Supplemental Online Content

Handley KF, Sims TT, Bateman NW, et al. Classification of high-grade serous ovarian cancer using tumor morphologic characteristics. *JAMA Netw Open*. 2022;5(10):e2236626. doi:10.1001/jamanetworkopen.2022.36626

eMethods.

eTable 1. Baseline Patient Characteristics

eTable 2. Frequency of Surgical Procedures

eTable 3. Functional Annotations of Proteins With Higher Expression in Type II Than in Type I Tumors

eTable 4. Tentative Attribution of Compounds Identified by SAM as Having Higher Relative Abundances in Primary Type I Than Type II Tumors

eTable 5. Tentative Attribution of Compounds Identified by SAM as Having Higher Relative Abundances in Primary Type II Than Type I Tumors

eTable 6. Tentative Attribution of Compounds Identified by SAM as Having Higher Relative Abundances in Metastatic Type I Than Type II Tumors

eTable 7. Tentative Attribution of Compounds Identified by SAM as Having Higher Relative Abundances in Metastatic Type II Than Type I Tumors

eFigure 1. Outline of the Study

eFigure 2. NetWalker Analysis of Proteins With Significantly Altered Expression Levels Between Type I and Type II Tumors

eFigure 3. Differential mRNA Transcript Expression Analysis of HGSOC Type I and Type II Tumors. Representative Gene Set Enrichment Analysis (GSEA) of RNA Sequencing Results Showing Pathway Changes in Primary (A) and Metastatic (B) Site Samples

eFigure 4. Volcano Plots from RNA Sequencing of Patient-Derived (A) Primary and (B) Metastatic High-Grade Serous Ovarian Cancer Samples of Type I vs Type II Morphologic Subtypes

eFigure 5. (A) Concordance Between All Genes and Corresponding Proteins Profiled by Both RNA Sequencing-Based Transcriptomics and Quantitative Mass Spectroscopy-Based Proteomics. (B) Correlation of Changes in Differentially Expressed Transcript/Protein Levels Between Type I and Type II Morphologic Subtypes

eFigure 6. Immune Population Infiltration in Predominant Type I and Type II Morphologic Subtypes in the (A) Tumor Area and (B) Total Area (Tumor/Non-Tumor)

eFigure 7. Representative Desorption Electrospray Ionization Mass Specta and Ion Images for Metastatic Tissues of Type I and Type II Morphologic Subtypes

eReferences

This supplemental material has been provided by the authors to give readers additional information about their work.

eMethods

Patient Selection and Clinical Analysis

This cohort study included patients who presented to MD Anderson with suspected advanced-stage epithelial ovarian cancer, underwent laparoscopic assessment of disease burden prior to treatment between April 1, 2013 and August 5, 2016, and received a histopathologic diagnosis of high-grade serous ovarian cancer (HGSOC). Patients excluded from the study were those who did not meet criteria for laparoscopic assessment of disease burden (e.g., distant metastatic or unresectable disease, co-morbidities precluding primary surgery, poor performance status) according to institutional consensus guidelines¹ as well as those who were not found to have HGSOC on final pathology and those without video recordings available. Patient data and laparoscopic videos were securely stored on the Research Electronic Data Capture software platform². During laparoscopic video review, if both morphologic types were present in the same location, the site was classified as the predominating type. Response to NACT was classified as excellent if there was a complete response on radiologic evaluation according to Response Evaluation Criteria in Solid Tumors (RECIST 1.1), a normalization of CA-125 level (≤35 U/mL) in those whose baseline CA-125 level was at least twice the upper limit of normal, and/or a pathologic complete response. Response was classified as poor if there was progressive disease at cycle 1-4, stable disease at cycle 3-4 by RECIST 1.1, and/or suboptimal cytoreduction at interval tumor reductive surgery (iTRS). If a patient met one criteria for poor response and one criteria for excellent response, the patient was considered non-classifiable. All data collection and analysis was performed between April 2020 and November 2021.

Quantitative mass spectrometry-based Proteomics

Fifty-six frozen primary and metastatic tumor tissues from 32 patients diagnosed with HGSOC were thawed and analyzed by quantitative mass spectrometry (MS)-based proteomics as described previously³. Briefly, whole tumor (cancer and stromal cells) samples were harvested by laser microdissection, and samples were subjected to pressureassisted digestion with trypsin employing a barocycler (2320EXT Pressure BioSciences, Inc). Ten micrograms of total peptide were labeled per tandem mass tag channel (TMTpro 16-plex, Thermo Fisher Scientific). Each multiplex included a reference channel, which was generated by pooling equivalent amounts of peptide digest from each of the 56 cancer specimens. The TMT multiplexes were resolved offline by basic reversed-phase liquid chromatography (1260 Infinity II liquid chromatograph, Agilent) into 24 pooled fractions. The pooled fractions were resuspended in 100 mM NH₄HCO₃ and analyzed by liquid chromatography (LC)-tandem MS (LC-MS/MS) employing a nanoflow LC system (EASY-nLC 1200, Thermo Fisher Scientific) coupled online with a Q-Exactive HF-X mass spectrometer (Thermo Fisher Scientific). Peptides were eluted by developing a linear gradient of 2% mobile phase B (95% acetonitrile, 0.1% formic acid) to 32% mobile phase B over 120 min at a constant flow rate of 250 nL/min. The electrospray source capillary voltage and temperature were set at 2.0 kV and 275°C, respectively. High-resolution (R=60,000 at m/z 200) broadband (m/z 400-1600) mass spectra were acquired, followed by selection of the top 12 most intense molecular ions in each MS scan for higher-energy collisional dissociation. Instrumentspecific parameters were set as follows: broadband MS: Automatic Gain Control (AGC), 3e6; Radio Frequency Lens, 40%; Maximum Injection Time (IT), 45ms; Charge State, 2-4; Dynamic Exclusion, 10ppm/20 sec; MS2: AGC, 1e5; Maximum IT, 95ms; Resolution, 45k; Quadrupole Isolation, 1.0 m/z; Isolation Offset, 0.2 m/z; Normalized Collision Energy, 34; First Mass, 100; Intensity Threshold, 2e5; Tandem Mass Tag Optimization, On. Peptide and global protein-level identifications were generated by searching raw data files with a publicly available, non-redundant human proteome database (Swiss-Prot, http://www.uniprot.org/, downloaded 12-01-2017, 20257 entries) using Mascot (v2.6.0, Matrix Science), Proteome Discoverer (v2.2.0.388, Thermo Fisher Scientific), and inhouse tools using identical parameters as described previously³. Global proteome level data were merged with global data for 47 frozen primary and metastatic tumors collected from 16 patients diagnosed with HGSOC described previously³ and further classified as exhibiting type I or type II morphologic subtype followed by batch correction using the ComBat function in the R package sva (version 3.34.0).

Reverse Phase Protein Array (RPPA) and NetWalker Analysis

A total of 46 frozen tissues from 21 patients were prepared and analyzed by MD Anderson's Functional Proteomics RPPA Core Facility as described previously³. To validate the findings in patients with uniform morphologic subtype, we compared the median relative protein expression from the remaining patients' biopsy specimens classified as type I with those classified as type II, regardless of classification at the other sites.

RNA Sequencing

Total RNA from 43 frozen tissues from 15 patients was prepared and sequenced as described previously³. Total RNA from another 64 frozen tissues from 32 patients were prepared by MD Anderson's Biospecimen Extraction Facility. In brief, RNA was extracted from frozen tissues using the Qiagen RNeasy kit (QIAGEN) according to the manufacturer's instructions. RNA qualification, RNA sequencing library generation, generation of sequencing data, and quality control proceeded as described previously, but with libraries sequenced on a Novaseq 6000 S4 platform³. FASTQ files from sequencing were mapped to human genome hg38 using Salmon software version 1.4.0 (https://combine-lab.github.io/salmon)⁴ to produce raw counts and normalized transcripts per million (TPM) values. All analyses were performed using the R software functions and packages. Batch effects from two sequencing batches were removed using the ComBat function of the R sva package⁵. Differentially expressed genes were obtained using the DESeq2 package on raw counts with additional filtering by removing genes with low expression based on TPM. Tumor purities were estimated using the R ESTIMATE package⁶. GSEA was performed following the instructions from https://www.gsea-msigdb.org/gsea/index.jsp^{7,8}. Pathway enrichment scores are calculated as the average of -log10(NOM p-value) and -log10(FDR q-value) reported by GSEA, which are ceiled at 9 and negatively signed for the control group.

Immune-profiling Analysis

Immune-profiling analysis was performed in tissues from patients with predominant type I morphologic subtype (n = 18, 8 primary and 10 metastatic sites) and patients with predominant type II morphologic subtype (n = 9, 3 primary and 6 metastatic sites) as previously described by Lee, et al³. In brief, Opal multiplex staining was performed on a single tissue section from each specimen. Multispectral imaging was utilized to obtain an average of five representative images per sample. Spectral unmixing was performed to separate raw images into individual fluorophores, which were analyzed to identify different cell types. Tumor vs. non-tumor areas in each sample were differentiated with a tissue segmentation algorithm.

MS Imaging

A total of 45 tissue sections were analyzed, of which 25 (14 primary and 11 metastases) were the type I morphologic subtype, and 20 (12 primary and 8 metastases) were the type II subtype. Glass slides containing 8-µm-thick tissue sections were stored in a freezer at -80°C until use. Prior to desorption electrospray ionization (DESI)-MS analysis, the glass slides were dried for approximately 15 minutes. DESI-MS imaging was conducted as described previously⁹. An Omni Spray 2D Ion Source (Prosolia Inc.) equipped with a lab-built sprayer was coupled with a Q Exactive Focus Hybrid Quadrupole-Orbitrap mass spectrometer (Thermo Fisher Scientific). The analyses were performed in negative ion mode with a spatial resolution of 200 µm. A histologically compatible solvent system, dimethylformamide:acetonitrile (1:1 v/v), was used at a flow rate of 1.2 µL/min¹⁰. The N₂ pressure applied for the DESI sprayer was 185 psi. Mass spectra were collected over *m*/*z* 100-1500 with a resolving power of 70,000 at *m*/*z* 400. Other optimized instrumental parameters were as follows: spray voltage, 5 kV; capillary temperature, 300°C; S-lens radiofrequency level, 100; and an average of two micro-scans for each spectrum. The same tissue sections used for DESI-MS imaging were stained with hematoxylin and eosin. A board-certified pathologist with subspecialty certification in gynecologic pathology (JL) performed pathologic evaluation using light microscopy to determine the tumor regions. Light microscopy images of hematoxylin and eosin–stained slides were obtained using the Nano Zoomer imaging system (Hamamatsu, model no. C13140-01).

$\begin{array}{ c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		Predominant	Morphologic S	Subtype	Uniform M	Iorphologic Su	btype
Age at diagnosis, years Image of the second s	Characteristic	Type I	Type II		Type I	Type II	p-
years - <th></th> <th>(n=57)</th> <th>(n=37)</th> <th>value</th> <th>(n=48)</th> <th>(n=23)</th> <th>value</th>		(n=57)	(n=37)	value	(n=48)	(n=23)	value
Mean (SD) $62.8 (9.0)$ $63.2 (10.0)$ $63.2 (9.1)$ $61.9 (11.1)$ Median (range) 62.0 64.0 62.0 64.0 62.0 64.0 Race*, n (%) $44.0-88.0$) $(44.0-88.0)$ $(43.0-82.0)$ $(44.0-88.0)$ American Indian or Alaskan Native $0 (0.0)$ $1 (2.9)$ 0.45 $0 (0.0)$ $0 (0.0)$ Asian $1 (1.8)$ $2 (5.7)$ 0.45 $0 (0.0)$ $0 (0.0)$ American $6 (10.7)$ $3 (8.6)$ 0.45 $5 (10.6)$ $3 (13.6)$ White or Caucasian $49 (87.5)$ $29 (82.9)$ 0.45 $3 (6.4)$ $2 (9.5)$ Not Hispanic or Latino $53 (94.6)$ $29 (82.9)$ 0.08 $3 (6.4)$ $2 (9.5)$ Median (range) $27.1 (6.9)$ $28.3 (6.7)$ 0.35 48 23 Median (range) $22.4.3$ 27.7 $(8.0-47.2)$ $(19.6-41.4)$ Primary disease site, n (%) $(4.0.3)$ $2 (6.7)$ $28.8 (6.8)$ 24.4 27.7 Brecho							
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Mean (SD)			0.83			0.60
Race*, n (%) (43.0-32.0) (44.0-36.0) (44.0-36.0) (44.0-36.0) American Indian or Alaskan Native 0 (0.0) 1 (2.9) (44.0-36.0) (44.0-36.0) Asian 1 (1.8) 2 (5.7) 0.45 0 (0.0) 0 (0.0) Black or African American 6 (10.7) 3 (8.6) 0.45 5 (10.6) 3 (13.6) White or Caucasian 49 (87.5) 29 (82.9) 0.08 3 (6.4) 2 (9.5) Hispanic or Latino 3 (5.4) 6 (17.1) 0.08 3 (6.4) 2 (9.5) Not Hispanic or Latino 53 (94.6) 29 (82.9) 0.08 44 (93.6) 19 (90.5) Preoperative BMI, kg/m² 57 37 0.35 48 23 Median (range) 27.1 (6.9) 28.3 (6.7) 0.32 (8.7) 24.4 27.7 Median (range) 24.3 27.7 (18.0-47.2) 0.17.1-41.7) 0.90 2 (4.2) 1 (4.3) Primary disease site, n (%) 0 0.00 0.90 2 (4.2) 1 (4.8) 2 (8.7) VA 3 (5.3) 2 (5.4) 0.904 4 (8.3) 2 (8.	Median (range)						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		(43.0-82.0)	(44.0-88.0)		(43.0-82.0)	(44.0-88.0)	
Alaskan Native 0 (0.0) 1 (2.9) 0 (0.0) 0 (0.0) 0 (0.0) Asian 1 (1.8) 2 (5.7) 0.45 1 (2.1) 1 (4.5) Black or African 6 (10.7) 3 (8.6) 1 (2.1) 1 (4.5) Marrican 49 (87.5) 29 (82.9) 44 (87.2) 18 (81.8) Ethnicity*, n (%)							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		0 (0.0)	1 (2.9)		0 (0.0)	0(0.0)	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Asian	1 (1.8)	2 (5.7)	0.45	1 (2.1)	1 (4.5)	0.60
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		6 (10.7)	3 (8.6)	0.45	5 (10.6)	3 (13.6)	0.00
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		40 (07 5)	00 (00 0)		44 (07.0)	40 (04 0)	
$\begin{array}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Caucasian	49 (87.5)	29 (82.9)		41 (87.2)	18 (81.8)	
$\begin{array}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Ethnicity*, n (%)						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		3 (5.4)	6 (17.1)	0.00	3 (6.4)	2 (9.5)	0.64
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Not Hispanic or	E2 (04 C)	20 (82 0)	0.00	44 (02 6)	10 (00 E)	0.64
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Latino	55 (94.0)	29 (02.9)		44 (93.0)	19 (90.5)	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		57	37	0.05	48	23	0.00
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Mean (SD)	27.1 (6.9)	28.3 (6.7)	0.35	26.9 (6.7)	28.8 (6.8)	0.22
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		24.3	27.7		24.4	27.7	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Primary disease site.	(1010 1112)	()		(1010 111_)	(1010 111)	
Fallopian tube $2 (3.5)$ $2 (5.4)$ 0.90 $2 (4.2)$ $1 (4.3)$ >Ovary $50 (87.7)$ $32 (86.5)$ $42 (87.5)$ $20 (87.0)$ $4 (8.3)$ $2 (8.7)$ Peritoneum $5 (8.8)$ $3 (8.1)$ $4 (8.3)$ $2 (8.7)$ $4 (8.3)$ $2 (8.7)$ Stage, n (%) $1 (1.8)$ $0 (0.0)$ $1 (2.1)$ $0 (0.0)$ IIIC $49 (86.0)$ $31 (83.8)$ 0.94 $4 (8.2)$ $2 (4.2)$ $2 (8.7)$ IVA $3 (5.3)$ $2 (5.4)$ $1 (2.1)$ $0 (0.0)$ $41 (85.4)$ $18 (78.3)$ IVB $4 (7.0)$ $4 (10.8)$ $4 (8.3)$ $3 (13.0)$ $4 (8.3)$ $3 (13.0)$ BRCA mutation status, n (%) $3 (67.4)$ $2 (6.9)$ 0.84 $4 (10.0)$ $1 (4.8)$ No mutation $33 (67.4)$ $21 (72.4)$ 6.84 $27 (67.5)$ $15 (71.4)$ BRCA1 mutated $6 (12.2)$ $4 (13.8)$ $3 (7.5)$ $2 (9.5)$ VUS $3 (6.1)$ $2 (6.9)$ $1 (2.5)$ $0 (0.0)$ Baseline CA125, $1 (0.0)$ $1 (2.5)$ $0 (0.0)$ U/mL 56 37 0.14 48 23							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Fallopian tube	2 (3.5)	2 (5.4)	0.90	2 (4.2)	1 (4.3)	>0.99
Stage, n (%) Image: hold of the second							
Stage, n (%) Image: model of the system Image: model of the system <thimage: model="" of="" system<="" th="" the=""> Image: model o</thimage:>					4 (8.3)		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Stage, n (%)						
IVA 3 (5.3) 2 (5.4) IVB 4 (7.0) 4 (10.8) BRCA mutation status, n (%) 4 (8.2) 2 (6.9) Patient declined testing 4 (8.2) 2 (6.9) No mutation 33 (67.4) 21 (72.4) BRCA1 mutated 6 (12.2) 4 (13.8) BRCA2 mutated 3 (6.1) 2 (6.9) VUS 3 (6.1) 2 (6.9) VUS 3 (6.1) 2 (6.9) U/mL		1 (1.8)	0 (0.0)		1 (2.1)	0 (0.0)	
IVB 4 (7.0) 4 (10.8) 4 (8.3) 3 (13.0) BRCA mutation status, n (%) 4 (8.2) 2 (6.9) 4 (10.0) 1 (4.8) Patient declined testing 4 (8.2) 2 (6.9) 0.84 4 (10.0) 1 (4.8) No mutation 33 (67.4) 21 (72.4) 0.84 27 (67.5) 15 (71.4) BRCA1 mutated 6 (12.2) 4 (13.8) 5 (12.5) 3 (14.3) BRCA2 mutated 3 (6.1) 2 (6.9) 1 (2.5) 0 (0.0) VUS 3 (6.1) 0 (0.0) 1 (2.5) 0 (0.0) Baseline CA125, U/mL 56 37 0 14 48 23	IIIC	49 (86.0)	31 (83.8)	0.94	41 (85.4)	18 (78.3)	0.72
BRCA mutation status, n (%) 4 (8.2) 2 (6.9) Patient declined testing 4 (8.2) 2 (6.9) No mutation 33 (67.4) 21 (72.4) BRCA1 mutated 6 (12.2) 4 (13.8) BRCA2 mutated 3 (6.1) 2 (6.9) VUS 3 (6.1) 0 (0.0) Baseline CA125, U/mL 56 37 N 56 37 0 14 48 23	IVA	3 (5.3)	2 (5.4)		2 (4.2)	2 (8.7)	
status, n (%)	IVB	4 (7.0)	4 (10.8)		4 (8.3)	3 (13.0)	
Patient declined testing 4 (8.2) 2 (6.9) No mutation 33 (67.4) 21 (72.4) BRCA1 mutated 6 (12.2) 4 (13.8) BRCA2 mutated 3 (6.1) 2 (6.9) VUS 3 (6.1) 2 (6.9) U/mL - - N - - 0.44 - -							
testing 4 (8.2) 2 (6.9) 4 (10.0) 1 (4.8) No mutation 33 (67.4) 21 (72.4) 0.84 27 (67.5) 15 (71.4) BRCA1 mutated 6 (12.2) 4 (13.8) 5 (12.5) 3 (14.3) BRCA2 mutated 3 (6.1) 2 (6.9) 1 (2.5) 0 (0.0) VUS 3 (6.1) 0 (0.0) 1 (2.5) 0 (0.0) Baseline CA125, 1 (2.5) 0 (0.0) 1 (2.5) 0 (0.0) N 56 37 0 14 48 23							
No mutation 33 (67.4) 21 (72.4) 0.84 27 (67.5) 15 (71.4) 5 (12.5) 3 (14.3) 5 (12.5) 3 (14.3) 3 (7.5) 2 (9.5) 1 (2.5) 0 (0.0) 1 (2.5) <td>Patient declined</td> <td>1 (8 2)</td> <td>2 (6 9)</td> <td></td> <td>4 (10.0)</td> <td>1 (1 8)</td> <td></td>	Patient declined	1 (8 2)	2 (6 9)		4 (10.0)	1 (1 8)	
No mutation 33 (67.4) 21 (72.4) 27 (67.5) 15 (71.4) BRCA1 mutated 6 (12.2) 4 (13.8) 5 (12.5) 3 (14.3) BRCA2 mutated 3 (6.1) 2 (6.9) 3 (7.5) 2 (9.5) VUS 3 (6.1) 0 (0.0) 1 (2.5) 0 (0.0) Baseline CA125,				0.84			0.98
BRCA2 mutated 3 (6.1) 2 (6.9) 3 (7.5) 2 (9.5) VUS 3 (6.1) 0 (0.0) 1 (2.5) 0 (0.0) Baseline CA125, U/mL				0.04			0.30
VUS 3 (6.1) 0 (0.0) 1 (2.5) 0 (0.0) Baseline CA125, U/mL VUS <							
Baseline CA125, U/mL Image: CA125, U/mL Image: CA125, Image: CA125, Ima							
U/mL 56 37 0.14 48 23		3 (6.1)	0 (0.0)		1 (2.5)	0 (0.0)	
N 56 37 0.14 48 23							
				_		-	
	N	56	37	0 14		23	0.21
Median (range) 484.5 (11.5- 6705.0) 620.4 (41.0- 12472.0) 453.9 (11.5- 6705.0) 469.5 (41.0- 6882.0)	Median (range)			0.14			0.21

eTable 1. Baseline Patient Characteristics

Characteristic	Predominant				orphologic Su	hologic Subtype		
(continued)	Type I (n=57)	Type II (n=37)	p- value	Type I (n=48)	Type II (n=23)	p- value		
Platelets (x10 ³ /mm ³)	50	20		40	00	-		
N	56	36	-	48 386.2	22 381.4	-		
Mean (SD)	386.3 (145.7)	373.9 (126.1)	0.88	(143.5)	(126.3)	0.89		
Median (range)	356.0 (144.0- 928.0)	346.0 (160.0- 733.0)		359.5 (167.0- 928.0)	364.0 (160.0- 653.0)			
Hemoglobin (g/dL)								
N	53	36		46	23			
Mean (SD)	12.3 (1.4)	12.1 (1.2)	0.20	12.2 (1.5)	11.9 (1.3)	0.29		
Median (range)	12.7 (8.2-14.3)	12.3 (9.6-14.4)		12.6 (8.2-14.3)	12.1 (9.6-13.8)			
Hematocrit (%)								
N	53	36		46	23			
Mean (SD)	37.7 (3.9)	37.2 (3.1)	0.33	37.7 (4.0)	36.8 (3.2)	0.23		
Median (range)	38.2 (27.2-43.5)	37.6 (31.6-43.1)		38.4 (27.2-43.5)	37.5 (31.6-42.9)			
Leukocytes (x10 ³ /mm ³)								
N	53	36	0.15	46	23	0.11		
Mean (SD)	7.9 (2.2)	9.6 (6.2)	0.15	7.7 (2.2)	10.0 (7.5)	0.11		
Median (range)	7.6 (4.2-14.7)	8.5 (4.0-41.9)		7.5 (4.2-14.7)	8.8 (4.0-41.9)			
Neutrophils (x10 ³ /mm ³)								
N N	53	36		46	23			
Mean (SD)	5.5 (2.0)	6.1 (2.6)	0.36	5.4 (2.0)	6.0 (2.6)	0.38		
Median (range)	5.5 (1.2-12.3)	5.8 (1.8-13.8)		5.4 (1.2-12.3)	6.3 (1.8-10.7)			
Creatinine (mg/dL)				- /				
N	52	36		46	23			
Mean (SD)	0.8 (0.2)	0.8 (0.2)	0.12	0.8 (0.2)	0.8 (0.2)	0.21		
Median (range)	0.8 (0.5-1.4)	0.7 (0.4-1.2)		0.8 (0.5-1.4)	0.7 (0.4-1.2)			
Albumin (g/dL)								
N	43	29		37	18			
Mean (SD)	4.0 (0.5)	3.8 (0.6)	0.25	4.0 (0.5)	3.8 (0.6)	0.33		
Median (range)	3.9 (2.5-5.0)	3.9 (2.5-4.8)		4.0 (2.5-5.0)	3.9 (2.5-4.6)			
ECOG Performance Status, n (%)				,				
0	32 (57.1)	15 (40.5)	0.30	25 (53.2)	11 (47.8)	0.58		
1	20 (35.7)	18 (48.7)]	18 (38.3)	8 (34.8)			
2	4 (7.1)	4 (10.8)	1	4 (8.5)	4 (17.4)			
ASA physical status class, n (%)					,			
	11 (19.6)	5 (13.9)	0.09	9 (19.2)	2 (9.1)	0.26		
=	45 (80.4)	28 (77.8)	1	38 (80.9)	19 (86.4)	1		
IV	0 (0.0)	3 (8.3)]	0 (0.0)	1 (4.5)			

Characteristic	Predominant	Morphologic S	ubtype	Uniform Morphologic Subtype			
(continued)	Type I (n=57)	Type II (n=37)	p- value	Type I (n=48)	Type II (n=23)	p- value	
Charlson Comorbidity Index, n (%)							
Ν	57	37	0.20	48	23	0.01	
Mean (SD)	3.2 (1.7)	3.7 (2.4)	0.38	3.3 (1.7)	3.6 (2.6)	0.91	
Median (range)	3.0 (1.0-11.0)	3.0 (1.0-14.0)		3.0 (1.0- 11.0)	3.0 (1.0- 14.0)		
Employment status*, n (%)							
Unemployed	29 (50.9%)	11 (29.7%)		24 (50.0%)	8 (34.8%)		
Employed part- time	1 (1.8%)	0 (0.0%)	0.06	1 (2.1%)	0 (0.0%)	0.23	
Employed full-time	14 (24.6%)	9 (24.3%)		13 (27.1%)	5 (21.7%)		
Unknown	13 (22.8%)	17 (46.0%)	1	10 (20.8%)	10 (43.5%)		

*Patient reported Abbreviations: BMI, body mass index; VUS, variant of unknown significance; ECOG, Eastern Cooperative Oncology Group; ASA, American Society of Anesthesiologists

	Predominant	Morphologic S	ubtype	Uniform Morphologic Subtype			
Procedure	Type 1 (n=57), n (%)	Type 2 (n=37), n (%)	p- value	Type 1 (n=48), n (%)	Type 2 (n=23), n (%)	p- value	
Hysterectomy							
Not performed	14 (25)	10 (27)	0.79	14 (29)	5 (22)	0.51	
Performed	43 (75)	27 (73)		34 (71)	18 (78)		
Salpingo- oophorectomy							
Not performed	5 (9)	2 (5)		5 (10)	1 (4)		
BSO	49 (86)	33 (89)	0.94	41 (85)	21 (91)	0.79	
RSO	2 (4)	1 (3)	-	1 (2)	0 (0)		
LSO	1 (2)	1 (3)	-	1 (2)	1 (4)		
Omentectomy							
Not performed	5 (9)	4 (11)	0.74	5 (10)	2 (9)	>0.99	
Performed	52 (91)	33 (89)		43 (90)	21 (91)		
Argon beam coagulation							
Not performed	32 (56)	17 (46)	0.33	29 (60)	10 (43)	0.18	
Performed	25 (44)	20 (54)	-	19 (40)	13 (57)		
Diaphragm procedures							
Not performed	45 (79)	28 (76)	0.33	38 (79)	17 (74)	0.82	
Stripping	8 (14)	3 (8)		6 (13)	3 (13)		
Resection	4 (7)	6 (16)	-	4 (8)	3 (13)		
Modified posterior exenteration							
Not performed	56 (98)	30 (81)	0.006	47 (98)	18 (78)	0.01	
Performed	1 (2)	7 (19)		1 (2)	5 (22)		
Liver resection							
Not performed	53 (93)	31 (84)	0.18	45 (94)	19 (83)	0.20	
Performed	4 (7)	6 (16)		3 (6)	4 (17)		
Peritoneal stripping							
Not performed	45 (79)	24 (65)	0.13	38 (79)	12 (52)	0.02	
Performed	12 (21)	13 (35)		10 (21)	11 (48)		
Splenectomy							
Not performed	51 (89)	32 (86)	0.66	42 (88)	20 (87)	>0.99	
Performed	6 (11)	5 (14)]	6 (13)	3 (13)		
Bladder resection							
Not performed	56 (98)	37 (100)	>0.99	47 (47)	23 (100)	>0.99	
Performed	1 (2)	0 (0)	1	1 (2)	0 (0)	1	

eTable 2. Fre	quency of Surgio	al Procedures
• • • • • • • • • • • • • •		

Procedure	Predominant	Morphologic S	Uniform Morphologic Subtype				
(continued)	Type 1 (n=57), n (%)	Type 2 (n=37), n (%)	p- value	Type 1 (n=48), n (%)	Type 2 (n=23), n (%)	p- value	
Pelvic LND							
Not performed	53 (93)	35 (95)	>0.99	45 (94)	22 (96)	>0.99	
Performed	4 (7)	2 (5)	-	3 (6)	1 (4)		
Para-aortic LND							
Not performed	53 (93)	34 (92)	>0.99	44 (92)	21 (91)	>0.99	
Performed	4 (7)	3 (8)	-	4 (8)	2 (9)		
Appendectomy							
Not performed	39 (68)	29 (78)	0.29	31 (65)	17 (74)	0.43	
Performed	18 (32)	8 (22)	-	17 (35)	6 (26)		
End colostomy							
Not performed	55 (96)	33 (89)	0.21	46 (96)	19 (83)	0.08	
Performed	2 (4)	4 (11)	-	2 (4)	4 (17)		
lleo-ascending resection							
Not performed	55 (96)	35 (95)	0.65	46 (96)	22 (96)	>0.99	
Performed	2 (4)	2 (5)		2 (4)	1 (4)		
Loop ileostomy							
Not performed	55 (96)	33 (89)	0.21	46 (96)	22 (96)	>0.99	
Performed	2 (4)	4 (11)		2 (4)	1 (4)		
Rectosigmoid resection							
Not performed	45 (79)	27 (73)	0.50	38 (79)	17 (74)	0.62	
Performed	12 (21)	10 (27)		10 (21)	6 (26)		
Small bowel resection							
Not performed	56 (98)	31 (84)	0.01	47 (98)	18 (78)	0.01	
Performed	1 (2)	6 (16)		1 (2)	5 (22)		
Resection of port site metastasis							
Not performed	53 (93)	37 (100)	0.15	44 (92)	23 (100)	0.30	
Performed	4 (7)	0 (0)]	4 (8)	0 (0)		

Abbreviations: BSO, bilateral salpingo-oophorectomy; RSO, right salpingo-oophorectomy; LSO, left salpingo-oophorectomy; LND, lymph node dissection

eTable 3. Functional Annotations of Proteins With Higher Expression in Type II Than in Type I Tumors

Annotation ID	Functional Annotation	Ontology	Tree Level	Number of Occurrences	Fraction of Nodes	Hyper- geometric p-value	Genes
Bs119304	Progesterone- mediated oocyte maturation	Pathway	10	3	0.23	3.84E-08	BRAF, PLK1, CCNB1
Bs486750	Condensed nuclear chromosome	Structural complex	10	3	0.23	8.28E-09	BRD4, PLK1, CCNB1
Bs486751	Condensed chromosome	Structural complex	10	3	0.23	3.24E-07	BRD4, PLK1, CCNB1
Bs508122	Positive regulation of cell cycle	Pathway	10	3	0.23	6.51E-08	BRD4, PLK1, CCNB1
Bs137935	FOXM1 transcription network	Pathway	10	3	0.23	1.50E-09	ESR1, PLK1, CCNB1
Bs487083	Nuclear chromatin	Structural complex	10	3	0.23	2.90E-07	BRD4, MUC1, ARID1A
Bs494702	Positive regulation of organelle organization	Pathway	10	3	0.23	5.81E-07	MUC1, PLK1, CCNB1
Bs503	Progesterone- mediated oocyte maturation	Pathway	10	3	0.23	3.84E-08	BRAF, PLK1, CCNB1
Bs510652	Developmental growth	Pathway	10	3	0.23	8.52E-07	ESR1, BRD4, CNB1
Bs198811	Cell cycle	Pathway	10	3	0.23	4.82E-08	CDH1, PLK1, CCNB1
Bs198862	T cell receptor signaling pathway	Pathway	10	3	0.23	2.29E-07	BRAF, MUC1, GAB2
Bs518208	Positive regulation of cell cycle process	Pathway	10	3	0.23	3.24E-07	BRD4, MUC1, PLK1

Tentative attribution	Molecular formula	Detected m/z	Mass error, ppm	SAM score
FA 8:0	C ₈ H ₁₅ O ₂	143.1079	1.0	-22.738
FA 12:0	C ₁₂ H ₂₃ O ₂	199.1701	-1.3	-17.936
FA 9:0	C ₉ H ₁₇ O ₂	157.1227	-4.5	-17.575
FA 15:4	C15H21O2	233.1547	0.0	-16.972
FA 18:0	C ₁₈ H ₃₅ O ₂	283.2648	1.9	-13.502
FA 10:0	C ₁₀ H ₁₉ O ₂	171.1385	-3.2	-12.432
PS 34:1	C40H75NO10P	760.5149	2.0	-12.111
Uridine*	C ₉ H ₁₁ N ₂ O ₆	243.0624	0.6	-11.371
PC 34:2	C ₄₂ H ₈₀ NO ₈ PCI	792.5314	-0.2	-10.724
Not identified	-	333.0946	-	-10.722
Not identified	-	188.0729	-	-10.208
Not identified	-	146.9650	-	-10.101
FA 20:4	C ₂₀ H ₃₁ O ₂	303.2333	1.1	-10.018
Cer d42:1	C ₄₂ H ₈₃ NO ₃ Cl	684.6072	0.7	-9.940
Not identified	-	186.0492	-	-9.631
FA 16:0	C ₁₆ H ₃₁ O ₂	255.2333	1.4	-9.582
LacCer d18:0/26:0*	C ₅₆ H ₁₀₈ NO ₁₃	1002.7896	7.0	-8.971
Not identified	-	114.9351	-	-8.967
Not identified	-	368.9771	-	-8.725
FA 14:0	C ₁₄ H ₂₇ O ₂	227.2014	-1.1	-8.564
PE 34:2	C ₃₉ H ₇₃ NO ₈ P	714.5109	4.2	-8.105
PE 44:11*	C49H75NO8P	836.5314	9.4	-7.836
PG 32:0	C ₃₈ H ₇₅ O ₁₀ P	721.5026	0.1	-7.787
PE O-34:3 or PE P-34:2	C ₃₉ H ₇₃ NO ₇ P	698.5133	0.4	-7.530
PA 24:2	C37H68O8P	671.4676	2.8	-7.408
PI 32:0	C41H78O13P	809.5214	3.5	-7.268
PE 34:1	C ₃₉ H ₇₅ NO ₈ P	716.5248	1.7	-7.100
PE 36:3	C ₄₁ H ₇₅ NO ₈ P	740.5232	-0.5	-6.999
PI 38:2	C47H86O13P	889.5768	-4.9	-6.716
PI 36:1	C45H84O13P	863.5643	-1.4	-6.361
Not identified	-	191.0726	-	-6.283
Not identified	-	126.9040	-	-6.260
LysoPI 18:0	C ₂₇ H ₅₂ O ₁₂ P	599.3215	2.2	-6.182
FA 22:0	C ₂₂ H ₄₃ O ₂	339.3269	0.1	-6.091
Cer d38:1	C ₄₀ H ₇₉ NO ₃ Cl	656.5768	2.1	-6.039
Not identified	-	116.9334	-	-5.957
PA 36:4	C ₃₉ H ₆₈ O ₈ P	695.4690	4.7	-5.810
PA 32:0	C35H68O8P	647.4686	4.4	-5.691

eTable 4. Tentative Attribution of Compounds Identified by SAM as Having Higher Relative Abundances in Primary Type I Than Type II Tumors

Tentative attribution (continued)	Molecular formula	Detected m/z	Mass error, ppm	SAM score
CL 72:4	C81H148O17P2	727.5077	-3.3	-5.405
PE 36:1	C41H79NO8P	744.5533	-2.1	-5.399
Not identified	-	348.1582	-	-5.144
FA 13:8	C ₁₃ H ₉ O ₂	197.0605	-1.5	-5.124
FA 20:0	C ₂₀ H ₃₉ O ₂	311.2956	0.1	-5.089
DG 38:4/0:0	C41H72O5CI	679.5090	2.4	-4.971
FA 20:5	C ₂₀ H ₂₉ O ₂	301.2174	0.3	-4.914
PI 36:1	C45H84O13P	863.5679	2.8	-4.885
PE 36:2	C41H77NO8P	742.5407	2.0	-4.694
Cer d18:16:0	C34H69NO3CI	574.4982	1.8	-4.679
PE 39:5	C44H77NO8P	778.5414	2.8	-4.598
Mannitol*	C6H13O6	181.0710	-4.2	-4.425
Not identified	-	356.2645	-	-4.314
2-Dodecylbenzenesulfonic acid*	C ₁₈ H ₂₉ O ₃ S	325.1852	2.8	-4.265
Not identified	-	412.9677	-	-4.256
CL 74:10	C ₈₃ H ₁₄₀ O ₁₇ P ₂	735.4814	3.5	-4.159
PI 34:2	C43H78O13P	833.5211	3.1	-4.158
CL 72:6	C ₈₁ H ₁₄₄ O ₁₇ P ₂	725.4940	-0.7	-4.103
PE O-40:6*	C45H79NO7P	776.5604	0.6	-4.061
PE 18:1/1:0	C24H45NO8P	506.2899	2.1	-3.995
Cer m42:1	C ₄₂ H ₈₃ NO ₂ Cl	668.6140	3.3	-3.987
PG 22:1	C ₃₈ H ₇₂ O ₁₀ P	719.4879	1.4	-3.970
PE 38:3	C43H79NO8P	768.5546	-0.4	-3.842
Not identified	-	160.9109	-	-3.720
Not identified	-	158.9109	-	-3.693
Not identified	-	265.1472	-	-3.632
PG 36:2	C42H78O10P	773.5358	2.6	-3.578
PC 36:2	C44H84NO8PCI	820.5603	-3.1	-3.527
Benzoic acid	C7H5O2	121.0290	-4.2	-3.509
FA 11:0	$C_{11}H_{21}O_2$	185.1541	-3.3	-3.416
Glutamic acid	C ₅ H ₈ NO ₄	146.0449	-6.7	-3.413
PE 38:5	C43H75NO8P	764.5244	1.1	-3.277
PI 38:6	C ₄₇ H ₇₈ O ₁₃ P	881.5209	2.7	-3.208
PA 36:3	C ₃₉ H ₇₀ O ₈ P	697.4815	0.2	-3.140
N-Undecanoylglycine*	C ₁₃ H ₂₄ NO ₃	242.1764	1.0	-3.116
Prolyl-Glutamine*	C10H17N3O4CI	278.0929	5.7	-2.960
Not identified	-	698.9738	-	-2.929
PS 36:2	C42H77NO10P	786.5322	4.0	-2.902
PE O-34:2 or PE P-34:1	C ₃₉ H ₇₅ NO ₇ P	700.5309	3.2	-2.834
PI 38:5	C47H80O13P	883.5338	-0.5	-2.744
Cer d18:1/20:0*	C ₃₈ H ₇₅ NO ₃ Cl	628.5462	3.3	-2.737

Tentative attribution (continued)	Molecular formula	Detected m/z	Mass error, ppm	SAM score
PG dO-40:9*	C46H76O8P	787.5334	6.4	-2.734
MG 20:4*	C ₂₃ H ₃₈ O ₄ CI	413.2465	0.2	-2.679
Glucose	C ₆ H ₁₂ O ₆ Cl	215.0327	-0.4	-2.655
PE O-38:5	C ₄₃ H ₇₇ NO ₇ P	750.5443	0.0	-2.643
PS O-36:2 or PS P-36:1	C ₄₂ H ₇₉ NO ₉ P	772.5517	2.5	-2.623
3-Hydroxypicolinic acid	C ₆ H ₄ NO ₃	138.0188	-6.3	-2.539
Not identified	-	123.9012	-	-2.531
Cer d18:2/28:0*	C ₄₆ H ₈₉ NO ₃ Cl	738.6605	9.3	-2.483
Methymycin	C ₂₅ H ₄₃ NO ₇ Cl	504.2725	-1.7	-2.465
PE O-36:2*	C41H79NO7P	728.5631	4.3	-2.456
Valerenolic acid	C ₁₅ H ₂₁ O ₃	249.1494	-0.9	-2.431
FA 24:1	C ₂₄ H ₄₅ O ₂	365.3427	0.5	-2.411
PG 36:4	C ₄₂ H ₇₄ O ₁₀ P	769.5059	4.4	-2.402
Not identified	-	130.9303	-	-2.390
CL 68:5	C ₇₇ H ₁₃₈ O ₁₇ P ₂	698.4730	2.8	-2.327
PG 40:8	C46H74O10P	817.5011	1.7	-2.278
FA 10:6;O*	C ₁₀ H ₇ O ₃	175.0409	4.8	-2.193
CL 70:4	C ₇₉ H ₁₄₄ O ₁₇ P ₂	713.4935	-1.4	-2.106
FA 24:0	C ₂₄ H ₄₇ O ₂	367.3586	1.2	-2.084
PS 38:3	C44H79NO10P	812.5447	0.0	-2.081
FAHFA 36:1;O*	C ₃₆ H ₆₉ O ₄	565.5208	1.2	-2.078
Not identified	-	910.5576	-	-2.033
PE 39:1	C44H86NO8PCI	822.5730	-6.7	-2.015
FA 17:0	C17H33O2	269.2489	1.1	-1.985
Cer d40:2	C40H77NO3CI	654.5615	2.7	-1.984
FA 12:2	C ₁₂ H ₁₉ O ₂	195.1387	-1.8	-1.955
PG 38:5	C44H76O10P	795.5153	-3.6	-1.921
FA 22:1	C ₂₂ H ₄₁ O ₂	337.3115	0.9	-1.917
PG 38:6	C44H74O10P	793.5020	-0.6	-1.900
PS P-36:2 or PS O-36:3	C ₄₂ H ₇₇ NO ₉ P	770.5349	1.0	-1.895
PS 42:6*	C48H82O10NP	862.5556	-5.5	-1.811
CL 78:6*	C87H156O17P2	767.5438	3.1	-1.803
PE O-36:3 or P-36:2	C ₄₁ H ₇₇ NO ₇ P	726.5459	2.2	-1.745
Gluconic acid	C ₆ H ₁₁ O ₇	195.0505	-2.7	-1.657
Histidine*	C ₆ H ₈ N ₃ O ₂	154.0613	-5.8	-1.641
PS 42:2	C48H89O10NP	870.6248	2.1	-1.619
PE 39:3*	C44H82NO8PCI	818.5497	3.0	-1.611
PI 25:1	C44H82O13P	849.5519	-2.4	-1.579
PE 41:6*	C46H79NO8P	804.5570	2.6	-1.397
PA 24:1	C37H70O8P	673.4832	2.7	-1.365
PI O-23:0	C ₄₂ H ₈₃ O ₁₂ PCI	845.5325	1.0	-1.360

Tentative attribution (continued)	Molecular	Detected	Mass error,	SAM score
	formula	m/z	ppm	
PS 36:3	C42H75NO10P	784.5139	0.6	-1.299
PE 0:0/20:4;O2*	C ₂₅ H ₄₃ NO ₉ P	532.2698	3.2	-1.252
PE 39:4*	C44H80NO8PCI	816.5395	9.7	-1.248
MG 20:0	C ₂₃ H ₄₆ O ₄ CI	421.3103	3.1	-1.245
PG 40:7	C46H76O10P	819.5203	2.6	-1.229
Not identified	-	369.9810	-	-1.166
PG 40:5	C46H80O10P	823.5496	0.2	-1.110
Not identified	-	421.3319	-	-1.084
PE O-36:4*	C ₄₁ H ₇₅ NO ₇ P	724.5296	1.3	-1.064
PS 37:2*	C43H79NO10P	800.5501	6.7	-1.061
PI 36:3	C ₄₅ H ₈₀ O ₁₃ P	859.5347	0.6	-1.059
Not identified	-	614.3848	-	-1.055
PI 40:5	C49H84O13P	911.5638	-1.9	-1.046
PI 36:3*	C45H81O13P	859.5352	1.2	-0.931
DG 34:2/0:0	C ₃₇ H ₆₈ O ₅ CI	627.4758	-0.4	-0.875
Cer d34:2	C ₃₄ H ₆₅ NO ₃ Cl	570.4672	2.4	-0.868
PI O-32:0*	C41H80O12P	795.5396	0.4	-0.851
PE O-40:5 or PE P-40:4	C ₄₅ H ₈₁ NO ₇ P	778.5781	3.2	-0.838
PS O-38:4 or P-38:3	C44H79NO9P	796.5483	-1.9	-0.808
PS 37:1*	C43H81NO10P	802.5659	6.9	-0.802

Data are ranked based on SAM score values (highest to lowest). Attributions were assigned based on high mass accuracy and MS/MS measurements. Ions identified based on only high mass accuracy are marked with asterisks.

Abbreviations: SAM, significance analysis of microarrays; FA, fatty acid; PS, phosphatidylserine; PC, phosphatidylcholine; Cer, ceramide; LacCer, lactosylceramide; PE, phosphatidylethanolamine; PG, phosphatidylglycerol; PA, phosphatidic acid; PI, phosphatidylinositol; LysoPI, lysophosphatidylinositol; CL, cardiolipin; DG, diglyceride; MG, monoglyceride; FAHFA, fatty acid ester of hydroxyl fatty acid

Molecular **Tentative attribution** Detected Mass error, SAM score formula m/z ppm 23.579 Not identified 186.0449 PS 44:8 16.018 C₅₀H₈₁O₁₀NP 886.5554 -5.6 Not identified 289.0371 -14.279 Not identified 736.9918 12.787 FA 24:4 $C_{24}H_{39}O_2$ 359.2959 1.0 12.049 FA 26:5 $C_{26}H_{41}O_{2}$ 385.3105 1.8 12.036 CL 74:9 C83H142O17P2 736.4893 3.6 11.842 FA 18:3 $C_{18}H_{29}O_2$ 277.2178 1.8 11.407 306.0773 Glutathione C10H16N3O6S 2.5 11.139 FA 24:5 C₂₄H₃₇O₂ 357.2807 2.2 10.641 Not identified 10.476 115.0195 _ PS 40:5 C46H79NO10P 836.5367 -9.6 10.448 PS 40:4 C₄₆H₈₁NO₁₀P 838.5644 4.8 10.303 N-acetylaspartic acid C₆H₈NO₅ 174.0402 -3.4 10.271 Not identified 737,9970 10.002 FA 26:4 387.3260 2.3 9.984 C₂₆H₄₃O₂ Not identified 750.0001 9.774 -PE O-38:6* C43H75NO7P 748.5255 -4.2 8.814 Not identified 142.9978 8.742 _ -MG 18:0 C₂₁H₄₀O₄Cl 391.2620 -0.2 8.668 PE 40:5 C₄₅H₇₉NO₈P 792.5582 4.2 8.609 FA 20:3 C₂₀H₃₃O₂ 305.2491 1.6 8.584 C44H81NO10P PS 38:2 814.5577 3.3 8.505 556.3059 Not identified _ 8.274 -PS O-38:6* C44H75NO9P 792.5223 4.8 8.028 PE O-36:5* C₄₁H₇₃NO₇P 722.5150 2.8 8.017 PS 38:4 C44H77NO10P 810.5296 0.7 7.983 PE 20:4/1:0 C₂₆H₄₃NO₈P 528.2728 -0.8 7.766 2.7 CL 72:8 C81H140O17P2 723.4808 7.759 FA 17:1 267.2335 2.0 C₁₇H₃₁O₂ 7.693 FA 22:5 C22H33O2 329.2494 2.4 7.674 PS 40:3 C₄₆H₈₃O₁₀NP -1.9 842.5744 7.606 PG 42:4* C48H87O10PCI -1.2 7.559 889.5720 FA 18:1 $C_{18}H_{32}O_2$ 281.2492 2.1 7.128 PA O-38:2 or PA P-38:1 749.5278 1.3 C₄₁H₇₉O₇PCI 6.959 PG 34:1 747.5204 C40H76O10P 3.0 6.880 PI 39:4 C48H85O13PCI 935.5458 3.9 6.809 FA 18:2 C₁₈H₃₁O₂ 279.2327 1.1 6.706

eTable 5. Tentative Attribution of Compounds Identified by SAM as Having Higher Relative Abundances in Primary Type II Than Type I Tumors

Tentative attribution (continued)	Molecular formula	Detected m/z	Mass error, ppm	SAM score
Cer d14:1/24:1*	C ₃₈ H ₇₃ NO ₃ CI	626.5350	10.0	6.544
Xanthine*	C5H3N4O2	151.0255	-4.3	6.521
CL 74:8	C ₈₃ H ₁₄₄ O ₁₇ P ₂	737.4921	3.3	6.376
FA 16:1	C ₁₆ H ₂₉ O ₂	253.2177	1.6	6.343
PG 36:3	C42H76O10P	771.5201	-2.5	6.340
PE O-38:7*	C43H73NO7P	746.5132	0.3	6.154
PS 36:1	C42H79NO10P	788.5466	-2.4	6.035
PE 39:6	C44H75NO8P	776.5258	2.9	6.001
Taurine	C ₂ H ₆ NO ₃ S	124.0064	-8.0	5.874
PE O-38:3*	C43H82NO7PCI	790.5535	1.5	5.748
FA 22:4	C ₂₂ H ₃₅ O ₂	331.2649	2.0	5.710
PE P-18:0/18:4*	C41H73NO7CI	722.5116	1.9	5.625
PS O-33:0*	C39H78NO9P	770.5071	-4.9	5.597
PI 38:4	C47H82O13P	885.5522	2.7	5.591
FA 26:2	C ₂₆ H ₄₇ O ₂	391.3587	1.4	5.333
PS 44:9	C ₅₀ H ₇₉ O ₁₀ NP	884.5385	-7.0	5.171
PI 38:3	C47H84O13P	887.5629	-2.9	5.127
FA 22:2	C ₂₂ H ₃₉ O ₂	335.2952	1.2	5.049
CL 78:8	C ₈₇ H ₁₅₂ O ₁₇ P ₂	765.5271	1.7	4.957
PE O-38:4*	C43H79NO7P	752.5554	-6.1	4.851
FA 26:0	C ₂₆ H ₅₁ O ₂	395.3889	1.5	4.808
FA 20:2	C ₂₀ H ₃₅ O ₂	307.2638	-1.6	4.658
FA 24:2	C24H43O2	363.3262	1.9	4.619
PS 35:2*	C41H75NO10P	772.5183	6.3	4.571
PI 34:1	C43H80O13P	835.5342	0.0	4.535
PE 37:5	C ₄₂ H ₇₃ NO ₈ P	750.5078	-0.1	4.527
PS 39:4*	C45H79NO10P	824.5454	0.8	4.405
FA 26:1	C ₂₆ H ₄₉ O ₅	393.3734	1.0	4.340
FA 22:3	C ₂₂ H ₃₇ O ₂	333.2794	1.5	4.303
PS P-34:1*	C ₄₀ H ₇₅ NO ₉ P	744.5231	6.2	4.114
PE 38:6	C43H73NO8P	762.5082	0.4	3.958
FA 19:1	C ₁₉ H ₃₅ O ₂	295.2644	0.5	3.949
CL 72:7	$C_{81}H_{142}O_{17}P_2$	724.4841	3.6	3.704
PA 36:1	C ₃₉ H ₇₄ O ₈ P	701.5120	1.0	3.702
PI 37:4	C46H80O13P	871.5358	1.8	3.675
CL 74:7	C ₈₃ H ₁₄₆ O ₁₇ P ₂	738.5015	1.1	3.582
Cer d18:2/24:1*	C42H79NO3CI	680.5770	2.4	3.224
PG 40:6	C46H78O10P	821.5309	3.5	3.202
PI 40:5	C49H84O13P	911.5667	1.3	3.076
PG 38:3	C44H80O10P	799.5467	3.5	2.886
Pyroglutamate	$C_5H_6NO_3$	128.0343	-7.9	2.779

Tentative attribution (continued)	Molecular formula	Detected m/z	Mass error,	SAM score
PS 40:2	C46H85O10NP	842.5906	ppm 1.3	2.739
Cer d34:1	C ₃₄ H ₆₇ NO ₃ Cl	572.4818	0.5	2.717
PS 42:1	C ₄₈ H ₉₁ O ₁₀ NP	872.6408	2.5	2.497
FA 24:3	C ₂₄ H ₄₁ O ₂	361.3106	1.7	2.401
PG 18:0/18:0	C42H82O10P	777.5651	0.3	2.383
PE 40:4	C ₄₅ H ₈₁ NO ₈ P	794.5711	0.7	2.322
PI 40:4	C49H86O13P	913.5793	2.1	2.043
FA 22:6	C ₂₂ H ₃₁ O ₂	327.2326	1.2	2.005
LysoPG 18:1	C ₂₄ H ₄₆ O ₉ P	509.2881	-2.9	1.889
PG 38:4	C44H78O10P	797.5313	3.1	1.701
FA 15:0	C ₁₅ H ₂₉ O ₂	241.2172	-0.4	1.582
CL 76:8	C ₈₅ H ₁₄₈ O ₁₇ P ₂	751.5086	2.0	1.451
DG 34:1/0:0	C37H70O5CI	629.4926	1.4	1.379
MG 18:2*	C ₂₁ H ₃₈ O ₄ Cl	389.2478	-3.3	1.206
Cer d36:1	C ₃₆ H ₇₁ NO ₃ Cl	600.5143	2.5	1.134
PG 18:0/18:1	C ₄₂ H ₈₀ O ₁₀ P	775.5507	1.6	1.087
PG 42:9	C48H76O10P	843.5198	1.9	1.081
DG 36:2/0:0	C ₃₉ H ₇₂ O ₅ Cl	655.5080	1.0	1.077
FA 20:1	C ₂₀ H ₃₇ O ₂	309.2795	2.3	1.014
PE 38:4	C43H77NO8P	766.5411	2.4	0.992
Not identified	-	1104.7753	-	0.962
PI P-18:0/17:2	C44H81O12PCI	867.5187	3.2	0.846

Data are ranked based on SAM score values (highest to lowest). Attributions were assigned based on high mass accuracy and MS/MS measurements. Ions identified based on only high mass accuracy are marked with asterisks. Abbreviations: SAM, significance analysis of microarrays; FA, fatty acid; CL, cardiolipin; PE, phosphatidylethanolamine; MG, monoglyceride; PG, phosphatidylglycerol; PA, phosphatidic acid; PI, phosphatidylinositol; Cer, ceramide; LysoPG, lysophosphatidylglycerol; DG, diglyceride; MG, monoglyceride

Tentative attribution	Molecular formula	Detected m/z	Mass error, ppm	SAM score
FA 12:0	C ₁₂ H ₂₃ O ₂	199.1700	-1.8	-27.359
PI 36:1	C ₄₅ H ₈₄ O ₁₃ P	863.5660	0.6	-22.054
FA 9:0	C ₉ H ₁₇ O ₂	157.1226	-5.1	-21.089
PI 32:0	C41H78O13P	809.5214	3.5	-19.010
PI 34:1	C ₄₃ H ₈₀ O ₁₃ P	835.5368	3.1	-18.869
FA 8:0	C ₈ H ₁₅ O ₂	143.1068	-6.7	-17.678
PI 34:0	C43H82O13P	837.5465	-4.0	-16.978
PS 40:4	C46H81NO10P	838.5624	2.4	-16.454
FA 10:0	C ₁₀ H ₁₉ O ₂	171.1385	-3.2	-15.064
PE O-38:5	C43H77NO7P	750.5452	1.2	-14.994
Gluconic acid	C ₆ H ₁₁ O ₇	195.0506	-2.2	-14.851
Uridine*	C9H11N2O6	243.0624	0.6	-13.261
PI 36:2	C ₄₅ H ₈₂ O ₁₃ P	861.5486	1.5	-12.448
PE O-40:5 or PE P-40:4	C45H81NO7P	778.5781	3.2	-11.774
Cer d34:1	C34H67NO3CI	572.4819	0.7	-11.681
Cer d42:0	C ₄₂ H ₈₁ NO ₃ Cl	682.5906	-0.7	-11.212
Not identified	-	126.9040	-	-11.100
PS 38:4	C44H77NO10P	810.5308	1.9	-10.963
Cer d42:1	C ₄₂ H ₈₃ NO ₃ Cl	684.6072	0.7	-10.917
PS 42:6*	C ₄₈ H ₈₂ O ₁₀ NP	862.5556	-5.5	-10.473
Cer d36:1	C ₃₆ H ₇₁ NO ₃ CI	600.5143	2.5	-10.214
Cer d38:1	C40H79NO3CI	656.5779	3.8	-9.935
PI 38:2	C47H86O13P	889.5752	-6.7	-9.714
PS 36:1	C42H79NO10P	788.5466	-2.4	-9.425
FA 15:4	C15H21O2	233.1546	-0.4	-9.386
PI 40:5	C49H84O13P	911.5638	-1.9	-9.078
Not identified	-	713.9970	-	-8.686
PA 36:1	C ₃₉ H ₇₄ O ₈ P	701.5134	1.0	-8.538
Not identified	-	146.9650	-	-8.533
PE O-38:3*	C43H82NO7PCI	790.5528	0.6	-8.070
Not identified	-	186.0492	-	-7.868
PE O-40:8	C ₄₅ H ₇₆ NO ₈ PCI	808.5068	1.8	-7.761
PS 36:2	C42H77NO10P	786.5322	4.0	-7.456
CL 72:4	C ₈₁ H ₁₄₈ O ₁₇ P ₂	727.5054	2.0	-7.263
Not identified	-	333.0946	-	-7.173
PE O-34:2 or PE P-34:1	C ₃₉ H ₇₅ NO ₇ P	700.5309	3.2	-7.100
PS 40:3	C46H83NO10P	840.5746	-1.7	-7.023
FA 11:0	C ₁₁ H ₂₁ O ₂	185.1541	-3.3	-6.346

eTable 6. Tentative Attribution of Compounds Identified by SAM as Having Higher Relative Abundances in Metastatic Type I Than Type II Tumors

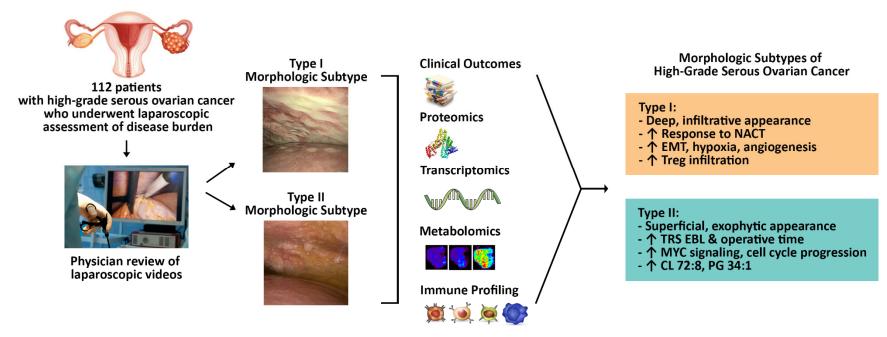
Tentative attribution (continued)	Molecular formula	Detected m/z	Mass error, ppm	SAM score
PE O-38:6*	C43H75NO7P	748.5279	2.3	-6.337
LysoPI 18:0	C ₂₇ H ₅₂ O ₁₂ P	599.3215	2.2	-6.335
PI 32:1	C ₄₁ H ₇₆ O ₁₃ P	807.5016	1.6	-6.104
PI 25:1	C ₄₄ H ₈₂ O ₁₃ P	849.5519	-2.4	-6.022
Not identified	-	188.0729	-	-5.991
CL 70:4	C79H144O17P2	713.4935	-1.4	-5.880
PE 39:5	C44H77NO8P	778.5414	2.8	-5.601
FA 7:0	C7H13O2	129.0915	-4.7	-5.576
PA 24:1	C37H70O8P	673.4832	2.7	-5.495
PI 34:2	C43H78O13P	833.5211	3.1	-5.466
PS 42:4*	C ₄₈ H ₈₅ NO ₁₀ P	866.5924	0.9	-5.370
PE 18:1/1:0	C ₂₄ H ₄₅ NO ₈ P	506.2899	2.1	-5.243
PS 40:2	C46H85O10NP	842.5906	1.3	-5.066
PS 38:1	C44H83O10NP	816.5745	1.8	-5.065
PE O-36:2*	C ₄₁ H ₇₉ NO ₇ P	728.5619	2.6	-4.998
Not identified	-	191.0726	-	-4.893
PE O-36:3 or P-36:2	C ₄₁ H ₇₇ NO ₇ P	726.5459	2.2	-4.655
PE 39:1	C44H86NO8PCI	822.5730	-6.7	-4.541
PS O-40:5*	$C_{46}H_{81}O_9NP$	822.5660	0.7	-4.541
FA 15:0	C ₁₅ H ₂₉ O ₂	241.2172	-0.4	-4.388
PG dO-40:9*	C46H76O8P	787.5333	6.4	-4.294
PS 38:3	C44H79NO10P	812.5463	2.0	-4.242
PS 38:2	C44H81NO10P	814.5577	3.3	-4.193
CL 80:8	C ₈₉ H ₁₅₆ O ₁₇ P ₂	779.5440	3.3	-4.020
PS 34:1	C40H75NO10P	760.5158	3.1	-2.917
FA 10:6;O*	C ₁₀ H ₇ O ₃	175.0409	4.8	-2.852
Cer m42:1	C ₄₂ H ₈₃ NO ₂ Cl	668.6140	3.3	-2.824
Glucose	C ₆ H ₁₂ O ₆ Cl	215.0326	-0.9	-2.749
PE 36:1	C ₄₁ H ₇₉ NO ₈ P	744.5558	1.2	-2.728
PS 40:1	C ₄₆ H ₈₇ O ₁₀ NP	844.6080	0.8	-2.708
Not identified	-	265.1472	-	-2.684
PS 42:2	C48H89O10NP	870.6248	2.1	-2.554
FA 17:0	C ₁₇ H ₃₃ O ₂	269.2489	1.1	-2.486
Benzoic acid	$C_7H_5O_2$	121.0286	-7.5	-2.484
Not identified	-	293.1762	-	-2.430
FA 20:5	C ₂₀ H ₂₉ O ₂	301.2174	0.3	-2.428
PI 40:4	C49H86O13P	913.5816	0.5	-2.274
PS 44:8	C ₅₀ H ₈₁ O ₁₀ NP	886.5557	-5.2	-2.199
MG 20:0	C ₂₃ H ₄₆ O ₄ CI	421.3103	3.1	-2.133
Prolyl-Glutamine*	C10H17N3O4CI	278.0929	5.7	-2.102
PA 32:0	C ₃₅ H ₆₈ O ₈ P	647.4686	4.4	-2.071

Tentative attribution (continued)	Molecular formula	Detected m/z	Mass error, ppm	SAM score
Not identified	-	556.3044	-	-1.841
PS 37:4*	C43H75NO10P	796.5167	4.1	-1.777
Not identified	-	146.9820	-	-1.638
PE 39:4*	C ₄₄ H ₈₀ NO ₈ PCI	816.5395	9.7	-1.610
PG 42:3*	C48H89O10PCI	891.5912	2.8	-1.609
2-Dodecylbenzenesulfonic acid*	C ₁₈ H ₂₉ O ₃ S	325.1850	2.3	-1.605
FA 13:8	C13H9O2	197.0605	-1.5	-1.589
FA 18:0	C ₁₈ H ₃₅ O ₂	283.2648	1.9	-1.494
Not identified	-	348.1582	-	-1.490
Valerenolic acid	C ₁₅ H ₂₁ O ₃	249.1495	-0.5	-1.469
Not identified	-	152.9853	-	-1.464
PG 40:8	C46H74O10P	817.5011	1.7	-1.211
Capryloylglycine*	C10H19NO3CI	236.1057	-0.8	-1.082
PG 44:5	C ₅₀ H ₈₉ O ₁₀ PCI	915.5917	3.2	-1.055
MG 18:2*	C ₂₁ H ₃₈ O ₄ CI	389.2478	-3.3	-1.037
DG 34:1/0:0	C37H70O5CI	629.4917	0.0	-0.943
Not identified	-	699.9829	-	-0.815
PG 40:5	C ₄₆ H ₈₀ O ₁₀ P	823.5496	0.2	-0.745
MG 18:0	C ₂₁ H ₄₀ O ₄ CI	391.2620	-0.2	-0.620
PE O-36:5*	C41H73NO7P	722.5158	3.9	-0.619
Cer d18:1/20:0*	C ₃₈ H ₇₅ NO ₃ Cl	628.5458	2.7	-0.559
PA 40:1	C43H83O8PCI	793.5601	10.3	-0.551
PE 34:1	C39H75NO8P	716.5255	2.7	-0.534
Not identified	-	114.9351	-	-0.490
FA 12:5;O2*	C ₁₂ H ₁₃ O ₄	221.0815	-2.0	-0.432
Not identified	-	289.0371	-	-0.362
PE O-38:4*	C43H79NO7P	752.5563	-4.9	-0.294
PE 28:2;O3*	C33H61NO11P	678.3983	-0.7	-0.101
Xanthine*	C5H3N4O2	151.0252	-6.3	-0.099

Data are ranked based on SAM score values (highest to lowest). Attributions were assigned based on high mass accuracy and MS/MS

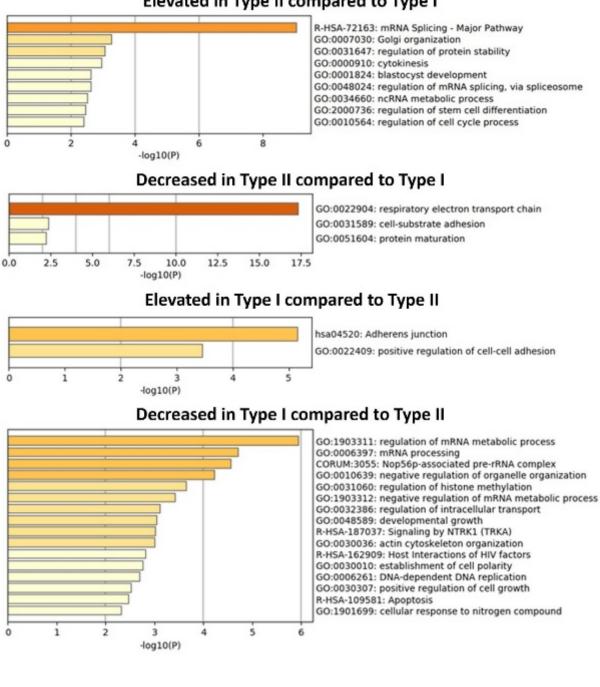
measurements. Ions identified based on only high mass accuracy are marked with asterisks. Abbreviations: SAM, significance analysis of microarrays; FA, fatty acid; PI, phosphatidylinositol; PS, phosphatidylserine; PE, phosphatidylethanolamine; Cer, ceramide; PA, phosphatidic acid; CL, cardiolipin; LysoPI, lysophosphatidylinositol; PG, phosphatidylglycerol; MG, monoglyceride; DG, diglyceride

Tentative attribution	Molecular formula	Detected m/z	Mass error, ppm	SAM score
PG 34:1	C40H76O10P	747.5198	2.2	22.505
FA 18:2	C ₁₈ H ₃₁ O ₂	279.2335	2.0	21.522
FA 18:1	C ₁₈ H ₃₂ O ₂	281.2492	2.1	17.735
N-acetylaspartic acid	C ₆ H ₈ NO ₅	174.0402	-3.4	17.214
CL 72:8	C ₈₁ H ₁₄₀ O ₁₇ P ₂	723.4811	3.1	16.476
PG 36:4	C ₄₂ H ₇₄ O ₁₀ P	769.5059	4.4	14.636
PG 34:2	C40H74O10P	745.5015	-1.4	14.597
Taurine	C ₂ H ₆ NO ₃ S	124.0064	-8.0	13.866
PG 36:3	C42H76O10P	771.5201	-2.5	12.985
PG 36:2	C42H78O10P	773.5340	0.2	12.916
FA 20:1	C ₂₀ H ₃₇ O ₂	309.2795	2.3	12.742
CL 74:9	C83H142O17P2	736.4906	5.3	12.670
FA 20:2	C ₂₀ H ₃₅ O ₂	307.2638	-1.6	12.546
Ascorbic acid	C ₆ H ₇ O ₆	175.0243	-2.9	12.545
PS 35:2*	C41H75NO10P	772.5187	6.8	12.516
Not identified	-	736.9918	-	12.069
CL 70:7	C ₇₉ H ₁₃₈ O ₁₇ P ₂	710.4689	3.0	11.960
Glutamine	C ₅ H ₉ N ₂ O ₃	145.0621	-1.4	11.747
PA O-38:2 or PA P-38:1	C41H79O7PCI	749.5278	1.3	11.508
PE O-38:7*	C ₄₃ H ₇₃ NO ₇ P	746.5132	0.3	10.513
CL 74:8	C ₈₃ H ₁₄₄ O ₁₇ P ₂	737.4921	3.3	10.300
CL 72:7	C ₈₁ H ₁₄₂ O ₁₇ P ₂	724.4855	-1.6	10.259
Glutathione	C10H16N3O6S	306.0771	1.9	9.958
FA 22:5	C ₂₂ H ₃₃ O ₂	329.2493	2.1	9.806
PS P-36:2 or PS O-36:3	C42H77NO9P	770.5368	3.4	9.770
PG 40:7	C46H76O10P	819.5203	2.6	9.134
FA 22:4	C ₂₂ H ₃₅ O ₂	331.2649	2.0	9.122
PS O-36:4 or PS P-36:3	C ₄₂ H ₇₅ NO ₉ P	768.5211	-3.4	9.054
PI 36:4	C45H78O13P	857.5210	2.9	8.847
CL 78:8	C ₈₇ H ₁₅₂ O ₁₇ P ₂	765.5271	1.7	8.741
PG 38:3	C44H80O10P	799.5467	3.5	8.607
CL 74:6	C ₈₃ H ₁₄₈ O ₁₇ P ₂	739.5074	3.7	8.205
FA 16:1	C ₁₆ H ₂₉ O ₂	253.2176	1.2	8.076
FA 22:2	C ₂₂ H ₃₉ O ₂	335.2966	3.1	7.838
FA 18:3	C ₁₈ H ₂₉ O ₂	277.2178	1.8	7.782
FA 20:3	C ₂₀ H ₃₃ O ₂	305.2493	1.3	7.619
PG 32:0	C ₃₈ H ₇₅ O ₁₀ P	721.5026	0.1	7.618
PE 36:3	C41H75NO8P	740.5263	3.7	7.549

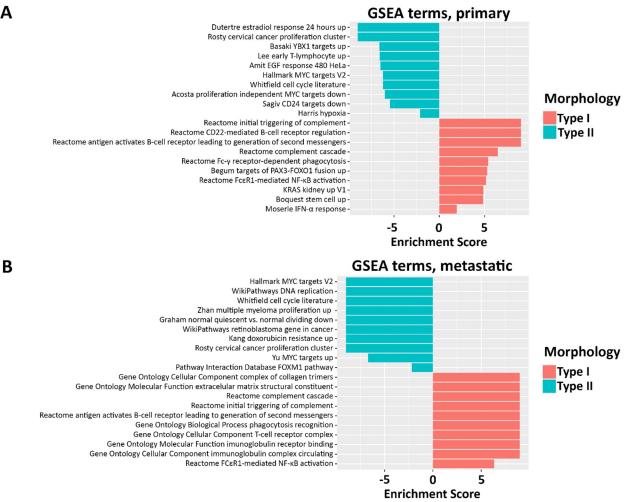

eTable 7. Tentative Attribution of Compounds Identified by SAM as Having Higher Relative Abundances in Metastatic Type II Than Type I Tumors

Tentative attribution (continued)	Molecular formula	Detected m/z	Mass error, ppm	SAM score
PE 36:2	C ₄₁ H ₇₇ NO ₈ P	742.5407	2.0	7.477
PI 38:4	C47H82O13P	885.5522	2.7	7.192
Cer d18:2/28:0*	C ₄₆ H ₈₉ NO ₃ CI	738.6605	9.3	7.059
PG 18:0/18:1	C ₄₂ H ₈₀ O ₁₀ P	775.5507	1.6	6.738
PG 40:6	C46H78O10P	821.5309	3.5	6.593
PE 20:3/1:0*	C ₂₆ H ₄₅ NO ₈ P	530.2912	-4.5	6.542
FA 19:1	C ₁₉ H ₃₅ O ₂	295.2644	0.5	6.337
FA 26:2	C ₂₆ H ₄₇ O ₂	391.3587	1.4	6.329
PE 38:5	C43H75NO8P	764.5244	1.1	6.223
Not identified	-	116.9334	-	6.024
Not identified	-	158.9109	-	5.940
FA 22:1	C ₂₂ H ₄₁ O ₂	337.3115	0.9	5.875
Not identified	-	160.9109	-	5.822
PS 37:2*	C43H79NO10P	800.5501	6.7	5.717
PS 37:1*	C ₄₃ H ₈₁ NO ₁₀ P	802.5659	6.9	5.716
FA 16:0	C ₁₆ H ₃₁ O ₂	255.2333	1.4	5.492
CL 76:8	C ₈₅ H ₁₄₈ O ₁₇ P ₂	751.5086	2.0	5.450
CL 70:6	C ₇₉ H ₁₄₀ O ₁₇ P ₂	711.4767	3.0	5.339
PE 38:6	C ₄₃ H ₇₃ NO ₈ P	762.5082	0.4	5.063
Not identified	-	115.0195	-	4.884
2-Dodecylbenzenesulfonic acid*	C ₁₈ H ₂₉ O ₃ S	325.1850	2.3	4.761
3-Hydroxypicolinic acid	C ₆ H ₄ NO ₃	138.0187	-7.0	4.740
FA 24:2	C ₂₄ H ₄₃ O ₂	363.3262	1.9	4.619
PE 20:4/1:0	C ₂₆ H ₄₃ NO ₈ P	528.2728	-0.8	4.585
PS O-38:4 or P-38:3	C44H79NO9P	796.5483	-1.9	4.547
CL 72:6	C ₈₁ H ₁₄₄ O ₁₇ P ₂	725.4940	-0.7	4.451
FA 20:0	C ₂₀ H ₃₉ O ₂	311.2956	0.1	4.437
PA 36:3	C39H70O8P	697.4815	0.2	4.426
PS 44:9	C ₅₀ H ₇₉ O ₁₀ NP	884.5385	-7.0	4.401
PI 38:5	C ₄₇ H ₈₀ O ₁₃ P	883.5338	-0.5	4.396
PI 37:4	C46H80O13P	871.5358	1.8	4.386
PG 38:4	C44H78O10P	797.5313	3.1	4.316
PI 37:3	C ₄₆ H ₈₂ O ₁₃ P	873.5506	-0.8	4.234
FA 22:3	C ₂₂ H ₃₇ O ₂	333.2794	1.5	4.210
FA 24:4	C ₂₄ H ₃₉ O ₂	359.2959	1.0	3.968
PE O-36:4*	C ₄₁ H ₇₅ NO ₇ P	724.5296	1.3	3.851
FA 22:6	C ₂₂ H ₃₁ O ₂	327.2333	1.1	3.720
PI 38:3	C47H84O13P	887.5629	-2.9	3.366
PE 34:2	C ₃₉ H ₇₃ NO ₈ P	714.5109	4.2	3.350
PE-Cer d37:1	C ₃₉ H ₇₉ N ₂ O ₆ PCI	737.5359	1.5	3.252
FA 20:4*	C ₂₀ H ₃₂ O ₂ CI	339.2088	2.4	3.242

Tentative attribution (continued)	Molecular	Detected	Mass error,	SAM score
	formula	m/z	ppm	
LysoPI 15:0	C24H46O12P	557.2729	0.5	3.161
Glutamic acid	C ₅ H ₈ NO ₄	146.0449	-6.7	3.130
Pyroglutamate	C₅H ₆ NO ₃	128.0343	-7.9	3.071
PE 37:5	C ₄₂ H ₇₃ NO ₈ P	750.5078	-0.1	3.071
FA 26:1	C ₂₆ H ₄₉ O ₅	393.3734	1.0	3.011
FA 14:0	C14H27O2	227.2014	-1.1	2.912
PG 22:1	C ₃₈ H ₇₂ O ₁₀ P	719.4879	1.4	2.891
PS 42:1	C48H91O10NP	872.6408	2.5	2.856
PG 38:6	C44H74O10P	793.5020	-0.6	2.411
CL 79:7	C ₈₅ H ₁₅₀ O ₁₇ P ₂	752.5180	0.1	2.236
PI 38:6	C ₄₇ H ₇₈ O ₁₃ P	881.5209	2.7	2.182
PG 18:0/18:0	C ₄₂ H ₈₂ O ₁₀ P	777.5651	0.3	2.150
CL 78:6*	C ₈₇ H ₁₅₆ O ₁₇ P ₂	767.5438	3.1	2.082
FA 26:0	C ₂₆ H ₅₁ O ₂	395.3889	1.5	1.982
Not identified	-	356.2645	-	1.827
DG 36:3/0:0	C ₃₉ H ₇₀ O ₅ Cl	653.4928	1.6	1.734
Not identified	-	123.9012	-	1.709
FA 24:1	$C_{24}H_{45}O_2$	365.3427	0.5	1.618
FA 17:1	C ₁₇ H ₃₁ O ₂	267.2331	0.5	1.417
PA 24:2	C37H68O8P	671.4676	2.8	1.324
CL 74:0*	C ₈₃ H ₁₆₀ O ₁₇ P ₂	745.5604	4.4	1.287
PS 39:3	C45H81NO10P	826.5628	-2.9	1.195
FA 9:1;O2*	C9H16O4	187.0972	-2.0	1.150
PE 39:6	C44H75NO8P	776.5258	2.9	1.122


Data are ranked based on SAM score values (highest to lowest). Attributions were assigned based on high mass accuracy and MS/MS measurements. Ions identified based on only high mass accuracy are marked with asterisks. Abbreviations: SAM, significance analysis of microarray; PG, phosphatidylglycerol; FA, fatty acid; CL, cardiolipin; PS, phosphatidylserine; PA, phosphatidic acid; PE, phosphatidylethanolamine; PI, phosphatidylinositol; Cer, ceramide; LysoPI, lysophosphatidylinositol; DG, diglyceride

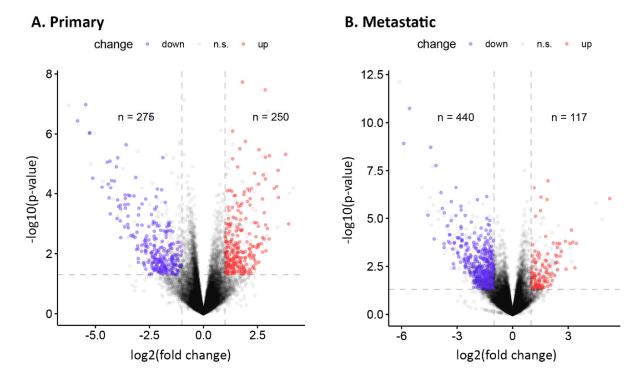
eFigure 1. Outline of the Study


Abbreviations: NACT, neoadjuvant chemotherapy; EMT, epithelial-mesenchymal transition; Treg, regulatory T cell; TRS, tumor reductive surgery; CL, cardiolipin; PG, phosphatidylglycerol

eFigure 2. NetWalker Analysis of Proteins With Significantly Altered Expression Levels Between Type I and Type II Tumors

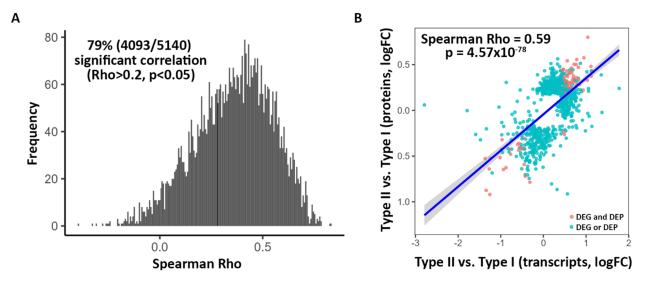
Elevated in Type II compared to Type I

eFigure 3. Differential mRNA Transcript Expression Analysis of HGSOC Type I and Type II Tumors. Representative Gene Set Enrichment Analysis (GSEA) of RNA Sequencing Results Showing Pathway Changes in Primary (A) and Metastatic (B) Site Samples

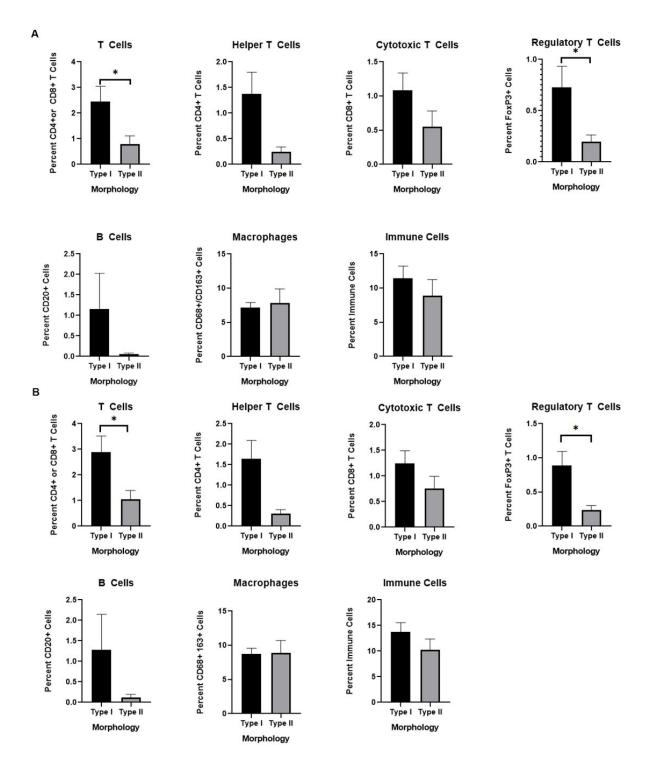


Enrichment scores are calculated based on GSEA reported p-values and false discovery rate values. Abbreviations: GSEA, Gene Set Enrichment Analysis; YBX1, Y-box binding protein 1; EGF, epidermal growth factor; MYC, avian myelocytomatosis viral protooncogene; CD, cluster of differentiation; Fc-γ, fragment crystallizable-gamma; PAX3, paired box 3; FOXO1, forkhead box O1; FccR1, fragment crystallizable-epsilon receptor 1; NF-KB, nuclear factor-kappa B; KRAS, Kirsten rat sarcoma viral proto-oncogene; IFN-α, interferon-alpha; FOXM1, forkhead box M1.

© 2022 Handley KF et al. JAMA Network Open.

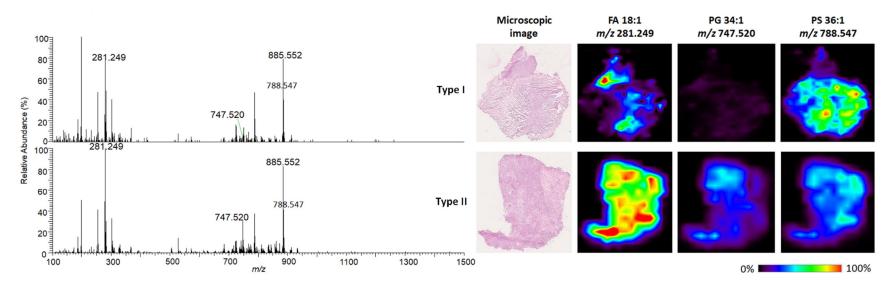

Α

eFigure 4. Volcano Plots from RNA Sequencing of Patient-Derived (A) Primary and (B) Metastatic High-Grade Serous Ovarian Cancer Samples of Type I vs Type II Morphologic Subtypes


Thresholds for statistical significance, represented by the dashed lines, were p < 0.05 and log_2 fold change of >1.0 or <-1.0. Abbreviations: n.s., not significant

eFigure 5. (A) Concordance Between All Genes and Corresponding Proteins Profiled by Both RNA Sequencing-Based Transcriptomics and Quantitative Mass Spectroscopy-Based Proteomics. (B) Correlation of Changes in Differentially Expressed Transcript/Protein Levels Between Type I and Type II Morphologic Subtypes

Red, genes identified by both RNA sequencing and quantitative mass spectroscopy. Blue, genes identified by either RNA sequencing or quantitative mass spectroscopy.


Abbreviations: FC, fold change; DEG, differentially expressed gene; DEP, differentially expressed protein

eFigure 6. Immune Population Infiltration in Predominant Type I and Type II Morphologic Subtypes in the (A) Tumor Area and (B) Total Area (Tumor/Non-Tumor)

The percentages of immune populations, including all T cells, helper T cells, cytotoxic T cells, regulatory T cells, B cells, macrophages, and all immune cells, were compared. P-values were determined with either a Welch t-test or a Mann-Whitney test according to whether the data were normally distributed. Data are presented as the means ± SEMs. *p<0.05.

eFigure 7. Representative Desorption Electrospray Ionization Mass Specta and Ion Images for Metastatic Tissues of Type I and Type II Morphologic Subtypes

In the ion images, red areas represent the highest relative abundances (100%), and black areas represent the lowest relative abundances (0%). Lipid species are described by their numbers of fatty-acid chain carbons and double bonds.

eReferences

- 1. Fleming ND, Nick AM, Coleman RL, et al. Laparoscopic Surgical Algorithm to Triage the Timing of Tumor Reductive Surgery in Advanced Ovarian Cancer. *Obstet Gynecol.* 2018;132(3):545-554.
- 2. Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. Research electronic data capture (REDCap)--a metadata-driven methodology and workflow process for providing translational research informatics support. *J Biomed Inform*. 2009;42(2):377-381.
- 3. Lee S, Zhao L, Rojas C, et al. Molecular Analysis of Clinically Defined Subsets of High-Grade Serous Ovarian Cancer. *Cell Rep.* 2020;31(2):107502.
- 4. Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. Salmon provides fast and biasaware quantification of transcript expression. *Nat Methods*. 2017;14(4):417-419.
- 5. Zhang Y, Parmigiani G, Johnson WE. ComBat-seq: batch effect adjustment for RNA-seq count data. *NAR Genom Bioinform*. 2020;2(3):lqaa078.
- 6. Yoshihara K, Shahmoradgoli M, Martinez E, et al. Inferring tumour purity and stromal and immune cell admixture from expression data. *Nat Commun.* 2013;4:2612.
- 7. Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. *Proc Natl Acad Sci U S A*. 2005;102(43):15545-15550.
- 8. Mootha VK, Lindgren CM, Eriksson KF, et al. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. *Nat Genet*. 2003;34(3):267-273.
- 9. Eberlin LS, Tibshirani RJ, Zhang J, et al. Molecular assessment of surgical-resection margins of gastric cancer by mass-spectrometric imaging. *Proc Natl Acad Sci U S A*. 2014;111(7):2436-2441.
- 10. Eberlin LS, Ferreira CR, Dill AL, Ifa DR, Cheng L, Cooks RG. Nondestructive, histologically compatible tissue imaging by desorption electrospray ionization mass spectrometry. *Chembiochem.* 2011;12(14):2129-2132.