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Description of contents in the Supplementary Ma-

terials

• Section A presents proofs and identification results when covariates are present.

• Section B describes a sensitivity analysis approach without using a frailty as-

sumption.

• Section C provides additional information about the derivation of the non-

parametric estimators (Section C.1), the asymptotic properties of these esti-

mators (Section C.2) and details of the EM algorithm for fitting the semi-

parametric model (Section C.3).

• Section D includes details on the simulation studies, including the data-generating

mechanism (DGM, Section D.1), the different analyses (Section D.2), as well as

simulation results (Section D.3).

• Section E gives more detailed information on the illustrative data analysis and

presents additional results.
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A Proofs and additional theory on identifiability

A.1 Proof of Proposition 1

Each of the causal contrasts in (3.8)–(3.10) have one component identified by our

assumptions and one that is not. We start with the former:

Pr[T2(0) ≤ t|ad] = Pr[T2(0) ≤ t|T1(0) ≤ T2(0)] = Pr[T2(0) ≤ t|A = 0, T1 ≤ T2]

= F2|A=0,T1≤T2(t),

Pr[T2(1) ≤ t|nd] = Pr[T2(1) ≤ t|T1(1) > T2(1)] = Pr[T2(1) ≤ t|A = 1, T1 > T2]

= F2|A=1,T1>T2(t),

Pr[T1(0) ≤ t|ad] = Pr[T1(0) ≤ t|T1(0) ≤ T2(0)] = Pr[T1(0) ≤ t|A = 0, T1 ≤ T2]

= F1|A=0,T1≤T2(t).

In each of the equations, the first equality is by Assumption 3, the second by Assump-

tion 2 and the third by Assumption 1. Turning to the partially identified components,

lower bounds are obtained by:

Pr[T2(1) ≤ t|ad] = Pr[T2(1) ≤ t|T1(0) ≤ T2(0)]

≥ Pr[T2(1) ≤ t] + Pr[T1(0) ≤ T2(0)]− 1

Pr[T1(0) ≤ T2(0)]

= 1−
S2|A=1(t)

ηA=0

,

Pr[T2(0) ≤ t|nd] = Pr[T2(0) ≤ t|T1(1) > T2(1)]

≥ Pr[T2(0) ≤ t] + Pr[T1(1) > T2(1)]− 1

Pr[T1(1) > T2(1)]

= 1−
S2|A=0(t)

1− ηA=1

,

Pr[T1(1) ≤ t|ad] = Pr[T1(1) ≤ t|T1(0) ≤ T2(0)]

≥ Pr[T1(1) ≤ t] + Pr[T1(0) ≤ T2(0)]− 1

Pr[T1(0) ≤ T2(0)]

= 1−
S1|A=1(t)

ηA=0

.
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In each of the equations, the first equality is by Assumption 3, the second line is by

the inequality Pr(B1 ∩B2) ≥ Pr(B1) + Pr(B2)− 1 for any two events B1, B2, and the

third line is by Assumptions 1 and 2.

The upper bounds for the components are obtained by:

Pr[T2(1) ≤ t|ad] = Pr[T2(1) ≤ t|T1(0) ≤ T2(0), T1(1) ≤ T2(1)]

= Pr[T1(0) ≤ T2(0), T1(1) ≤ T2(1)|T2(1) ≤ t]
F2|A=1(t)

ηA=0

≤ Pr[T1(1) ≤ T2(1)|T2(1) ≤ t]
F2|A=1(t)

ηA=0

= ηA=1,T2≤t
F2|A=1(t)

ηA=0

,

Pr[T2(0) ≤ t|nd] = Pr[T2(0) ≤ t|T1(0) > T2(0), T1(1) > T2(1)]

= Pr[T1(0) > T2(0), T1(1) > T2(1)|T2(0) ≤ t]
F2|A=0(t)

1− ηA=1

≤ Pr[T1(0) > T2(0)|T2(0) ≤ t]
F2|A=0(t)

1− ηA=1

= (1− ηA=0,T2≤t)
F2|A=0(t)

1− ηA=1

,

Pr[T1(1) ≤ t|ad] = Pr[T1(1) ≤ t|T1(0) ≤ T2(0), T1(1) ≤ T2(1)]

= Pr[T1(0) ≤ T2(0), T1(1) ≤ T2(1)|T1(1) ≤ t]
F1|A=1(t)

ηA=0

≤ Pr[T1(1) ≤ T2(1)|T1(1) ≤ t]
F1|A=1(t)

ηA=0

= ηA=1,T1≤t
F1|A=1(t)

ηA=0

.

In each of the equations, the second line is by Bayes’ Theorem and Assumptions

1–3, the inequality is by increasing the event probability by omission, and the final

equality is again by Assumptions 1 and 2.
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A.2 Proof of Proposition 2

First, using the same arguments as in the proof of Proposition 3

Pr[T1(0) ≤ t|ad] = Pr[T1(0) ≤ t|T1(0) ≤ T2(0)] = Pr[T1(0) ≤ t|A = 0, T1 ≤ T2]

= F1|A=0,T1≤T2(t).

Now,

Pr[T1(1) ≤ t|ad]

= Pr[T1(1) ≤ t|ad] Pr[ad|T1(1) ≤ T2(1)] + Pr[T1(1) ≤ t|ad] Pr[dh|T1(1) ≤ T2(1)]

≥ Pr[T1(1) ≤ t|ad] Pr[ad|T1(1) ≤ T2(1)] + Pr[T1(1) ≤ t|dh] Pr[dh|T1(1) ≤ T2(1)]

= Pr[T1(1) ≤ t|T1(1) ≤ T2(1)]

= Pr[T1(1) ≤ t|A = 1, T1 ≤ T2]

= F1|A=1,T1≤T2(t),

where the first equality is justified by Pr[ad|T1(1) ≤ T2(1)]+Pr[dh|T1(1) ≤ T2(1)] = 1,

the inequality is by Assumption 4, and the rest is by the law of total probability and

Assumptions 1 and 2.

A.3 Adjusted bounds

We prove below that under Assumptions 1, 3 and 5, adjusted bounds for (2.1) in

the main text are given by (3.12). First, observe that under the above assumptions,

Pr(Z = z|ad) is identifiable from the data by

Pr(Z = z|ad) = Pr[Z = z|T1(0) < T2(0)] = Pr[Z = z|A = 0, T1 ≤ T2] = ν(z), (A.1)

where the first equality is by Assumption 3, and the second equality is by Assumptions

1 and 5, and the third is again by Assumption 5. The second term in (1), Pr[T2(0) ≤
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t | ad], is identified from the data under our assumptions by

Pr[T2(0) ≤ t | ad] =
∑
z

Pr(Z = z|ad) Pr[T2(0) ≤ t | ad, Z = z]

=
∑
z

ν(z) Pr[T2(0) ≤ t | T1(0) < T2(0), Z = z]

=
∑
z

ν(z)F2|A=0,T1≤T2,Z=z(t),

where the second line is by (A.1) and Assumption 3, and the third line is by Assump-

tions 1 and 5. Turning to Pr[T2(1) ≤ t|ad], the upper bound is obtained by

Pr[T2(1) ≤ t|ad] =
∑
z

Pr(Z = z|ad) Pr[T2(1) ≤ t | ad, Z = z]

=
∑
z

ν(z) Pr[T2(1) ≤ t|T1(0) ≤ T2(0), T1(1) ≤ T2(1), Z = z]

=
∑
z

ν(z) Pr[T1(0) ≤ T2(0), T1(1) ≤ T2(1)|T2(1) ≤ t, Z = z]
F2|A=1,Z=z(t)

ηA=0,Z=z

≤
∑
z

ν(z) min

{
1, Pr[T1(1) ≤ T2(1)|T2(1) ≤ t, Z = z]

F2|A=1,Z=z(t)

ηA=0,Z=z

}
=
∑
z

ν(z) min

{
1, ηA=1,T2≤t,Z=z

F2|A=1,Z=z(t)

ηA=0,Z=z

}
.

The second line is by (A.1); the third line is by Bayes’ Theorem and Assumptions 1,

3 and 5; in the fourth line the probability was increased by omitting T1(0) ≤ T2(0);

the last line is again by Assumptions 1 and 5. The lower bound is obtained by

Pr[T2(1) ≤ t|ad] =
∑
z

Pr(Z = z|ad) Pr[T2(1) ≤ t | ad, Z = z]

=
∑
z

ν(z) Pr[T2(1) ≤ t | T1(0) < T2(0), Z = z]

≥
∑
z

ν(z) max

{
0 ,

Pr[T2(1) ≤ t|Z = z] + Pr[T1(0) ≤ T2(0)|Z = z]− 1

Pr[T1(0) ≤ T2(0)|Z = z]

}
=
∑
z

ν(z) max

{
0 , 1−

1− F2|A=1,Z=z(t)

ηA=0,Z=z

}
,
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where the second line is by (A.1) and Assumption 3, the third line is by the inequality

Pr(B1 ∩B2) ≥ Pr(B1) + Pr(B2)− 1 for any two events B1, B2, and the fourth line is

by Assumptions 1 and 5.

A.4 Proof that adjusted bounds are contained within the

unadjusted bounds

The proof is similar to the proof of Proposition 1 of Long and Hudgens (2013). First,

observe that ∑
z

ν(z)F2|A=0,T1≤T2,Z=z(t) = F2|A=0,T1≤T2(t).
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Thus, we can focus on the first component of UZ
2,ad(t) and LZ2,ad(t). Starting from the

upper bound, we have∑
z

ν(z) min

{
1, ηA=1,T2≤t,Z=z

F2|A=1,Z=z(t)

ηA=0,Z=z

}

≤ min

{
1 ,
∑
z

Pr(Z = z|T1 ≤ T2)ηA=1,T2≤t,Z=z
F2|A=1,Z=z(t)

ηA=0,Z=z

}

= min

{
1 ,
∑
z

Pr(Z = z|A = 0, T1 ≤ T2)ηA=1,T2≤t,Z=z
F2|A=1,Z=z(t)

ηA=0,Z=z

}

= min

{
1 ,
∑
z

Pr(Z = z|A = 0)

ηA=0

ηA=1,T2≤t,Z=zF2|A=1,Z=z(t)

}

= min

{
1 ,

1

ηA=0

∑
z

Pr(Z = z)ηA=1,T2≤t,Z=zF2|A=1,Z=z(t)

}

= min

{
1 ,

1

ηA=0

∑
z

Pr(Z = z)
Pr(A = 1, T1 ≤ T2, T2 ≤ t, Z = z)

Pr(A = 1, T2 ≤ t, Z = z)

Pr(A = 1, T2 ≤ t, Z = z)

Pr(A = 1) Pr(Z = z)

}

= min

{
1 ,

1

ηA=0

∑
z

Pr(A = 1, T1 ≤ T2, T2 ≤ t, Z = z)

Pr(A = 1)

}

= min

{
1 ,

1

ηA=0

Pr(A = 1, T1 ≤ T2, T2 ≤ t)

Pr(A = 1)

}
= min

{
1 ,

1

ηA=0

Pr(T1 ≤ T2|A = 1, T2 ≤ t) Pr(T2 ≤ t|A = 1)

}
= min

{
1 , F2|A=1(t)

ηA=1,T2≤t

ηA=0

}
.

The second line is obtained by recalling that the sum of minimizers is lower or equal

to the minimizer of the sum. In the third line, we could add A = 0 to the condition

because of Assumption 5. The fourth line is by Bayes’ theorem, and in the fifth line

we used Assumption 5 again, this time to remove A = 0 from the condition. In

the sixth line, we just wrote conditional probabilities as joint probabilities divided

by the conditional probabilities, and utilized Assumption 5 to write Pr(A = 1, Z =

z) = Pr(A = 1) Pr(Z = z). The eighth line is by the law of total probability, and in

the ninth line we wrote a joint probability as the product of conditional probabilities

and the marginal (which was canceled with the denominator). Turning to the lower
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bound, ∑
z

ν(z) max

{
0 , 1−

1− F2|A=1,Z=z(t)

ηA=0,Z=z

}

≥ max

{
1 , 1−

∑
z

Pr(Z = z|T1 ≤ T2)
1− F2|A=1,Z=z(t)

ηA=0,Z=z

}

= max

{
1 , 1−

∑
z

Pr(Z = z|A = 0, T1 ≤ T2)
1− F2|A=1,Z=z(t)

ηA=0,Z=z

}

= max

{
1 , 1−

∑
z

Pr(Z = z|A = 0)

ηA=0

Pr(T2 > t|A = 1, Z = z)

}

= max

{
1 , 1− 1

ηA=0

∑
z

Pr(Z = z) Pr(T2 > t|A = 1, Z = z)

}

= max

{
1 , 1−

S2|A=1(t)

ηA=0

}
.

The second line is obtained by recalling that the sum of maximizers is larger than the

maximum of sums. In the third line, we could add A = 0 to the condition because

of Assumption 5. The fourth line is by Bayes’ theorem, and in the fifth line we used

Assumption 5 again, this time to remove A = 0 from the condition. The last line is

obtained by the law of total probability.

A.5 Proof of Proposition 4

For j = 1, 2 and a = 0, 1 we may write

Pr[Tj(a) ≤ t|ad] = Eγ|ad{Pr[Tj(a) ≤ t | T1(0) ≤ T2(0), T1(1) ≤ T2(1),γ]}

= Eγ|ad{Pr[Tj(a) ≤ t|T1(a) ≤ T2(a), γa]}

= Eγ|ad{Pr[Tj ≤ t|T1 ≤ T2, A = a, γa]}

=

∫ ∞
0

∫ ∞
0

Pr[Tj ≤ t|T1 ≤ T2, A = a, γa]fθ(γ|ad)dγ,
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where the second line is by Part (i) of Assumption 6 and the third line is by Part (ii)

of Assumption 6. Now, by Bayes’ Theorem

fθ(γ|ad) =
Pr[T1(0) ≤ T2(0), T1(1) ≤ T2(1)|γ]fθ(γ)∫∞

0

∫∞
0
Pr[T1(0) ≤ T2(0), T1(1) ≤ T2(1)|γ ′]fθ(γ ′)dγ ′

=
Pr[T1(0) ≤ T2(0)|γ0] Pr[T1(1) ≤ T2(1)|γ1]fθ(γ)∫∞

0

∫∞
0

Pr[T1(0) ≤ T2(0)|γ′0] Pr[T1(1) ≤ T2(1)|γ′1]fθ(γ ′)dγ ′

=
Pr[T1 ≤ T2|A = 0, γ0] Pr[T1 ≤ T2|A = 1, γ1]fθ(γ)∫∞

0

∫∞
0

Pr[T1 ≤ T2|A = 0, γ′0] Pr[T1 ≤ T2|A = 1, γ′1]fθ(γ
′)dγ ′

,

=
ηA=0,γ0ηA=1,γ1fθ(γ)dγ∫∞

0

∫∞
0
ηA=0,γ′0

ηA=1,γ′1
fθ(γ ′)dγ ′

,

where the second line is by Part (i) of Assumption 6, the third line is by Part (ii) of

Assumption 6 and by Assumption 1. Next, by Part (iv) of Assumption 6, fθ(γ) is

identifiable from the data. Therefore, estimation of Pr[Tj ≤ t|T1 ≤ T2, A = a, γa] for

j = 1, 2 and a = 0, 1 as well as estimation of ηA=0,γ0ηA=1,γ1 and θ is possible using,

for example, a covariate-free version of the EM algorithm we proposed in Section C.3.

The proof for identification of Pr[T2(a) ≤ t|nd] under Assumptions 1 and 6 is similar.

A.6 The analogue of Propositions 1 and 4 under conditional

version of the assumptions

First, for simplicity of presentation assume X is continuous and let fX(x) denote its

joint density function and let X denote its support. If some components of X are

discrete, the generalization of the results below are straightforward. For any event Q

(including the empty set ∅), let also FXj|Q(t) =
∫
x∈X Pr(Tj ≤ t|Q,X = x)fX(x)dx,

SXj|Q(t) = 1 − FXj|Q(t) and ηXQ =
∫
x∈X Pr(T1 ≤ T2|Q,X = x)fX(x)dx. We replace

Assumption 2 with the following weaker assumption,

Assumption A.1. Weak Ignorability A ⊥⊥ {T1(a), T2(a)}|X for a = 0, 1.
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A.6.1 Analogue of Proposition 1

Proposition A.1. Under Assumptions 1, 3 and A.1, the causal effects of interest

are partially identified by

LX2,ad(t) ≤ Pr[T2(1) ≤ t|ad]− Pr[T2(0) ≤ t|ad] ≤ UX2,ad(t)

LX2,nd(t) ≤ Pr[T2(1) ≤ t|nd]− Pr[T2(0) ≤ t|nd] ≤ UX2,nd(t)

LX1,ad(t) ≤ Pr[T1(1) ≤ t|ad]− Pr[T1(0) ≤ t|ad] ≤ UX1,ad(t)

where

LX2,ad(t) = max

{
0 , 1−

SX2|A=1(t)

ηXA=0

}
− FX2|A=0,T1≤T2(t)

UX2,ad(t) = min

{
1 , FX2|A=1(t)

ηXA=1,T2≤t

ηXA=0

}
− FX2|A=0,T1≤T2(t)

LX2,nd(t) = FX2|A=1,T1>T2
(t)−min

{
1 , FX2|A=0(t)

1− ηXA=0,T2≤t

1− ηXA=1

}

UX2,nd(t) = FX2|A=1,T1>T2
(t)−max

{
0 , 1−

FX2|A=0(t)

1− ηXA=1

}

LX1,ad(t) = max

{
0 , 1−

SX1|A=1(t)

ηXA=0

}
− FX1|A=0,T1≤T2(t)

UX1,ad(t) = min

{
1 ,

FX1|A=1(t)

ηXA=0

}
− FX1|A=0,T1≤T2(t).

Each of the causal contrasts in (2.1)–(2.3) of the main text have one component
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identified by our assumptions and one that is not. We start with the former:

Pr[T2(0) ≤ t|ad] =

∫
x∈X

Pr[T2(0) ≤ t|T1(0) ≤ T2(0),X = x]fX(x)dx

=

∫
x∈X

Pr[T2(0) ≤ t|A = 0, T1 ≤ T2,X = x]fX(x)dx

=

∫
x∈X

F2|A=0,T1(0)≤T2(0),X=xfX(x)dx

= FX2|A=0,T1≤T2(t),

Pr[T2(1) ≤ t|nd] = Pr[T2(1) ≤ t|T1(1) > T2(1),X = x]fX(x)dx

=

∫
x∈X

Pr[T2(1) ≤ t|A = 1, T1(1) > T2(1),X = x]fX(x)dx

=

∫
x∈X

F2|A=1,T1>T2,X=xfX(x)dx

= FX2|A=1,T1>T2
(t),

Pr[T1(0) ≤ t|ad] = Pr[T1(0) ≤ t|T1(0) ≤ T2(0),X = x]fX(x)dx

=

∫
x∈X

Pr[T1(0) ≤ t|A = 0, T1(0) ≤ T2(0),X = x]fX(x)dx

=

∫
x∈X

F1|A=0,T1≤T2,X=xfX(x)dx

= FX1|A=0,T1≤T2(t).

In each of the equations, the first equality is by Assumption 3 and law of total

probability, the second by Assumption A.1 and the third by Assumption 1. Turning
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to the partially identified components, lower bounds are obtained by:

Pr[T2(1) ≤ t|ad] = Pr[T2(1) ≤ t|T1(0) ≤ T2(0)]

≥ Pr[T2(1) ≤ t] + Pr[T1(0) ≤ T2(0)]− 1

Pr[T1(0) ≤ T2(0)]

= 1−
∫
x∈X S2|A=1,X=x(t)fX(x)dx∫
x∈X ηA=0,X=xfX(x)dx

= 1−
SX2|A=1(t)

ηXA=0

,

Pr[T2(0) ≤ t|nd] = Pr[T2(0) ≤ t|T1(1) > T2(1)]

≥ Pr[T2(0) ≤ t] + Pr[T1(1) > T2(1)]− 1

Pr[T1(1) > T2(1)]

= 1−
∫
x∈X S2|A=0,X=x(t)fX(x)dx

1−
∫
x∈X ηA=1,X=xfX(x)dx

= 1−
SX2|A=0(t)

1− ηXA=1

,

Pr[T1(1) ≤ t|ad] = Pr[T1(1) ≤ t|T1(0) ≤ T2(0)]

≥ Pr[T1(1) ≤ t] + Pr[T1(0) ≤ T2(0)]− 1

Pr[T1(0) ≤ T2(0)]

= 1−
∫
x∈X S1|A=1,X=x(t)fX(x)dx∫
x∈X ηA=0,X=xfX(x)dx

= 1−
SX1|A=1(t)

ηXA=0

.

In each of the equations, the first equality is by Assumption 3, the second line is by

the inequality Pr(B1 ∩B2) ≥ Pr(B1) + Pr(B2)− 1 for any two events B1, B2, and the

third line is by Assumptions 1 and A.1.
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The upper bounds for the components are obtained by:

Pr[T2(1) ≤ t|ad] = Pr[T2(1) ≤ t|T1(0) ≤ T2(0), T1(1) ≤ T2(1)]

= Pr[T1(0) ≤ T2(0), T1(1) ≤ T2(1)|T2(1) ≤ t]
FX2|A=1(t)

ηXA=0

≤ Pr[T1(1) ≤ T2(1)|T2(1) ≤ t]
FX2|A=1(t)

ηXA=0

= ηXA=1,T2≤t
FX2|A=1(t)

ηXA=0

,

Pr[T2(0) ≤ t|nd] = Pr[T2(0) ≤ t|T1(0) > T2(0), T1(1) > T2(1)]

= Pr[T1(0) > T2(0), T1(1) > T2(1)|T2(0) ≤ t]
FX2|A=0(t)

1− ηXA=1

≤ Pr[T1(0) > T2(0)|T2(0) ≤ t]
FX2|A=0(t)

1− ηXA=1

= (1− ηXA=0,T2≤t)
FX2|A=0(t)

1− ηXA=1

,

Pr[T1(1) ≤ t|ad] = Pr[T1(1) ≤ t|T1(0) ≤ T2(0), T1(1) ≤ T2(1)]

= Pr[T1(0) ≤ T2(0), T1(1) ≤ T2(1)|T1(1) ≤ t]
FX1|A=1(t)

ηXA=0

≤ Pr[T1(1) ≤ T2(1)|T2(1) ≤ t]
FX1|A=1(t)

ηXA=0

= ηXA=1,T1≤t
FX1|A=1(t)

ηXA=0

.

In each of the equations, the second line is by Bayes’ Theorem and Assumptions 1,3

and A.1, the inequality is by increasing the event probability by omission, and the

final equality is again by Assumptions 1 and A.1.

A.6.2 Analogue of Proposition 4

We first adapt Assumption 6 for the case of covariates X (this is a weaker version of

the assumption).
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Assumption A.2. There exists a bivariate random variable γ = (γ0, γ1) such that

(i) A ⊥⊥ {T1(a), T2(a), γa}|X for a = 0, 1.

(ii) Given γ, the joint distribution of the potential event times can be factored as

follows

f [T1(0), T2(0), T1(1), T2(1)|X,γ] = f [T1(0), T2(0)|X, γ0]P [T1(1), T2(1)|X, γ1],

where f(·) denotes a density function of a possibly-multivariate random variable.

(iii) The frailty variables and the covariates are independent γ ⊥⊥X.

(iv) The frailty variable operates multiplicatively on the hazard functions. That is,

λjk(t|a,X,γ) = γaλ̃jk(t|a,X) for jk = 01, 02, a = 0, 1 and λ12(t|t1, a,X,γ) =

γaλ̃12(t|t1, a,X) for a = 0, 1, for some λ̃jk functions.

(v) The probability density function of γ, fθ(γ), is known up to a finite dimensional

parameter θ that is identifiable from the observed data distribution.

Then, the analogue of Proposition 4 is
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Proposition A.2. Under Assumptions 1 and A.2, the causal effects (2.1)–(2.3) are

identified by

Pr[T2(1) ≤ t|ad]− Pr[T2(0) ≤ t|ad]

=

∫
X

∞∫
0

∞∫
0

[F2|T1≤T2,A=1,x,γ1(t)− F2|T1≤T2,A=0,x,γ0(t)}] ηA=0,x,γ0ηA=1,x,γ1fθ(γ)fX(x)dγdx∫
X
∫∞
0

∫∞
0
ηA=0,x′,γ′

0
ηA=1,x′,γ′

1
fθ(γ′)fX(x′)dγ′dx′

,

Pr[T2(1) ≤ t|nd]− Pr[T2(0) ≤ t|nd]

=

∫
X

∞∫
0

∞∫
0

[F2|T1>T2,A=1,x,γ1(t)− F2|T1>T2,A=0,x,γ0(t)]
(1− ηA=0,x,γ0)(1− ηA=1,x,γ1)fθ(γ)fX(x)dγdx∫

X
∫∞
0

∫∞
0

(1− ηA=0,x′,γ′
0
)(1− ηA=1,x′,γ′

1
)fθ(γ′)fX(x′)dγ′dx′

,

Pr[T1(1) ≤ t|ad]− Pr[T1(0) ≤ t|ad]

=

∫
X

∞∫
0

∞∫
0

[F1|T1≤T2,A=1,x,γ1(t)− F1|T1≤T2,A=0,x,γ0(t)}] ηA=0,x,γ0ηA=1,x,γ1fθ(γ)fX(x)dγdx∫
X
∫∞
0

∫∞
0
ηA=0,x′,γ′

0
ηA=1,x′,γ′

1
fθ(γ′)fX(x′)dγ′dx′

,

where for any event Q, Fj|Q,x,γ(t) = Pr(Tj ≤ t|Q,X = x,γ). Furthermore, all the

integrals can be consistently estimated from the data.

Proof. For j = 1, 2 and a = 0, 1 we may write

Pr[Tj(a) ≤ t|ad] = EX,γ|ad{Pr[Tj(a) ≤ t | T1(0) ≤ T2(0), T1(1) ≤ T2(1),X,γ]}

= EX,γ|ad{Pr[Tj(a) ≤ t|T1(a) ≤ T2(a),X, γa]}

= EX,γ|ad[Pr(Tj ≤ t|T1 ≤ T2, A = a,X, γa)]

=

∫
X

∫ ∞
0

∫ ∞
0

Fj|T1≤T2,A=a,x,γa(t)f(γ,x|ad)dγdx,

where the second line is by Part (i) of Assumption A.2, the third by Part (ii)

of Assumption A.2, and the fourth by Part (iii) of Assumption A.2 and where

f(γ,X|ad) is the joint density function of γ and X within the ad stratum. Note

that Pr[Tj ≤ t|T1 ≤ T2, A = a,X = x, γa] is identifiable from the data. Now, by
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Bayes’ Theorem,

f(γ,x|ad) =
Pr[T1(0) ≤ T2(0), T1(1) ≤ T2(1)|X = x,γ]fθ(γ)fX(x)∫

X

∫∞
0

∫∞
0

Pr[T1(0) ≤ T2(0), T1(1) ≤ T2(1)|X = x′,γ ′]fθ(γ ′)fX(x′)dγ ′dx′

=
Pr[T1(0) ≤ T2(0)|X = x,γ] Pr[T1(1) ≤ T2(1)|X = x,γ]fθ(γ)fX(x)∫

X

∫∞
0

∫∞
0

Pr[T1(0) ≤ T2(0)|X = x′,γ ′] Pr[T1(1) ≤ T2(1)|X = x′,γ ′]fθ(γ ′)fX(x′)dγ ′dx′

=
Pr[T1 ≤ T2|A = 0,X = x,γ] Pr[T1 ≤ T2|A = 1,X = x,γ]fθ(γ)fX(x)∫

X

∫∞
0

∫∞
0

Pr[T1 ≤ T2|A = 0,X = x′,γ ′0] Pr[T1 ≤ T2|A = 1,X = x′, γ′1]fθ(γ
′)fX(x′)dγ ′dx′

=
ηA=0,x,γηA=1,x,γfθ(γ)fX(x)∫

X

∫∞
0

∫∞
0
ηA=0,x′,γ′ηA=1,x′,γ′fθ(γ ′)fX(x′)dγ ′dx′

,

where the first line is by Part (iii) of Assumption A.2, the second by Part (i) of

Assumption A.2, and the third by Part (ii) of Assumption A.2. Note that fX(x), the

probability density function of X and fθ(γ) are identifiable from the data. There-

fore, estimation of Fj|T1≤T2,A=a,x,γa(t) for j = 1, 2 and a = 0, 1 as well as estimation

of ηA=0,X,γ0 , ηA=1,X,γ1 and θ is possible using, for example, the EM algorithm we

proposed in Section 4.2 of the main text (see details in Section C.3). The proof for

identification of Pr[T2(a) ≤ t|nd] under Assumptions 1 and A.2 is similar.

B Sensitivity analysis without frailty assumptions

As can be seen from the bounds given in Equation (3.11) of the main text, out

of the six probability functions appearing in (3.8)–(3.10), three functions are non-

parametrically identified from the data, Pr[T2(0) ≤ t | ad],Pr[T2(1) ≤ t | nd] and

Pr[T1(0) ≤ t | ad], while the three other functions, Pr[T1(1) ≤ t | ad],Pr[T2(1) ≤

t | ad], and Pr[T2(0) ≤ t | nd], are only partially non-parametrically identified. Using
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Bayes’ theorem, under Assumptions 1–3

Pr[T2(1) ≤ t | ad] = Pr[T1(0) < T2(0)|T2(1) ≤ t]
F2|A=1(t)

ηA=0

, (B.2)

Pr[T1(1) ≤ t | ad] = Pr[T1(0) < T2(0)|T1(1) ≤ t]
F1|A=1(t)

ηA=0

, (B.3)

Pr[T2(0) ≤ t | nd] = Pr[T1(1) > T2(1)|T2(0) ≤ t]
F2|A=0(t)

1− ηA=1

. (B.4)

Focusing temporarily on (B.2), the unidentified component Pr[T1(0) < T2(0)|T2(1) ≤

t] is the proportion of ad out of those who would have died by time t, under A = 1. We

propose the following sensitivity analysis, partially inspired by Shepherd et al. (2007):

let g(t; ξad,T2) = Pr[T1(0) < T2(0)|T2(1) ≤ t] be a working parametric function. One

natural choice is g(t; ξad,T2) = exp(ξad,T20 +ξad,T21 t)/[1+exp(ξad,T20 +ξad,T21 t)]. For a fixed

value of ξad,T21 , ξad,T20 is identified because lim
t→∞

g(t; ξad,T2) = Pr[T1(0) < T2(0)] = ηA=0.

Practically, we can choose a value t̃? representing a time by which nearly all the popu-

lation is expected to have the terminal event. That is, t̃?2 such that Pr[T2(1) > t̃?2] <

ε for some small ε. Then, we set ξad,T20 = logit(ηA=0)−ξad,T21 t̃?2. The analyst can exam-

ine plausible values of ξad,T21 , each gives rise to a different Pr[T1(0) < T2(0)|T2(1) ≤ t],

and hence to different Pr[T1(1) ≤ t | ad]−Pr[T1(0) ≤ t | ad]. By specifying ξad,T21 > 0,

the proportion of ad out of those who would have died under A = 1 increases with t.

This makes sense if one expects that many of those who would have died early, would

have died before experiencing the disease, or if generally speaking, death following

disease diagnosis at a young age does not tend to be immediate. This is probably the

case for AD, which is less likely to be the reason of death for those who died early

(as oppose to, e.g., aggressive cancer tumors), even if they had APOE. ξad,T21 < 0 is

be interpreted in an analogue fashion.

We employ the same strategy in constructing sensitivity analyses for (B.3) and

(B.4). Pr[T1(0) < T2(0)|T1(1) ≤ t] can be understood as the proportion of ad out of

those who would have had AD by time t if they had APOE. Therefore, if we adopt the

working parametric function g(t; ξad,T1) = exp(ξad,T10 +ξad,T11 t)/[1+exp(ξad,T10 +ξad,T11 t)],

then ξad,T10 is identified for a fixed value of ξad,T11 . Here, because not everyone are
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expected to be diagnosed with AD, we can think of a time t̃?1 by which nearly all of

those who would have diagnosed with AD under APOE, would already be diagnosed.

Then, Pr[T1(0) < T2(0)|T1(1) < t̃?1] is approximately the proportion of ad our of those

who would have been diagnosed with AD at some point of their life under APOE, i.e.

πad/(πad + πdh). Therefore, ξad,T10 = logit(ηA=0/ηA=1)− ξad,T21 t̃?2.

Turning to (B.4), Pr[T1(1) > T2(1)|T2(0) ≤ t] is the proportion of nd out of those

who would have died without APOE. If we adopt the working parametric function

g(t; ξnd,T2) = expit(ξnd,T20 + ξnd,T21 t), then ξnd,T20 is identified for a fixed value of ξnd,T21

by ξnd,T20 = logit(1− ηA=1)− ξnd,T21 t̃?1.

C Theory and details on the estimation methods

C.1 Detailed calculations for the nonparametric estimators

We present here the calculations leading to the expressions given in Equations (4.17)–

(4.20) of the main text, that underpin the proposed non-parametric estimation. Let

f2(s|Q) be the probability density function of T2 conditionally on Q, and write

ηA=a,T2≤t =

∫ ∞
0

Pr(T1 ≤ s|A = a, T2 = s, T2 ≤ t)f2(s|A = a, T1 ≤ T2)

= − 1

F2|A=a(t)

∫ t

0

F1|A=a,T2=s(s)dS2|A=a(s)

(C.5)

and using similar arguments,

S1|A=a,T1≤T2(t) =

∫ ∞
0

Pr(T1 > t|A = a, T1 ≤ T2, T2 = s)f2(s|A = a, T1 ≤ T2)ds

= − 1

ηA=a

∫ ∞
t

Pr(T1 > t|A = a, T1 ≤ s, T2 = s) Pr(T1 ≤ s|A = a, T2 = s)dS2|A=a(s)

= − 1

ηA=a

∫ ∞
t

[S1|A=a,T2=s(t)− S1|A=a,T2=s(s)]dS2|A=a(s),

S2|A=a,T1≤T2(t) = 1−
ηA=a,T2≤tF2|A=a

ηA=a
,

S2|A=a,T1>T2(t) = 1−
(1− ηA=a,T2≤t)F2|A=a

1− ηA=a
.
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C.2 Asymptotic properties of the nonparametric estimators

Denote Ŝ2|A=a(t) ≡ Ŝ2|a(t) for the Kaplan-Meier estimator, and F̂1|A=a,T2=s(t) ≡

F̂1|a,s(t) for the proposed Beran (1981) estimator of F1|A=a,T2=s(t). We present a

sketch of the proof for consistency and asymptotic normality of the estimator for the

more complex term ηA=a,T2≤t. That is, for consistency and asymptotic normality of

1

F̂2|a(t)

∫ t

0

F̂1|a,s(s)dŜ2|a(s) (C.6)

for any t ∈ [τ(a), τ(a)], where τ(a) > 0 ensures that F̂2|A=a(t) is bounded away from

zero and τ(a) = inf{t : Pr(min(T2, C) ≤ t|A = a) < 1)} is the standard condition

for KM consistency. In principal, the results below for the smoothed KM estimator

also demand that τ(a) < sup{t : Pr(min{T1, C} > t|A = a, T2 = s) > 0} but this

condition is met automatically in our case, as for any t, among those with T2 = t,

there are always people who died without experiencing the non-terminal event.

Interestingly, the integral
∫ t
0
F̂1|a,s(s)dŜ2|a(s) can be seen as a special case of the

estimator presented in Equation (2.4) in Akritas and Van Keilegom (2003) for a

bivariate distribution function (in the non semi-competing case); this can be seen

by plugging in w(y) = 1 in Equation (2.4) in Akritas and Van Keilegom (2003).

Therefore, consistency and asymptotic normality of
∫ t
0
F̂1|a,s(s)dŜ2|a(s) follow from

the results in Akritas and Van Keilegom (2003).

Consistency and asymptotic normality of the KM estimator F̂2|a(t) is standard

(Andersen et al., 1993). Therefore, consistency of (C.6) follows from Slutzki’s Theo-

rem. Regarding asymptotic normality of (C.6), by Cramér-Wold device we have that

for any t ∈ (τ(a), τ(a)) the joint distribution of

√
n

(
F̂2|A=a(t),

∫ t

0

F̂1|A=a,T2=s(s)dŜ2|A=a(s)

)
is multivariate normal. Therefore, asymptotic normality of (C.6) is obtained by ap-

plying the extended continuous mapping theorem (Theorem 7.24 of Kosorok (2007)).
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0 (Healthy)

1 (Disease)

2 (Death)

λ01(t)

λ02(t)

λ12(t)

Figure C.1: Illustration of the semi-competing risks data

C.3 Details on the semi-parametric model and estimation by

the EM algorithm

C.3.1 EM algorithm

The EM algorithm hinges on the fact that, given Ai, γAi
, i = 1, . . . , n, the six partial

likelihoods for estimating β are given by

n∏
i=1

{
γa exp

(
XT

i β
a
01

)∑n
j=1 I(T̃i1 ≤ T̃j2)I(Aj = a)γa exp

(
XT
j β

a
01

)}δi1I(Ai=a)

, a = 0, 1 ,

n∏
i=1

{
γa exp

(
XT

i β
a
02

)∑n
j=1 I(T̃i1 ≤ T̃j2)I(Aj = a)γa exp

(
XT
j β

a
02

)}(1−δi1)δi2I(Ai=a)

, a = 0, 1 ,

n∏
i=1

{
γa exp

(
XT

i β
a
12

)∑n
j=1 I(T̃j1 ≤ T̃i2 ≤ T̃j2)I(Aj = a)γa exp

(
XT
j β

a
12

)}δi1δi2I(Ai=a)

, a = 0, 1 .

The six respective Breslow-type estimators, given γAi
, i = 1, . . . , n, and βajk are

∆̃Λ0a
01(t) =

∑n
i=1 δi1I(Ai = a)I(T̃i1 = t)∑n

i=1 I(t ≤ T̃i1)I(Ai = a)γa exp
(
XT

i β
a
01

) , a = 0, 1 ,

∆̃Λ0a
02(t) =

∑n
i=1(1− δi1)δi2I(Ai = a)I(T̃i1 = t)∑n

i=1 I(t ≤ T̃i1)I(Ai = a)γa exp
(
XT

i β
a
02

) , a = 0, 1 ,

∆̃Λ0a
12(t) =

∑n
i=1 δi1δi2I(Ai = a)I(T̃i2 = t)∑n

i=1 I(T̃i1 ≤ t ≤ T̃i2)I(Ai = a)γa exp
(
XT

i β
a
12

) a = 0, 1 .
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For the E-step, the posterior expectation of the frailty variate γAi
given the entire

observed data equals to the posterior expectation given participant i observed data,

E (γAi
|Di), is given by

E (γAi
|Dn) =

∫ ∞
0

γAi
f(γAi

|Dn)dγAi

=

∫∞
0
γAi

f(Di|γAi
)fθAi

(γAi
)dγAi∫∞

0
f(Di|γAi

)fθAi
(γAi

)dγAi

=
(−1)δi·+1φ

(δi·+1)
Ai

(si)

(−1)δi·φ
(δi·)
Ai

(si)
,

for i = 1, . . . , n, and where fθa(γa) is the marginal probability density function of γa.

Finally estimation of θa is carried out in each M-step by maximizing the condi-

tional expectation of the log-likelihood of γa, given the observed data and the current

value of the parameters. Denote this function by g(θa), which can be written as

g(θa) =
1

na

n∑
i=1

I(Ai = a)Ê {log fθa(γAi
)|Di,βa,Λa

0}

where na =
∑n

i=1 I(Ai = a), βa = (βaT01 ,β
aT
02 ,β

aT
12 )T , and Λa

0 = (Λ0
01(·|a),Λ0

02(·|a),Λ0
12(·|a))

and Ê is the expectation under the current parameter values. Note that in this case,

θ = (θ0, θ1).

In summary, the following is our proposed estimation procedure. Initial values are

obtained by six standard Cox regression models for estimating β and Λ0 assuming

γAi
= 1, i = 1, . . . , n. Then the following three steps are iterated until convergence is

met.

Step 1. Use current values of β, Λ0, and θ, to get Ê (log γAi
|Di) and Ê (γAi

|Di), i =

1, . . . , n.

Step 2. Estimate β with six separate Cox model analysis, each with covariates X i and

offset terms log Ê (γAi
|Di) (which replaces the unknown γAi

). Estimate Λ0 using

Breslow estimators with log Ê (γAi
|Di). This can be done by coxph package of

R.

Step 3. Estimate θa by maximizing g(θa), a = 0, 1.
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C.3.2 The EM algorithm under Gamma frailty

Arguably the most common choice for the frailty variate distribution is the Gamma

distribution with mean 1 and variance θ. If we assume that γai, i = 1, . . . , n, are

Gamma distributed with mean 1 and variance θa, then Step 1 above is based on

Ê (log γAi
|Di) = Ψ

(
1

θAi

+ δi·

)
− log

(
1

θAi

+ si

)
, i = 1, . . . , n ,

where Ψ(x) = Ψ′(x)/Ψ(x) the digamma function, and

Ê (γAi
|Di) =

θ−1Ai
+ δi·

θ−1Ai
+ si

.

Step 3 is carried out by maximizing

g(θa) =
1

na

n∑
i=1

I(Ai = a)Ê {log fθa(γAi
)|Di}

= − 1

θa
log

(
1

θa

)
+

(
1

θa
− 1

)
1

na

n∑
i=1

I(Ai = a)Ê (log γAi
|Di)

1

θa

1

na

n∑
i=1

I(Ai = a)Ê (γAi
|Di)− log Γ

(
1

θa

)
as a function of θa for a = 0, 1.

D Additional details on the simulation study

We first note that code, simulation scripts, and results are available through our

R package CausalSemiComp and the Github of the first author (Repository name:

CausalSemiCompReproduce)

D.1 Details on the data-generating mechanism

The function SimDataWeibFrail from the R package CausalSemiComp accompanying

this paper was use to simulate data in all simulation studies. In all simulation studies,

potential outcomes {T1(0), T2(0)} and {T1(1), T2(1)} were initially simulated from
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models (4.21) with two covariates: X1 ∼ Ber(0.5) and X2 ∼ N(0, 1), and with

Gamma frailty variables γ0, γ1 and with θ0 = θ1 = θ. Observed data was created

by simulating A, with Pr(A = 1) = 0.5 and determining which pair is potentially

observed, {T1(0), T2(0)} or {T1(1), T2(1)} according to A value. We took Weibull

baseline hazards (see details below), under a parameterization such that for a random

variable V ∼ Weibull(α̃, µ̃), Pr(V > v) = exp[−(v/µ̃)α̃]. For calculating the large-

sample bounds (Figure 1) and the RMST causal effects (Figure 2), no censoring

was applied. True causal effects were calculated by a Monte Carlo simulation with

sample size 107. For the simulation studies, we took administrative censoring at time

100, and additional Exponential censoring time, shared between a = 0, 1, with mean

determined to obtain reported censoring rates.

For the simulations calculating the large-sample bounds and assessing the non-

parametric estimation methods, we made sure that Assumption 3 holds by throwing

out observations and re-simulate whenever a dp observation was simulated. The

estimation procedure for these scenarios was non-parametric, so the fact Model (4.20)

no longer holds with Weibull baseline hazards, due to throwing out observations just

changed the DGM and the estimators were still expected to perform well. The DGM

of Scenario (I) also implies that Assumption 4 holds as we verified from the simulated

data. For the nonparametric simulations, Scenarios (I)–(III), we also re-simulated

the data whenever T2(a) was too large, to avoid heavy tails of the distribution that

are unlikely for realistic data. Table D.1 gives the parameter values for scenarios (I)–

(III), and Figure D.2 presents the resulting cumulative distribution functions within

the different strata. At each figure the difference between the two curves is the true

causal effects portrayed by the solid black line in Figure 1. For Scenarios (II) and

(III), within each stratum the CDF is the same for a = 0, 1 and causal effects are

zero.

For the simulations assessing the semi-parametric estimation methods, data at

each simulation iteration were simulated under model (4.20), with Gamma frailty dis-
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tribution with shared variance parameter θ, and without further restrictions; param-

eter values are given in Table D.2. Censoring time was simulated as described above.

For RMST mean and median causal effects, we considered a target population with

equal percentages (for simplicity) of 18 covariate profiles generated from the cross-

product values of X1 ∈ {0, 1} and X2 ∈ {−2,−1.5,−1, 0, , ..., 2}. Then true effects

were calculated by simulating potential outcomes {T1(0), T2(0)} and {T1(1), T2(1)}

for a population of 108 individuals from this population structure, and RMST ca-

sual effects were calculated simply as the appropriate differences between means and

medians within relevant strata.

ad :  T1 ad :  T2 nd :  T2

S
cenario (I)

S
cenario (II)

S
cenario (III)
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Figure D.2: True stratum-specific CDF of T1(a) and T2(a) for Scenarios (I)–(III). In

Scenarios (II) and (III), CDFs are the same for a = 0 and a = 1.
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Table D.1: Parameter specifications for Scenarios (I)–(III)

Scenario Baseline Shapes Baseline Scales Covariate coefficients Frailty variance and correlation

(I) α̃0
01 = 2 µ̃0

01 = 12.5 β0
01 = (log(0.25), 0)

θ0 = θ1 = 2

(Kendall’s τ=0.5)

ρ = 0.75

α̃0
02 = 2.25 µ̃0

02 = 25 β0
02 = (0, 0)

α̃0
12 = 1.5 µ̃0

12 = 25 β0
12 = (0, 0)

α̃1
01 = 3 µ̃1

01 = 10 β1
01 = (0, 0)

α̃1
02 = 1.5 µ̃1

02 = 17.5 β1
02 = (0, 0)

α̃1
12 = 2.5 µ̃1

12 = 20 β1
12 = (0, 0)

(II) α̃0
01 = 3 µ̃0

01 = 20 β0
01 = (0, 0)

θ0 = θ1 = 2/3

(Kendall’s τ = 0.25)

ρ = 0

α̃0
02 = 1.5 µ̃0

02 = 15 β0
02 = (0, 0)

α̃0
12 = 2.75 µ̃0

12 = 25 β0
12 = (0, 0)

α̃1
01 = 3 µ̃1

01 = 20 β1
01 = (0, 0)

α̃1
02 = 1.5 µ̃1

02 = 15 β1
02 = (0, 0)

α̃1
12 = 2.75 µ̃1

12 = 25 β1
12 = (0, 0)

(III) α̃0
01 = 2 µ̃0

01 = 7.5 β0
01 = (0, 0)

θ0 = θ1 = 2/3

(Kendall’s τ = 0.25)

ρ = 0

α̃0
02 = 1.75 µ̃0

02 = 15 β0
02 = (0, 0)

α̃0
12 = 2.5 µ̃0

12 = 20 β0
12 = (0, 0)

α̃1
01 = 2 µ̃1

01 = 7.5 β1
01 = (0, 0)

α̃1
02 = 1.75 µ̃1

02 = 15 β1
02 = (0, 0)

α̃1
12 = 2.5 µ̃1

12 = 20 β1
12 = (0, 0)
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Table D.2: Parameter specifications for Scenarios (I)–(III)

Scenario Baseline Shapes Baseline Scales Covariate coefficients Frailty variance and correlation

(IV) α̃0
01 = 2/5 µ̃0

01 = 4 β0
01 = (log(0.25), log(3))

Sub scenarios: θ0 = θ1 = 2/3, 1, 2

(Kendall’s τ = 1/4, 1/3, 1/2)

Variety of ρ ∈ [0, 1]

α̃0
02 = 2 µ̃0

02 = 5 β0
02 = (log(0.75), log(1.5))

α̃0
12 = 2.5 µ̃0

12 = 15 β0
12 = (0, log(2))

α̃1
01 = 2.5 µ̃1

01 = 2 β1
01 = (0, 0)

α̃1
02 = 2 µ̃1

02 = 3 β1
02 = (log(0.75), log(1.5))

α̃1
12 = 2.5 µ̃1

12 = 10 β1
12 = (log(0.5), log(2))
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D.2 Details on the different analyses

D.2.1 Non-parametric simulations

The non-parametric estimation was carried out for each simulation iteration as de-

scribed in Section 4.1 of the main text. That is, first the standard KM estimator

was calculated for S2|A=a(t) at each intervention group a = 0, 1. Then, the smoothed

KM estimator (Beran, 1981) was calculated for S1|A=a,T2=s(t), within each interven-

tion group a = 0, 1, and for all s values for which terminal events were observed

at each group. This was done using our new R package, CausalSemiComp that uti-

lize the prodlim package (Gerds, 2019) for calculating the smoothed KM estimator.

Then, estimators Ŝ1|A=a(t), η̂A=a, η̂A=a,T2≤t, Ŝ2|A=a,T1≤T2(t) and Ŝ2|A=a,T1>T2(t), were

obtained by plugging-in the KM and the smoothed KM estimators into Equations

(4.14)–(4.19). Standard errors were estimated using bootstrap with 100 repetitions,

and Wald-type 95% confidence intervals were then calculated.

D.2.2 Semi-parametric simulations

For each dataset, we first estimated the statistical parameters ψ using the EM algo-

rithm we proposed to use. A single θ̂ was taken as the mean of the θ̂0 and θ̂1 obtained

through the EM estimation. The RMST causal effects were then estimated using a

Monte Carlo estimation that, using the obtained ψ̂, simulated data of sample size

180,000 as follows:

1. For each value of X in the target population, simulate 100 γ values using θ̂,

assuming ρ is known.

2. For each of the obtained γ, calculate the six hazard functions (three under each a

value) using the X profile, the simulated γ, and the parameters β and Λ0.

3. For each of the 100 values (perX), simulate 100 quadruplets {T1(0), T2(0), T1(1), T2(1)}.
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These three steps result in population of size 18 × 100 × 100. Then RMST effects

are estimated by calculating difference between means and medians as appropriate

within relevant strata. The choice to have 100 repetitions of each form (γ per X and

Potential outcomes given γ,X) was made arbitrarily, and only minor reduction in

the standard error was observed when we increased these numbers to 250.

Standard errors for both the statistical parameters and the causal effects were esti-

mated using bootstrap with 100 repetitions, and Wald-type 95% confidence intervals

were then calculated.

D.3 Simulation results

We present in this section results for the non-parametric and semi-parametric estima-

tion methods. For the non-parameteric estimators, the following results are presented.

• For the non-parametric estimators, Table D.3 present results for the estimation

of ηA=a, S1|A=a(10), S1|A=a(30) under Scenarios (I)–(III), negligible bias was ob-

served, standard errors were well-estimated and the confidence intervals exhib-

ited good empirical coverage rate.

• Tables D.4 and D.5 presents the performance of estimators for ηA=a,T2≤t and

SA=a,T1≤T2(t) for A = 0, 1 and t = 10, 20 for Scenarios (I), (II) (Table D.4),

and (III) D.5. Bias was small, standard errors were well-estimated and were

increased when censoring was more substantial. Empirical coverage rate by

the confidence intervals was generally good. When the true probabilities were

very small, finite sample bias was observed and decreased coverage rate; these

phenomenons are expected to disappear for larger sample size.

For the semi-parametric estimation method, the following results are presented.

• Tables D.6, D.7 and D.8 present the results for ρ = 0, 0.5, 1. Note, in all

these analyses ρ was assumed to be known, as the goal was to focus on the
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statistical properties of the estimation method. In all three tables it can be

seen that minimal bias was observed, the standard errors were well-estimated,

and empirical coverage rate was satisfactory.

• Tables D.9 and D.10 present the performance of β0 and β1 estimators, respec-

tively, for different θ values and censoring rates, for ρ = 0.5. For all individual

entries of β and for all scenarios, bias was negligible, standard errors were well-

estimated and the empirical coverage rate was close to the desirable 95%.

• Tables D.11, D.12 and D.13 present the performance of Λ̂0,a
01 (t), Λ̂0,a

02 (t), and

Λ̂0,a
12 (t), respectively, each for a = 0, 1. Results are presented for different θ

values and censoring rates, under for ρ = 0.5. The values for t in each table

were chosen to obtain a range of values for the different baseline hazards - with-

out having extremely small or extremely large values. Generally, the baseline

hazards were well-estimated with minimal finite-sample bias. Standard errors

were well estimated and empirical coverage of the confidence intervals was as

desired.

• Table D.14 reports the performance of the frailty variance estimator θ̂ for differ-

ent θ and ρ values, and for different censoring rates. Minimal bias was observed,

which is expected to disappear for larger sample size. Standard errors were well

estimated, and empirical coverage rate was only slightly below the desired 95%

level.
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Table D.3: Performance of the proposed non-parametric estimators. Censoring rates considered

were low (10%, C-L) and moderate (30%, C-M). True: True parameter values; Mean.EST: mean

estimate; EMP.SD: empirical standard deviation of the estimates; EST.SE: mean estimated standard

error; CP95%: empirical coverage rate of 95% confidence interval.

ηA=0 ηA=1 S1|A=0(10) S1|A=0(30) S1|A=1(10) S1|A=1(30)

C-L C-M C-L C-M C-L C-M C-L C-M C-L C-M C-L C-M

Scenario (I)

True 0.491 0.848 0.748 0.523 0.481 0.158

Mean.EST 0.491 0.492 0.845 0.844 0.749 0.748 0.524 0.523 0.479 0.476 0.159 0.159

EMP.SD 0.016 0.020 0.011 0.012 0.014 0.016 0.016 0.020 0.017 0.019 0.012 0.012

EST.SE 0.017 0.019 0.011 0.012 0.014 0.017 0.017 0.019 0.017 0.019 0.011 0.012

CP95% 0.946 0.944 0.951 0.948 0.950 0.949 0.945 0.940 0.953 0.942 0.944 0.951

Scenario (II)

True 0.144 0.431 0.968 0.867 0.604 0.158

Mean.EST 0.146 0.145 0.429 0.426 0.968 0.967 0.865 0.866 0.904 0.903 0.601 0.599

EMP.SD 0.012 0.015 0.016 0.018 0.006 0.007 0.012 0.014 0.010 0.012 0.016 0.019

EST.SE 0.012 0.015 0.016 0.019 0.006 0.007 0.012 0.015 0.010 0.013 0.016 0.019

CP95% 0.945 0.946 0.938 0.937 0.939 0.942 0.943 0.949 0.953 0.956 0.945 0.941

Scenario (III)

True 0.726 0.938 0.440 0.278 0.277 0.067

Mean.EST 0.729 0.728 0.935 0.934 0.435 0.433 0.274 0.274 0.274 0.271 0.068 0.068

EMP.SD 0.014 0.015 0.007 0.008 0.017 0.019 0.014 0.015 0.015 0.018 0.007 0.008

EST.SE 0.015 0.015 0.007 0.008 0.017 0.019 0.015 0.015 0.015 0.018 0.007 0.008

CP95% 0.936 0.943 0.942 0.930 0.934 0.929 0.931 0.937 0.931 0.928 0.943 0.938
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E Additional information on the illustrative data

analysis

E.1 Details on the semi-parametric analysis

For each dataset, we first estimated the statistical parameters ψ using the EM algo-

rithm we proposed to use. A single θ̂ was taken as the weighted mean of the θ̂0 and θ̂1

obtained through the EM estimation. The RMST causal effects were then estimated

using a Monte Carlo estimation that, using the obtained ψ̂, simulated 180,000 people

as follows:

1. For each value of X in the target population, simulate 100 γ values using θ̂,

assuming ρ is known.

2. For each of the obtained γ, calculate the six hazard functions (three under each a

value) using the X profile, the simulated γ, and the parameters β and Λ0.

3. For each of the 100 values (perX), simulate 100 the quadruple {T1(0), T2(0), T1(1), T2(1)}.

These three steps result in population of size 18 × 100 × 100. Then RMST effects

are estimated by calculating difference between means and medians as appropiate

within relevant strata. The choice to have 100 repetitions of each form (γ per X and

Potential outcomes given γ,X) was made arbitrarily, and only minor reduction in

the standard error was observed when we increased these numbers to 250.

E.2 Additional results
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Table D.4: Performance of the proposed nonparametric estimator of different components under

Scenarios (I) and (II). True: True parameter values; Mean.EST: mean estimate; EMP.SD: empirical

standard deviation of the estimates; EST.SE: mean estimated standard error; CP95%: empirical

coverage rate of 95% confidence interval.

ηA=0,T2≤t ηA=1,T2≤t SA=0,T1≤T2(t) SA=1,T1≤T2(t)

t = 10 t = 20 t = 10 t = 20 t = 10 t = 20 t = 10 t = 20

Scenario (I)

True 0.286 0.393 0.423 0.744 0.489 0.139 0.388 0.056

Low censoring (10%)

Mean.EST 0.272 0.389 0.426 0.742 0.489 0.139 0.383 0.051

EMP.SD 0.028 0.021 0.030 0.018 0.023 0.016 0.017 0.008

EST.SE 0.027 0.021 0.031 0.018 0.024 0.017 0.018 0.008

CP95% 0.909 0.947 0.955 0.951 0.962 0.955 0.942 0.888

Moderate censoring (30%)

Mean.EST 0.274 0.389 0.425 0.742 0.488 0.138 0.380 0.048

EMP.SD 0.029 0.022 0.032 0.019 0.027 0.021 0.020 0.010

EST.SE 0.029 0.022 0.033 0.019 0.028 0.021 0.021 0.010

CP95% 0.918 0.945 0.954 0.956 0.956 0.946 0.934 0.835

Scenario (II)

True 0.004 0.038 0.017 0.149 0.780 0.318 0.780 0.318

Low censoring (10%)

Mean.EST 0.004 0.041 0.019 0.153 0.780 0.316 0.776 0.306

EMP.SD 0.003 0.007 0.006 0.014 0.038 0.042 0.022 0.024

EST.SE 0.002 0.006 0.006 0.014 0.038 0.043 0.022 0.025

CP95% 0.859 0.948 0.955 0.945 0.936 0.948 0.947 0.916

Moderate censoring (30%)

Mean.EST 0.004 0.041 0.019 0.153 0.780 0.316 0.776 0.306

EMP.SD 0.003 0.007 0.006 0.014 0.038 0.042 0.022 0.024

EST.SE 0.002 0.006 0.006 0.014 0.038 0.043 0.022 0.025

CP95% 0.859 0.948 0.955 0.945 0.936 0.948 0.947 0.916
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Table D.5: Performance of the proposed nonparametric estimator of different components under

Scenarios (I) and (II). True: True parameter values; Mean.EST: mean estimate; EMP.SD: empirical

standard deviation of the estimates; EST.SE: mean estimated standard error; CP95%: empirical

coverage rate of 95% confidence interval.

ηA=0,T2≤t ηA=1,T2≤t SA=0,T1≤T2
(t) SA=1,T1≤T2

(t)

t = 10 t = 20 t = 10 t = 20 t = 10 t = 20 t = 10 t = 20

Scenario (III)

True 0.277 0.589 0.686 0.891 0.229 0.034 0.229 0.034

Low censoring (10%)

Mean.EST 0.291 0.595 0.685 0.889 0.225 0.031 0.224 0.031

EMP.SD 0.025 0.020 0.033 0.012 0.017 0.007 0.015 0.006

EST.SE 0.025 0.020 0.032 0.012 0.017 0.007 0.015 0.006

CP95% 0.926 0.934 0.939 0.953 0.928 0.878 0.909 0.873

Moderate censoring (30%)

Mean.EST 0.290 0.594 0.685 0.889 0.221 0.028 0.220 0.028

EMP.SD 0.026 0.021 0.035 0.013 0.020 0.008 0.018 0.008

EST.SE 0.026 0.021 0.034 0.013 0.020 0.008 0.018 0.007

CP95% 0.934 0.936 0.942 0.935 0.922 0.838 0.910 0.814
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Table D.6: Performance of the semi-parametric estimators under Scenario (IV) with ρ = 0.5,

under low (5%, C-L) and moderate (25%, C-M) censoring rates for T2. Censoring rates for T1 were

35-40%. The presented effects are (2.4), (2.5) and (2.7) (ATE) and their median versions (MTE).

True: True parameter values; Mean.EST: mean estimate; EMP.SD: empirical standard deviation

of the estimates; EST.SE: mean estimated standard error; CP95%: empirical coverage rate of 95%

confidence interval.

T1|ad T2|ad T2|nd

ATE MTE ATE MTE ATE MTE

C-L C-M C-L C-M C-L C-M C-L C-M C-L C-M C-L C-M

θ = 2/3

True -1.16 -0.67 -3.95 -7.17 -2.18 -1.44

Mean.EST -1.20 -1.21 -0.68 -0.68 -3.94 -3.95 -6.96 -6.93 -2.18 -2.18 -1.45 -1.45

EMP.SD 0.19 0.19 0.18 0.18 0.39 0.42 0.65 0.72 0.27 0.30 0.23 0.25

EST.SE 0.18 0.19 0.18 0.19 0.40 0.43 0.65 0.72 0.27 0.29 0.24 0.25

CP95% 0.94 0.94 0.94 0.95 0.95 0.95 0.96 0.93 0.95 0.93 0.95 0.94

θ = 1

True -1.15 -0.71 -3.65 -6.83 -2.42 -1.58

Mean.EST -1.20 -1.20 -0.73 -0.73 -3.66 -3.68 -6.72 -6.69 -2.42 -2.44 -1.59 -1.61

EMP.SD 0.20 0.22 0.19 0.20 0.42 0.45 0.58 0.64 0.32 0.35 0.26 0.27

EST.SE 0.20 0.22 0.20 0.21 0.41 0.45 0.61 0.67 0.34 0.36 0.27 0.28

CP95% 0.96 0.93 0.96 0.95 0.93 0.95 0.98 0.97 0.96 0.95 0.96 0.95

θ = 2

True -1.01 -0.78 -3.09 -5.60 -2.23 -2.71

Mean.EST -1.02 -1.04 -0.78 -0.80 -3.07 -3.06 -5.59 -5.55 -2.31 -2.30 -2.78 -2.74

EMP.SD 0.25 0.26 0.25 0.25 0.42 0.47 0.67 0.71 0.48 0.51 0.51 0.54

EST.SE 0.25 0.27 0.25 0.26 0.44 0.46 0.69 0.74 0.48 0.54 0.54 0.58

CP95% 0.95 0.96 0.94 0.95 0.95 0.94 0.95 0.95 0.95 0.96 0.96 0.96
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Table D.7: Performance of the semi-parametric estimator for RMST causal effects under Scenario

(IV) with ρ = 0, for different frailty variance (θ) values and under low (5%, C-L) and moderate (25%,

C-M) censoring rates for T2. Censoring rates for T1 were 35-40%. The presented effects are (2.4),

(2.5) and (2.7) (ATE) and their median versions (MTE). True: True parameter values; Mean.EST:

mean estimate; EMP.SD: empirical standard deviation of the estimates; EST.SE: mean estimated

standard error; CP95%: empirical coverage rate of 95% confidence interval.

T1|ad T2|ad T2|nd

ATE MTE ATE MTE ATE MTE

C-L C-M C-L C-M C-L C-M C-L C-M C-L C-M C-L C-M

θ = 2/3

True -1.15 -0.65 -3.95 -7.08 -2.28 -1.50

Mean.EST -1.19 -1.19 -0.67 -0.67 -3.94 -3.96 -6.92 -6.91 -2.24 -2.24 -1.49 -1.50

EMP.SD 0.18 0.20 0.17 0.18 0.39 0.43 0.68 0.72 0.30 0.31 0.25 0.26

EST.SE 0.18 0.19 0.18 0.19 0.40 0.44 0.68 0.74 0.30 0.32 0.25 0.26

CP95% 0.95 0.92 0.93 0.93 0.96 0.95 0.94 0.96 0.94 0.94 0.95 0.94

θ = 1

True -1.11 -0.69 -3.63 -6.89 -2.58 -1.67

Mean.EST -1.16 -1.20 -0.70 -0.72 -3.63 -3.66 -6.72 -6.72 -2.56 -2.50 -1.69 -1.66

EMP.SD 0.20 0.21 0.19 0.20 0.41 0.45 0.56 0.66 0.39 0.42 0.29 0.31

EST.SE 0.21 0.21 0.20 0.20 0.42 0.45 0.63 0.69 0.38 0.41 0.29 0.30

CP95% 0.95 0.94 0.93 0.91 0.96 0.95 0.97 0.97 0.94 0.94 0.94 0.93

θ = 2

True -0.90 -0.72 -3.01 -5.55 -2.48 -2.68

Mean.EST -0.91 -0.94 -0.72 -0.74 -2.98 -2.98 -5.51 -5.51 -2.53 -2.54 -2.73 -2.69

EMP.SD 0.24 0.26 0.25 0.26 0.44 0.48 0.67 0.74 0.62 0.65 0.53 0.53

EST.SE 0.25 0.26 0.25 0.25 0.44 0.47 0.71 0.75 0.59 0.66 0.54 0.58

CP95% 0.95 0.94 0.94 0.93 0.93 0.95 0.96 0.95 0.93 0.94 0.95 0.94
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Table D.8: Performance of the semi-parametric estimator for RMST causal effects under Scenario

(IV) with ρ = 1, for different frailty variance (θ) values and under low (5%, C-L) and moderate (25%,

C-M) censoring rates for T2. Censoring rates for T1 were 35-40%. The presented effects are (2.4),

(2.5) and (2.7) (ATE) and their median versions (MTE). True: True parameter values; Mean.EST:

mean estimate; EMP.SD: empirical standard deviation of the estimates; EST.SE: mean estimated

standard error; CP95%: empirical coverage rate of 95% confidence interval.

T1|ad T2|ad T2|nd

ATE MTE ATE MTE ATE MTE

C-L C-M C-L C-M C-L C-M C-L C-M C-L C-M C-L C-M

θ = 2/3

True -1.19 -0.68 -3.95 -7.27 -2.04 -1.38

Mean.EST -1.21 -1.23 -0.69 -0.70 -3.96 -3.93 -6.98 -6.90 -2.13 -2.14 -1.42 -1.41

EMP.SD 0.18 0.19 0.18 0.18 0.39 0.44 0.62 0.71 0.26 0.28 0.23 0.24

EST.SE 0.18 0.19 0.18 0.19 0.39 0.43 0.63 0.71 0.25 0.27 0.23 0.24

CP95% 0.95 0.95 0.95 0.95 0.95 0.95 0.94 0.94 0.93 0.94 0.93 0.95

θ = 1

True -1.23 -0.75 -3.68 -6.76 -2.14 -1.49

Mean.EST -1.27 -1.27 -0.78 -0.77 -3.65 -3.67 -6.67 -6.66 -2.25 -2.30 -1.53 -1.55

EMP.SD 0.21 0.22 0.20 0.21 0.40 0.45 0.54 0.62 0.31 0.33 0.26 0.27

EST.SE 0.21 0.22 0.20 0.21 0.40 0.44 0.60 0.66 0.30 0.33 0.26 0.27

CP95% 0.94 0.94 0.95 0.94 0.95 0.94 0.96 0.97 0.93 0.92 0.95 0.94

θ = 2

True -1.21 -0.87 -3.18 -5.53 -1.73 -3.43

Mean.EST -1.24 -1.22 -0.89 -0.88 -3.18 -3.16 -5.54 -5.52 -1.78 -1.82 -3.54 -3.55

EMP.SD 0.28 0.29 0.26 0.25 0.42 0.47 0.67 0.74 0.31 0.36 0.95 1.03

EST.SE 0.28 0.30 0.26 0.27 0.43 0.46 0.70 0.75 0.34 0.43 1.06 1.13

CP95% 0.95 0.95 0.96 0.96 0.96 0.96 0.95 0.95 0.96 0.96 0.96 0.96
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Table D.9: Performance of the semi-parametric estimator for β0 under Scenario (IV) with ρ = 0.5,

for different frailty variance (θ) values and under low (5%, C-L) and moderate (25%, C-M) censoring

rates for T2. Censoring rates for T1 were 35-40%. True: True parameter values; Mean.EST: mean

estimate; EMP.SD: empirical standard deviation of the estimates; EST.SE: mean estimated standard

error; CP95%: empirical coverage rate of 95% confidence interval.

β0
01,1 β0

01,2 β0
02,1 β0

02,2 β0
12,1 β0

12,2

C-L C-M C-L C-M C-L C-M C-L C-M C-L C-M C-L C-M

True -1.39 1.10 -0.29 0.41 0.00 0.00

θ = 2/3

Mean.EST -1.38 -1.38 1.09 1.09 -0.27 -0.28 0.40 0.40 0.00 0.00 0.00 0.00

EMP.SD 0.13 0.13 0.07 0.07 0.12 0.13 0.06 0.07 0.13 0.15 0.07 0.08

EST.SE 0.13 0.13 0.07 0.08 0.12 0.13 0.07 0.07 0.13 0.15 0.07 0.08

CP95% 0.94 0.94 0.96 0.96 0.94 0.94 0.96 0.95 0.94 0.94 0.96 0.93

θ = 1

Mean.EST -1.38 -1.38 1.09 1.09 -0.28 -0.27 0.40 0.39 0.00 0.00 0.00 0.00

EMP.SD 0.14 0.14 0.07 0.08 0.13 0.13 0.07 0.07 0.15 0.16 0.07 0.08

EST.SE 0.14 0.14 0.08 0.08 0.13 0.14 0.07 0.07 0.14 0.17 0.07 0.08

CP95% 0.94 0.96 0.96 0.95 0.94 0.95 0.94 0.96 0.94 0.94 0.95 0.96

θ = 2

Mean.EST -1.38 -1.38 1.09 1.09 -0.28 -0.28 0.40 0.39 -0.02 -0.01 0.01 0.00

EMP.SD 0.16 0.16 0.09 0.09 0.15 0.15 0.08 0.08 0.17 0.18 0.09 0.10

EST.SE 0.16 0.17 0.09 0.09 0.15 0.16 0.08 0.08 0.17 0.19 0.09 0.09

CP95% 0.94 0.96 0.94 0.94 0.95 0.95 0.94 0.94 0.94 0.96 0.94 0.94
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Table D.10: Performance of the semi-parametric estimator for β1 under Scenario (IV) with ρ = 0.5,

for different frailty variance (θ) values and under low (5%, C-L) and moderate (25%, C-M) censoring

rates for T2. Censoring rates for T1 were 35-40%. True: True parameter values; Mean.EST: mean

estimate; EMP.SD: empirical standard deviation of the estimates; EST.SE: mean estimated standard

error; CP95%: empirical coverage rate of 95% confidence interval.

β1
01,1 β1

01,2 β1
02,1 β1

02,2 β1
12,1 β1

12,2

C-L C-M C-L C-M C-L C-M C-L C-M C-L C-M C-L C-M

True 0.00 0.69 -0.29 0.41 -0.69 0.69

θ = 2/3

Mean.EST 0.00 0.00 0.69 0.69 -0.28 -0.29 0.41 0.40 -0.68 -0.69 0.69 0.69

EMP.SD 0.10 0.10 0.06 0.06 0.14 0.15 0.08 0.08 0.11 0.13 0.06 0.07

EST.SE 0.10 0.11 0.06 0.06 0.14 0.15 0.08 0.08 0.11 0.12 0.06 0.07

CP95% 0.95 0.95 0.96 0.94 0.95 0.94 0.95 0.94 0.94 0.95 0.94 0.96

θ = 1

Mean.EST 0.00 0.00 0.69 0.69 -0.29 -0.29 0.40 0.40 -0.69 -0.69 0.69 0.69

EMP.SD 0.11 0.12 0.06 0.06 0.15 0.15 0.08 0.08 0.12 0.13 0.07 0.07

EST.SE 0.11 0.12 0.06 0.06 0.15 0.15 0.08 0.08 0.12 0.13 0.07 0.07

CP95% 0.94 0.94 0.96 0.94 0.95 0.96 0.94 0.95 0.95 0.96 0.95 0.95

θ = 2

Mean.EST 0.00 0.00 0.69 0.69 -0.29 -0.29 0.40 0.40 -0.69 -0.68 0.69 0.69

EMP.SD 0.14 0.14 0.07 0.07 0.17 0.17 0.09 0.09 0.14 0.16 0.07 0.08

EST.SE 0.14 0.14 0.07 0.08 0.17 0.18 0.09 0.09 0.15 0.16 0.08 0.08

CP95% 0.96 0.95 0.95 0.95 0.96 0.96 0.95 0.95 0.96 0.95 0.95 0.95
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Table D.11: Performance of the semi-parametric estimator for Λ0,a
01 (t) under Scenario (IV) with

ρ = 0.5, for different frailty variance (θ) values and under low (5%, C-L) and moderate (25%, C-M)

censoring rates for T2. Censoring rates for T1 were 35-40%. True: True parameter values; Mean.EST:

mean estimate; EMP.SD: empirical standard deviation of the estimates; EST.SE: mean estimated

standard error; CP95%: empirical coverage rate of 95% confidence interval.

Λ0,0
01 (2) Λ0,0

01 (3) Λ0,0
01 (4) Λ0,1

01 (2) Λ0,1
01 (3) Λ0,1

01 (4)

C-L C-M C-L C-M C-L C-M C-L C-M C-L C-M C-L C-M

True 0.18 0.49 1.00 1.00 2.76 5.66

θ = 2/3

Mean.EST 0.17 0.18 0.48 0.48 0.98 0.98 0.99 0.99 2.72 2.73 5.55 5.59

EMP.SD 0.02 0.02 0.05 0.05 0.11 0.11 0.09 0.09 0.31 0.33 0.77 0.86

EST.SE 0.02 0.02 0.05 0.05 0.11 0.12 0.09 0.10 0.31 0.34 0.81 0.91

CP95% 0.93 0.95 0.93 0.94 0.94 0.93 0.94 0.94 0.93 0.93 0.94 0.94

θ = 1

Mean.EST 0.18 0.17 0.48 0.48 0.98 0.98 0.99 0.99 2.72 2.71 5.59 5.54

EMP.SD 0.02 0.02 0.05 0.05 0.11 0.12 0.10 0.11 0.33 0.35 0.82 0.88

EST.SE 0.02 0.02 0.05 0.06 0.12 0.13 0.10 0.10 0.33 0.36 0.83 0.92

CP95% 0.93 0.94 0.94 0.94 0.94 0.93 0.94 0.93 0.94 0.92 0.92 0.92

θ = 2

Mean.EST 0.18 0.18 0.48 0.48 0.98 0.98 0.99 0.99 2.72 2.71 5.58 5.54

EMP.SD 0.02 0.03 0.06 0.07 0.13 0.15 0.12 0.12 0.38 0.39 0.88 0.92

EST.SE 0.02 0.03 0.06 0.07 0.14 0.15 0.12 0.13 0.39 0.41 0.91 0.99

CP95% 0.96 0.93 0.94 0.94 0.93 0.93 0.93 0.94 0.94 0.93 0.94 0.93
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Table D.12: Performance of the semi-parametric estimator for Λ0,a
02 (t) under Scenario (IV) with

ρ = 0.5, for different frailty variance (θ) values and under low (5%, C-L) and moderate (25%, C-M)

censoring rates for T2. Censoring rates for T1 were 35-40%. True: True parameter values; Mean.EST:

mean estimate; EMP.SD: empirical standard deviation of the estimates; EST.SE: mean estimated

standard error; CP95%: empirical coverage rate of 95% confidence interval.

Λ0,0
02 (2) Λ0,0

02 (3) Λ0,0
02 (4) Λ0,1

02 (2) Λ0,1
02 (3) Λ0,1

02 (4)

C-L C-M C-L C-M C-L C-M C-L C-M C-L C-M C-L C-M

True 0.16 0.36 0.64 0.44 1.00 1.78

θ = 2/3

Mean.EST 0.16 0.16 0.35 0.36 0.63 0.63 0.44 0.44 0.99 0.99 1.74 1.76

EMP.SD 0.02 0.02 0.04 0.04 0.07 0.07 0.05 0.05 0.13 0.14 0.29 0.33

EST.SE 0.95 0.94 0.94 0.94 0.92 0.95 0.93 0.94 0.94 0.93 0.92 0.92

CP95% 0.95 0.95 0.96 0.94 0.95 0.94 0.95 0.94 0.94 0.95 0.94 0.96

θ = 1

Mean.EST 0.16 0.16 0.35 0.35 0.63 0.62 0.44 0.44 0.99 0.99 1.78 1.74

EMP.SD 0.02 0.02 0.04 0.04 0.07 0.08 0.05 0.06 0.14 0.15 0.31 0.32

EST.SE 0.02 0.02 0.04 0.04 0.07 0.08 0.06 0.06 0.15 0.15 0.32 0.33

CP95% 0.94 0.94 0.94 0.94 0.93 0.93 0.94 0.94 0.95 0.94 0.94 0.92

θ = 2

Mean.EST 0.16 0.16 0.35 0.35 0.63 0.63 0.44 0.44 0.99 0.98 1.75 1.74

EMP.SD 0.02 0.02 0.05 0.05 0.09 0.09 0.06 0.06 0.16 0.16 0.33 0.33

EST.SE 0.02 0.02 0.05 0.05 0.09 0.09 0.06 0.06 0.16 0.16 0.33 0.33

CP95% 0.93 0.95 0.94 0.94 0.93 0.93 0.94 0.94 0.93 0.93 0.92 0.93
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Table D.13: Performance of the semi-parametric estimator for Λ0,a
12 (t) under Scenario (IV) with

ρ = 0.5, for different frailty variance (θ) values and under low (5%, C-L) and moderate (25%, C-M)

censoring rates for T2. Censoring rates for T1 were 35-40%. True: True parameter values; Mean.EST:

mean estimate; EMP.SD: empirical standard deviation of the estimates; EST.SE: mean estimated

standard error; CP95%: empirical coverage rate of 95% confidence interval.

Λ0,0
12 (8) Λ0,0

02 (12) Λ0,0
02 (16) Λ0,1

12 (8) Λ0,1
02 (12) Λ0,1

02 (16)

C-L C-M C-L C-M C-L C-M C-L C-M C-L C-M C-L C-M

True 0.21 0.57 1.18 0.57 1.58 3.24

θ = 2/3

Mean.EST 0.21 0.21 0.57 0.57 1.16 1.16 0.57 0.57 1.56 1.57 3.19 3.21

EMP.SD 0.03 0.03 0.06 0.06 0.12 0.13 0.06 0.06 0.15 0.17 0.34 0.40

EST.SE 0.03 0.03 0.06 0.07 0.12 0.14 0.05 0.06 0.15 0.17 0.35 0.41

CP95% 0.94 0.95 0.95 0.95 0.94 0.93 0.93 0.94 0.94 0.94 0.94 0.94

θ = 1

Mean.EST 0.21 0.21 0.57 0.56 1.16 1.15 0.57 0.57 1.57 1.56 3.21 3.20

EMP.SD 0.03 0.03 0.06 0.07 0.13 0.14 0.06 0.06 0.16 0.18 0.38 0.41

EST.SE 0.03 0.03 0.07 0.07 0.13 0.15 0.06 0.06 0.17 0.18 0.39 0.43

CP95% 0.94 0.94 0.93 0.93 0.93 0.94 0.94 0.95 0.94 0.95 0.94 0.94

θ = 2

Mean.EST 0.21 0.21 0.57 0.57 1.16 1.17 0.57 0.56 1.57 1.55 3.20 3.18

EMP.SD 0.03 0.04 0.08 0.08 0.16 0.17 0.07 0.07 0.19 0.21 0.42 0.47

EST.SE 0.03 0.04 0.08 0.08 0.16 0.18 0.07 0.07 0.20 0.22 0.45 0.49

CP95% 0.94 0.94 0.93 0.94 0.93 0.94 0.94 0.95 0.95 0.94 0.95 0.94
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Table D.14: Performance of the semi-parametric estimator for the frailty variance θ under Scenario

(IV) for different ρ and θ values, and under low (5%, C-L) and moderate (25%, C-M) censoring

rates of T2. The presented effects are (2.4), (2.5) and (2.7) (ATE) and their median versions (MTE).

True: True parameter values; Mean.EST: mean estimate; EMP.SD: empirical standard deviation

of the estimates; EST.SE: mean estimated standard error; CP95%: empirical coverage rate of 95%

confidence interval.

ρ = 0 ρ = 0.5 ρ = 1

C-L C-M C-L C-M C-L C-M

θ = 2/3

Mean.EST 0.64 0.64 0.64 0.64 0.64 0.64

EMP.SD 0.06 0.07 0.06 0.06 0.05 0.06

EST.SE 0.06 0.06 0.06 0.06 0.06 0.06

CP95% 0.91 0.90 0.91 0.93 0.92 0.91

θ = 1

Mean.EST 0.97 0.96 0.97 0.96 0.97 0.96

EMP.SD 0.07 0.08 0.07 0.08 0.07 0.08

EST.SE 0.07 0.08 0.07 0.08 0.07 0.08

CP95% 0.90 0.92 0.92 0.91 0.92 0.92

θ = 2

Mean.EST 1.95 1.93 1.95 1.94 1.95 1.94

EMP.SD 0.11 0.12 0.11 0.12 0.11 0.12

EST.SE 0.11 0.12 0.11 0.12 0.11 0.12

CP95% 0.91 0.91 0.91 0.92 0.92 0.91
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Table E.15: Estimated exp(β) and associated confidence intervals in the ACT dataset.

a = 0 a = 1

Healthy → AD

White race 1.01 (0.77, 1.32) 0.93 (0.76, 1.13)

Female 0.93 (0.72, 1.2) 0.99 (0.82, 1.2)

Healthy → Death

White race 1.08 (0.83, 1.39) 0.72 (0.58, 0.88)

Gender 0.63 (0.55, 0.73) 0.67 (0.6, 0.75)

AD → Death

White race 1.32 (1.13, 1.55) 1.36 (1.21, 1.52)

Female 0.81 (0.69, 0.94) 0.75 (0.68, 0.83)
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