance ρB2/deff are both
independent of cell cycle stage and thus are both independent of cell volume.

B. Perfect concentration homeostasis

Concentration homeostasis is perfect when the mean concentration at each cell cycle stage is a constant. We
have proved in Note 1 that when β = κ = 1, the mean and variance of concentration fluctuations are the same
across the cell cycle provided the number of gene product molecules is large. Here we will prove that perfect
homeostasis is achieved when β = κ = 1, even when the number of gene product molecules is small.

Before studying perfect homeostasis, we note that the cell cycle duration T for the mean-field model is the
independent sum of N exponentially distributed random variables with rates q1, · · · , qN , respectively. Practically,
this distribution is well approximated by an Erlang distribution [6]. The mean and variance of the cell cycle duration
can be easily computed as

〈T 〉 =
1

q1
+ · · ·+ 1

qN
, σ2

T =
1

q2
1

+ · · ·+ 1

q2
N

.

If we use an Erlang distribution with shape parameter N̄ and rate ā to approximate this distribution, then N̄ and ā
should satisfy

N̄

ā
= 〈T 〉, N̄

ā2
= σ2

T .

Thus the two parameters can be determined as

N̄ =
〈T 〉2

σ2
T

, ā =
〈T 〉
σ2
T

= N̄f.

Note that for the timer strategy, i.e. α0, α1 → 0, the transition rate between stages is a constant and thus the
cell cycle duration is exactly Erlang distributed. The above discussion suggests that the mean-field model for an
arbitrary size control strategy can be well approximated by a mean-field model for the timer strategy with N̄ cell
cycle stages and transition rate ā = N̄f between stages. The parameter N0 for the effective timer model can
then be determined as N̄0 = wN̄ , where w = log2(vN0+1/v1) is the proportion of cell cycle before replication.
Therefore, in order to investigate an arbitrary size control strategy, we only need to investigate the timer strategy
first and then replace the parameters N and N0 in the effective timer model by N̄ and N̄0, respectively.

We next examine perfect concentration homeostasis for the timer strategy. In this case, the transition rate
between stages is a constant and we denote it by ā = Nf . Since both W00 and W11 are circular matrices, their
eigenvalues can be computed explicitly. The eigenvalues of W00 are given by

λk = −ā+ āωk, 1 ≤ k ≤ N, (5)

and the eigenvalues of W11 are given by

λN+k = −d− ā+ 2−1/N āωk, 1 ≤ k ≤ N, (6)

where ωk = e2(k−1)πi/N are all the N th roots of unity. Since W00 is a normal matrix, it is easy to check that there
exists a complex orthogonal matrix

R =
1√
N


1 1 · · · 1

ω1 ω2 · · · ωN

· · · · · · · · · · · ·
ωN−1

1 ωN−1
2 · · · ωN−1

N

 ,
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such that W00 is diagonalized, i.e.
W00 = RD00R̄

′, (7)

where D00 = diag(λ1, · · · , λN ) and R̄′ denotes the conjugate transpose of R. Similarly, W11 can be diagonalized
as

W11 = MRD11R̄
′M−1, (8)

where D11 = diag(λN+1, · · · , λ2N ) and M is the diagonal matrix given by

M = diag(1, 2−1/N , · · · , 2−(N−1)/N ).

It is clear that the matrices V and M are related by

V = v1M
−1. (9)

Let µlk be the unnormalized lth moment of gene product concentrations at stage k and let µl = (µlk) be the
row vector whose components are the lth moments of concentrations at all stages. It is easy to see that

µ1 = m1V
−1, µ2 = (m1 +m2)V −2,

where V = diag(v1, · · · , vN ) is the diagonal matrix whose diagonal entries are the typical cell volumes at all
stages. For the timer strategy, the vector m0 can be computed explicitly as

m0 =
1

N
1
′. (10)

Combining Eqs. (8), (9), and (10), the vector µ1 can be rewritten as

µ1 = −m0W01W
−1
11 V

−1 = − 1

Nv1
1
′W01MRD−1

11 R̄
′.

This can be written in components as

µ1k = − 1

Nv1

N∑
j,l=1

[W01M ]jjRjlR̄kl
λN+l

=
1

Nv1

N∑
j,l=1

[W01M ]jjRjlR̄kl
d+ ā− 2−1/N āωl

,

where Ajl denotes the (j, l)-th entry of the matrix A. It is easy to check that

W01 = ST = ρBvβ1 diag(1, · · · , 2β(N0−1)/N , κ2βN0/N , · · · , κ2β(N−1)/N ).

When β = κ = 1, we have W01 = ρBv1M
−1 and thus W01M = ρBv1I is a constant multiple of the identity

matrix. This clearly shows that

µ1k =
ρB

N

N∑
j,l=1

RjlR̄kl
d+ ā− 2−1/N āωl

. (11)

We next make a crucial observation that

N∑
j=1

Rjl =
1√
N

N∑
j=1

ωj−1
l =

√
Nδl1.

Inserting this equation into Eq. (11) yields

µ1k =
ρB√
N

R̄k1

d+ ā− 2−1/N āω1
=

ρB

N(d+ ā− 2−1/N ā)
.

Note that when N � 1, we have

d+ ā− 2−1/N ā = d+ (1− e− log(2)/N )Nf ≈ d+ (log 2)f = deff .
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Therefore, the unnormalized mean concentration µ1k at stage k is given by

µ1k =
ρB

Ndeff
,

and the normalized mean concentration µ1k at stage k is given by

µk =
µ1k

m0k
=
ρB

deff
,

which is independent of stage k. As a result, we have proved that perfect concentration homeostasis is achieved
when β = κ = 1.

C. Derivation of the power spectrum expressions for the mean-field model

C.1 Power spectrum of gene product number

Let r(t) denote the cell cycle stage and let n(t) denote the gene product number in a single cell at time t. To
proceed, let

m0k(t) =
∞∑
n=0

pk,n = P(r(t) = k),

m1k(t) =

∞∑
n=0

npk,n = En(t)I{r(t)=k},

m2k(t) =

∞∑
n=0

n(n− 1)pk,n = En(t)(n(t)− 1)I{r(t)=k},

be the zeroth, first, and second factorial moments of gene product numbers at stage k, where IA denotes the
indicator function of the set A. For convenience, let mk(t) = (mkr(t)) be the row vector whose components are
the kth factorial moments at all stages. It then follows from Eq. (6) in the main text that m0(t), m1(t), and m2(t)

satisfy the following differential equations:

ṁ0(t) = m0(t)W00,

ṁ1(t) = m1(t)W11 +m0(t)W01,

ṁ2(t) = m2(t)W22 +m1(t)W12 +m0(t)W02.

(12)

Since Eq. (12) is a set of linear differential equations, its time-dependent solution is given by

m1(t) = m1(0)eW11t +

∫ t

0

m0(0)eW00sW01e
W11(t−s)ds. (13)

Given the initial cell cycle stage r(0) = k and initial gene product number n(0) = n, it follows that

En(t) = m1(t)1 = neke
W11t1 +

∫ t

0

eke
W00sW01e

W11(t−s)
1ds,

where ek denotes the row vector whose kth component is 1 and all other components are 0. This clearly shows that

E[n(t)|r(0), n(0)] = n(0)er(0)e
W11t1 +

∫ t

0

er(0)e
W00sW01e

W11(t−s)
1ds.
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From now on, we assume that the system has reached the steady state. Then we have

En(0)n(t)

=
∑
k

En(0)I{r(0)=k}E[n(t)|r(0), n(0)]

=
∑
k

En(0)I{r(0)=k}

[
n(0)er(0)e

W11t1 +

∫ t

0

er(0)e
W00sW01e

W11(t−s)
1ds

]
=
∑
k

En(0)2I{r(0)=k}eke
W11t1 +

∫ t

0

En(0)I{r(0)=k}eke
W00sW01e

W11(t−s)
1ds

=
∑
k

(m1k +m2k)eke
W11t1 +

∫ t

0

m1keke
W00sW01e

W11(t−s)
1ds

= (m1 +m2)eW11t1 +

∫ t

0

m1e
W00sW01e

W11(t−s)
1ds,

where m1 = −m0STW
−1
11 and m2 = −2(m1ST + m0ST

2)W−1
22 are the steady-state values of the first and

second moments. Since the autocorrelation function is defined as Rn(t) = En(0)n(t)− En(0)En(t), we finally
obtain an explicit expression of the autocorrelation function, which is given by

Rn(t) = (m1 +m2)eW11t1 +

∫ t

0

m1e
W00sW01e

W11(t−s)
1ds− (m11)2.

C.2 Power spectrum of gene product concentration

Let c(t) denote the gene product concentration in a single cell at time t. To proceed, let

µ1k(t) = Ec(t)I{r(t)=k} = m1k(t)/vk,

µ2k(t) = Ec(t)2I{r(t)=k} = (m1k(t) +m2k(t))/v2
k,

be the first and second moments of concentration at stage k. For convenience, let µk(t) = (µkr(t)) denote the row
vector whose components are the kth moments of concentration at all stages. It is easy to see that

µ1(t) = m1(t)V −1, µ2(t) ≈ [m1(t) +m2(t)]V −2.

It then follows from Eq. (12) that

µ1(t) = m1(0)eW11tV −1 +

∫ t

0

m0(0)eW00sW01e
W11(t−s)V −1ds.

Given the initial cell cycle stage r(0) = k and initial gene product number n(0) = n, it follows that

Ec(t) = µ1(t)1 = neke
W11tV −1

1 +

∫ t

0

eke
W00sW01e

W11(t−s)V −1
1ds.

This clearly shows that

E[c(t)|r(0), n(0)] ≈ n(0)er(0)e
W11tV −1

1 +

∫ t

0

er(0)e
W00sW01e

W11(t−s)V −1
1ds.
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From now on, we assume that the system has reached the steady state. Then we have

Ec(0)c(t)

=
∑
k

Ec(0)I{r(0)=k}E[c(t)|r(0), n(0)]

=
∑
k

Ec(0)I{r(0)=k}

[
n(0)er(0)e

W11tV −1
1 +

∫ t

0

er(0)e
W00sW01e

W11(t−s)V −1
1ds

]
=
∑
k

Ec(0)2I{r(0)=k}vkeke
W11tV −1

1 +

∫ t

0

Ec(0)I{r(0)=k}eke
W00sW01e

W11(t−s)V −1
1ds

=
∑
k

µ2kvkeke
W11tV −1

1 +

∫ t

0

µ1keke
W00sW01e

W11(t−s)V −1
1ds

= µ2V e
W11tV −1

1 +

∫ t

0

µ1e
W00sW01e

W11(t−s)V −1
1ds

= (m1 +m2)V −1eW11tV −1
1 +

∫ t

0

m1V
−1eW00sW01e

W11(t−s)V −1
1ds,

where m1 = −m0STW
−1
11 and m2 = −2(m1ST + m0ST

2)W−1
22 are the steady-state values of the first and

second moments. Since the autocorrelation function is defined as Rc(t) = Ec(0)c(t) − Ec(0)Ec(t), we finally
obtain the explicit expression of the autocorrelation function, which is given by

Rc(t) = (m1 +m2)V −1eW11tV −1
1 +

∫ t

0

m1V
−1eW00sW01e

W11(t−s)V −1
1ds− (m1V

−1
1)2. (14)

Here the autocorrelation function is expressed in matrix form. A more explicit expression can be obtained by
expanding the matrix exponentials eW11t and eW00s in terms of their eigenvalues and eigenvectors. For simplicity,
we next focus on the timer strategy. The results for other control strategies can be obtained from the results for the
timer strategies by substituting the parameters N and N0 for the effective parameters N̄ and N̄0, respectively (see
Sec. B for details). With these notation in Sec. B, the autocorrelation function given in Eq. (14) can be rewritten as

Rc(t) =
1

v2
1

[
(m1 +m2)M2ReD11tR̄′1 +

∫ t

0

m1MReD00sR̄′W01MReD11(t−s)R̄′1ds− (m1M1)2

]
.

This suggests that the autocorrelation function (power spectrum) is actually the linear combination of 2N − 1

exponential (Lorentzian) functions:

Rc(t) =

2N∑
k=2

uke
λkt, Gc(ξ) =

2N∑
k=2

−2ukλk
4π2ξ2 + λ2

k

,

where λ1, · · · , λ2N are all the eigenvalues of W00 and W11, all the coefficients uk associated with the eigenvalues
of W00 are given by

uk =
1

v2
1

N∑
j=1

[m1MR]k[R̄′W01MR]kj [R̄
′
1]j

λk − λN+j
, 2 ≤ k ≤ N,

and all the coefficients uk associated with the eigenvalues of W11 are given by

uN+k =
1

v2
1

[(m1 +m2)M2R]k[R̄′1]k −
1

v2
1

N∑
j=1

[m1MR]j [R̄
′W01MR]jk[R̄′1]k

λj − λN+k
, 1 ≤ k ≤ N.

Here [m]k denotes the kth entry of the vector m and Akl denotes the (k, j)-th entry of the matrix A. In fact, the
coefficients uk can be computed more explicitly. To see this, note that

[R̄′1]k =
1√
N

N∑
j=1

[R̄]jk =
1√
N

N∑
j=1

ω̄j−1
k =

√
Nδk1.
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Thus all the coefficients uk associated with the eigenvalues of W00 can be simplified as

uk =

√
N

v2
1

[m1MR]k[R̄′W01MR]k1

λk − λN+1
, 1 ≤ k ≤ N, (15)

and all the coefficients uk associated with the eigenvalues of W11 can be simplified as

uN+k = 0, 2 ≤ k ≤ N,

uN+1 =

√
N

v2
1

[(m1 +m2)M2R]1 −
√
N

v2
1

N∑
j=1

[m1MR]j [R̄
′W01MR]j1

λj − λN+1
.

(16)

This suggests that the autocorrelation function (power spectrum) is actually the linear combination of only N
exponential (Lorentzian) functions:

Rc(t) =

N+1∑
k=2

uke
λkt, Gc(ξ) =

N+1∑
k=2

−2ukλk
4π2ξ2 + λ2

k

,

Since m1 = −m0STW
−1
11 , it follows from Eqs. (8) and (10) that

m1MR = −m0W01W
−1
11 MR = − 1

N
1
′W01MRD−1

11 .

It is easy to check that

W01 = ST = ρBvβ1 diag(1, · · · , 2β(N0−1)/N , κ2βN0/N , · · · , κ2β(N−1)/N ).

This shows that

[m1MR]k = − 1

N

N∑
j=1

[W01M ]jjRjk[D−1
11 ]kk = − 1

N3/2λN+k

N∑
j=1

[W01M ]jjω
j−1
k

=
ρBvβ1

N3/2(d+ a− 2−1/Naωk)

 N0∑
j=1

2(β−1)(j−1)/Nωj−1
k + κ

N∑
j=N0+1

2(β−1)(j−1)/Nωj−1
k


=

ρBvβ1
N3/2(d+ a− 2−1/Naωk)

 N0∑
j=1

(2(β−1)/Nωk)j−1 + κ
N∑

j=N0+1

(2(β−1)/Nωk)j−1


=

ρBvβ1 ∆k

N3/2(d+ a− 2−1/Naωk)
,

where

∆k =

N0∑
j=1

(2(β−1)/Nωk)j−1 + κ

N∑
j=N0+1

(2(β−1)/Nωk)j−1

=
1− κ2(β−1) + (κ− 1)2(β−1)wωN0

k

1− 2(β−1)/Nωk
,

with w = N0/N being the proportion of cell cycle before replication. Moreover, we have

[R̄′W01MR]k1 =

N∑
j=1

[R̄]jk[W01M ]jj [R]j1 =
1

N

N∑
j=1

ω̄j−1
k [W01M ]jj =

ρBvβ1 ∆̄k

N
.

It then follows from Eq. (15) that

uk =
ρ2B2v2β−2

1 |∆k|2

N2(d+ a− 2−1/Naωk)(d+ aωk − 2−1/Na)
, 1 ≤ k ≤ N.
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In addition, it is easy to see that

[(m1 +m2)M2R]1 =

N∑
j=1

[(m1 +m2)M2]jRj1 =
1√
N

(m1 +m2)M2
1.

It thus follows from Eq. (16) that

uN+1 =
1

v2
1

(m1 +m2)M2
1−

N∑
k=1

uk = 〈c(t)〉2 −
N∑
k=1

uk.

To proceed, note that the concentration mean can be computed explicitly as

〈c(t)〉 = m1V
−1
1 = − 1

Nv1
1
′W01W

−1
11 M1 = − 1

Nv1
1
′W01MRD−1

11 R̄
′
1

=
1

Nv1

N∑
j,k=1

[W01M ]jjRjk[R̄′1]k
λN+k

=
1

Nv1(d+ a− 2−1/Na)

N∑
j=1

[W01M ]jj

=
ρBvβ−1

1 ∆1

N(d+ a− 2−1/Na)
=
√
u1.

Thus we obtain

uN+1 = 〈c(t)〉2 − 〈c(t)〉2 −
N∑
k=2

uk = σ2
c −

N∑
k=2

uk,

where σ2
c is the steady-state variance of gene product concentration.

In summary, we have proved that the autocorrelation function (power spectrum) is the weighted sum of N
exponential (Lorentzian) functions:

Rc(t) =

N∑
k=1

uke
λkt, Gc(ξ) =

N∑
k=1

−2ukλk
4π2ξ2 + λ2

k

, (17)

where the exponents λk are given by

λk = −a(1− ωk), 1 ≤ k ≤ N − 1,

λN = −d− a+ 2−1/Na = −d− a(1− e− log(2)/N ) ≈ −d− log(2)f = −deff,

with ωk = e2kπi/N being all N th roots of unity, and the coefficients uk are given by

uk =
ρ2B2v2β−2

1 |∆k|2

N2(d+ a− 2−1/Naωk)(d+ aωk − 2−1/Na)
, 1 ≤ k ≤ N − 1,

uN = σ2
c −

N−1∑
k=1

uk,

with σ2
c being the steady-state variance of concentration and with ∆k being defined as

∆k =
1− κ2(β−1) + (κ− 1)2(β−1)wωN0

k

1− 2(β−1)/Nωk
. (18)

In the special case of perfect homeostasis (β = κ = 1), we have ∆k = uk = 0 for each 1 ≤ k ≤ N − 1 and
thus the autocorrelation function (power spectrum) reduces to the following exponential (Lorentzian) function:

Rc(t) = σ2
ce
−defft, Gc(ξ) =

−2σ2
cdeff

4π2ξ2 + d2
eff
.
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In this case, both the autocorrelation function and power spectrum are monotonic decreasing functions and thus no
concentration oscillations can be observed.

If homeostasis is not perfect, the power spectrum for concentration can either be monotonically decreasing or
have an off-zero peak. When N � 1, the position of the off-zero peak is equal to the cell cycle frequency f , the
width of the off-zero peak is given by D = 2πf/N . The absolute height of the zero peak is given by

Hzero = Gc(0) = −2

N∑
k=1

uk
λk
.

Moreover, the absolute height of the off-zero peak is given by

Hoff−zero =
−2u1λ1

4π2f2 + λ2
1

+
−2u1λ1

4π2f2 + λ2
1

= −4Re

(
u1λ1

4π2f2 + λ2
1

)
,

where Re(z) denotes the real part of z. Since we have normalized the power spectrum so that Gc(0) = 1, the
height of the off-zero peak is then the ratio of the absolute heights of the off-zero and zero peaks, which is given by

H =
Hzero

Hoff−zero
=

2Re(u1λ1/(4π
2f2 + λ2

1))∑N
k=1 uk/λk

. (19)

Note that the height H is proportional to u1, which is proportional to |∆1|2. It follows from Eq. (18) that |∆1|2 is
proportional to

C1(w, κ, β) = |1− κ2(β−1) + (κ− 1)2(β−1)wωN0
1 |2 = |1− κ2(β−1) + (κ− 1)2(β−1)we2πwi|2.

Therefore, the height H is also proportional to C1(w, κ, β) and thus vanishes if C1(w, κ, β) = 0.

C.3 Height of the off-zero peak for unstable gene products

Here we focus on the power spectrum for unstable gene products. Without loss of generality, we assume that
at least one of β and κ is not equal to 1. For unstable gene products, we have d� a and thus |λN+1| � |λk| for
2 ≤ k ≤ N . Thus the power spectrum of gene product concentrations is approximately given by

Gc(ξ) =

N−1∑
k=1

−2ukλk
4π2ξ2 + λ2

k

,

where λk = −a+ aωk with ωk = e2kπi/N and

uk =
ρ2B2v2β−2

1 |∆k|2

a2η2
.

Note that the power spectrum can be rewritten as

Gc(ξ) =
2ρ2B2v2β−2

1

aη2

N−1∑
k=1

|∆k|2(1− ωk)

4π2ξ2 + a2(1− ωk)2
.

When N � 1, the power spectrum has the following approximation:

Gc(ξ) ≈
2ρ2B2v2β−2

1

aη2

[N/2]∑
k=1

|∆k|2Gk(ξ),

where
Gk(ξ) =

1− ωk
4π2ξ2 + a2(1− ωk)2

+
1− ω̄k

4π2ξ2 + a2(1− ω̄k)2
.
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Straightforward computations show that

Gk(ξ) =
sin2 θk(π2ξ2 + a2 sin2 θk)

(π2ξ2 − a2 sin2 θk)2 + 4π2ξ2a2 sin4 θk
,

where θk = kπ/N . In fact, the function Gk(ξ) characterizes the kth off-zero peak. It is easy to check that the
position of the kth off-zero peak is given by

ξ =
a

π
sin θk

√
2 cos θk − 1.

When N � 1, we have sin θk ≈ θk and cos θk ≈ 1 and thus the position of the kth off-zero peak is approximately
given by

ξ =
aθk
π
≈ kf,

and the function Gk(ξ) can be further simplified as

Gk(ξ) ≈ k2(ξ2 + k2f2)

N2(ξ2 − k2f2)2 + 4k4π2f2ξ2
. (20)

In addition, we have

|∆k|2 =
|1− κ2(β−1) + (κ− 1)2(β−1)wωN0

k |2

|1− 2(β−1)/Nωk|2
=

Ck(w, κ, β)

|1− 2(β−1)/Nωk|2
,

where

Ck(w, κ, β) = 22(β−1)w(κ− 1)2 + (1− κ2β−1)2 + 2(β−1)w+1(κ− 1)(1− κ2β−1) cos(2kπw)

is a function of w, κ, and β. Moreover, note that

|1− 2(β−1)/Nωk|2 = (1− 2(β−1)/N )2 + 2(β−1)/N+2 sin2 θk

≈ 4k2π2 + (log 2)2(β − 1)2

N2
.

Thus we have

|∆k|2 ≈
Ck(w, κ, β)N2

4k2π2 + (log 2)2(β − 1)2
.

Thus when N � 1, the power spectrum for unstable gene products can be simplified as

Gc(ξ) ≈
2ρ2B2v2β−2

1 N

fη2

∞∑
k=1

Ck(w, κ, β)

4k2π2 + (log 2)2(β − 1)2
Gk(ξ),

where Gk(ξ) is given in Eq. (20). Note that the maximum of Gk(ξ) is approximately given by

Gk(kf) ≈ 2k4f2

4k6π2f4
=

1

2k2π2f2
.

Thus the absolute height of the off-zero peak is given by

Hoff-zero ≈
2ρ2B2v2β−2

1 N

fη2
× C1(w, κ, β)

4π2 + (log 2)2(β − 1)2
× 1

2π2f2
.

Moreover, the absolute height of the zero peak is given by

Hzero ≈
2ρ2B2v2β−2

1 N

fη2

∞∑
k=1

Ck(w, κ, β)

4k2π2 + (log 2)2(β − 1)2
Gr(0)

=
2ρ2B2v2β−2

1 N

fη2
× 1

N2f2
×
∞∑
k=1

Ck(w, κ, β)

4k2π2 + (log 2)2(β − 1)2
.
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Since we have normalized the power spectrum so that Gc(0) = 1, the height of the off-zero peak is then the ratio of
the absolute heights of the off-zero and zero peaks, which is given by

H =
Hoff-zero

Hzero
≈ C1(w, κ, β)N2

2π2(4π2 + (log 2)2(β − 1)2)
∑∞
k=1

Ck(w,κ,β)
4k2π2+(log 2)2(β−1)2

.

Since (log 2)2(β − 1)2 � 4π2, the height of the off-zero peak can be simplified as

H ≈ C1(w, κ, β)N2

2π2C(w, κ, β)
,

where

C(w, κ, β) =

∞∑
k=1

Ck(w, κ, β)

k2
.

Therefore, the height H is also proportional to N2. We emphasize that while this conclusion is derived for unstable
gene products, it also holds for all gene products, according to our simulations.

D. Technical details for Fig 4

In (a)-(c), the model parameters are chosen as B = 0.5, α0 = α1 = 1, d = ηf . The parameters ρ and a are
chosen so that 〈n〉 = 200 and 〈V 〉 = 4. The remaining parameters are chosen as N = 50, N0 = 21, β = κ =

1, η = 0.5 for (a), N = 50, N0 = 21, β = 0, κ =
√

2, η = 0.5 for (b), andN = 80, N0 = 60, β = 1, κ = 2, η = 5

for (c).
In (d)-(f), the model parameters are chosen as N = 50, B = 1, α0 = α1 = 1, d = ηf . The parameters ρ and

a are chosen so that 〈n〉 = 100 and 〈V 〉 = 1. The remaining parameters are chosen as N0 = 21, η = 1 for (a),
N0 = 21, κ = 2 for (b) and β = 0, η = 1 for (c). While we have assumed the adder strategy in the simulations,
similar results also hold for other control strategies.

In (a)-(f), the growth rate g is determined so that f = 0.1.

E. Technical details for Fig 5

In (e), the model parameters are chosen as N = 50, N0 = 23, ρ = 17, B = 1, β = 1, κ = 2, d = 0.1, η = 1.
The parameter a is chosen so that 〈V 〉 = 1. The strengths α0 and α1 of size control are chosen as α0 = α1 = 1 for
the upper panel (adder), α0 = 0.5, α1 = 2 for the middle panel (timer-sizer), and α0 = 2, α1 = 0.5 for the lower
panel (sizer-timer). The growth rate g is determined so that f = 0.1.

F. Technical details for Fig 6

In (a)-(c), the model parameters are chosen as N = 50, B = 1, κ = 2, α0 = α1 = 1, d = ηf . The parameters
ρ and a are chosen so that 〈n〉 = 100 and 〈V 〉 = 1. The remaining parameters are chosen asN0 = 25, β = 0, η = 0

for (a), N0 = 10, β = 0, η = 3 for (b), and N0 = 16, β = 1, η = 10 for (c).
In (d), the model parameters are chosen as N = 30, N0 = 11, ρ = 66, B = 1, β = 1, κ = 2, d = 1, η = 10.

The parameter a is chosen so that 〈V 〉 = 1. The strengths α0 and α1 of size control are chosen as α0 = α1 = 1 for
the blue curve, α0 = 0.5, α1 = 2 for the red curve, and α0 = 2, α1 = 0.5 for the green curve.

In (e),(f), the model parameters are chosen as N = 30, N0 = 18, α0 = α1 = 1, d = ηf . The parameters ρ
and a are chosen so that 〈n〉 = 100 and 〈V 〉 = 1. The remaining parameters are chosen as B = 0.2, η = 10 for (e)
and β = 1, κ = 2 for (f).

In (a)-(f), the growth rate g is determined so that f = 0.1.
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G. Parameter inference using synthetic data

Our model is complex due to the coupling between gene expression dynamics, cell volume dynamics, and cell
cycle events. A natural question is whether all the parameters involved in the model can be inferred accurately.
In fact, parameter inference for similar models has been made in our previous papers — the parameters related
to cell volume dynamics have been inferred in E. coli [6] and fission yeast [7] using the method of distribution
matching, and the parameters related to gene expression dynamics have be estimated in E. coli [8] using the method
of power spectrum matching. Suppose that the time course data of cell size and gene expression (mRNA or protein
abundance) can be measured along a cell lineage. Next we briefly introduce the parameter inference method for our
model and validate it using synthetic data.

1) Estimation of g. Note that the cell volume at birth Vb, the cell volume at division Vd, and the cell cycle
duration T in each generation can be easily extracted from the lineage data. Since the growth of cell volume
is exponential, g = 〈log(Vd/Vb)/T 〉 gives an estimate of the growth rate, where the angled brackets denote the
average over generations.

2) Estimation of α0 and α1. Suppose that the cell volume at replication Vr can also be measured, e.g.
fluorescent probes were used in [9] to label individual nuclei in the G1 phase red and those in the G2-S-M phase
green. In Methods, we prove that when the variability in cell size is small, the volumes at birth, replication, and
division are linearly related by Vr−2w(1−α0)Vb = ε0 and Vd−2(1−w)(1−α1)Vr = ε1, where w = 〈log2(Vr/Vb)〉 is
the fraction of cell cycle before replication, ε0 is a noise term independent of Vb, and ε1 is a noise term independent
of both Vb and Vr. Then the slope of the regression line of Vr on Vb gives an estimate of 2(1−α0)w, from which α0

can be determined. Similarly, the slope of the regression line of Vd on Vr gives an estimate of 2(1−α1)(1−w), from
which α1 can be determined.

If Vr cannot be obtained directly from lineage measurements, then we can use step 6) below to estimate w
from which the volume at replication can be estimated as Vr = 2wVb.

3) Estimation ofN0 andN . Recall that the generalized added volumes ∆0 = V α0
r −V

α0

b and ∆1 = V α1

d −V α1
r

have Erlang distributions with shape parameters N0 and N1 = N −N0, respectively. Once α0 and α1 have been
estimated, N0 and N1 can be inferred as the inverse CV squared of ∆0 and ∆1, respectively.

4) Estimation of a. The last parameter related to cell volume dynamics is the proportionality constant a for the
transition rate between cell cycle stages. This parameter can be determined by an optimal fit of the experimental to
the theoretical/simulated doubling time distribution using the least squares criterion. Specifically, we can infer a by
solving the following optimization problem:

min
α

L∑
i=1

|p(xi)− p̂(xi)|2 , (21)

where p(x) is the theoretical/simulated doubling time distribution, p̂(x) is the sample doubling time distribution
obtained from experiments, xi are some reference points, and L is the number of bins chosen.

5) Estimation of d and β. The degradation rate d can be determined by measuring the half-life of the gene
product [10]. For stable proteins, we may simply take d = 0 [8, 11]. The degree β of balanced biosynthesis can be
determined by a priori knowledge. If the mRNA number in a population of cells scales linearly with cell volume,
we can take β = 1. If the mRNA number in G1 (before replication) or G2 (after replication) phase does not scale
with cell volume, we can take β = 0 [10].

6) Estimation of ρB and κ. Since the burst frequency increases from ρ to κρ upon replication, we can fit the
gene expression data within each cell cycle by the solution of the following mean-field differential equation:

d

dt
n̂(t) =

ρBV (t)β − dn̂(t), if 0 ≤ t < wT,

κρBV (t)β − dn̂(t), if wT ≤ t ≤ T,
(22)
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where t is the cell age. By fitting the time course data n(t) to the approximation n̂(t), we obtained the least squares
estimates of ρB and κ by minimizing the (squared) distance

∑M−1
t=0 [n(t)− n̂(t)]2 between the two, where M is

the number of time points measured within a cell cycle.
If the proportion w of cell cycle before replication cannot be obtained in step 2), then we can estimate ρB, w,

and κ simultaneously by minimizing
∑M−1
t=0 [n(t)− n̂(t)]2, from which w can be determined.

7) Estimation of ρ and B. Note that ρB has been estimated in 6). Finally, we can estimate ρ and B separately
by an optimal fit of the experimental to the theoretical/simulated copy number distribution of the gene product
using the least squares criterion.

To verify the effectiveness of our method, we use our model to generating synthetic lineage data of cell volume
and gene expression. We then perform parameter inference by fitting the noisy data to our model. The parameters
input to the synthetic data and the parameters estimated using the above method are given in Table A, where
three sets of input parameters are chosen to cover different biosynthesis patterns (balanced and non-balanced),
different degrees of burstiness (small, intermediate, large), different size control strategies (adder, timer-sizer, and
sizer-timer), different gene product stability (stable, intermediate, and unstable), and different degrees of dosage
compensation (perfect, intermediate, and no). It can be seen that fitting the lineage data to the model leads to
accurate estimation of all model parameters. Note that here d and β are determined by a priori knowledge or
additional experiments and do not need to be estimated.

first set of model parameters

g ρ B κ β d

input parameters 1 500 0.2 1 1 0

inferred parameters 1.00± 0.001 490.56± 43.02 0.22± 0.03 0.97± 0.08 1 0

N N0 α0 α1 a w

input parameters 20 10 2 0.5 840 0.54

inferred parameters 20.08± 1.59 10.16± 1.19 2.08± 0.44 0.54± 0.11 826.69± 168.07 0.54± 0.01

second set of model parameters

g ρ B κ β d

input parameters 1 150 1 1.5 1 1

inferred parameters 1.00± 0.001 153.72± 12.95 1.07± 0.13 1.56± 0.13 1 1

N N0 α0 α1 a w

input parameters 40 16 1 1 60 0.48

inferred parameters 39.78± 3.41 16.10± 1.73 1.00± 0.17 1.03± 0.12 65.22± 12.62 0.48± 0.01

third set of model parameters

g ρ B κ β d

input parameters 1 80 5 2 0 5

inferred parameters 1.00± 0.001 83.96± 7.17 4.92± 0.38 1.94± 0.21 0 5

N N0 α0 α1 a w

input parameters 60 18 0.5 2 10 0.45

inferred parameters 60.63± 4.83 17.65± 2.12 0.53± 0.09 1.99± 0.21 10.54± 2.15 0.46± 0.01

Table A. Parameter inference using synthetic data. The lineage data of cell volume and gene expression are generated from
the model. For each set of model parameters, we generate synthetic data simulating 50 cell lineages, each composed of 200
generations. The frequency of sampling is chosen so that on average, 50 points are measured for each lineage, on par with recent
mother machine experiments [11]. The value in each cell shows the mean and standard deviation of the estimated parameter
computed over 50 cell lineages.
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