Supplementary information

The effects of the COVID-19 pandemic on community respiratory virus activity

In the format provided by the authors and unedited

Supplementary information

The effects of the COVID-19 pandemic on community respiratory virus activity

Eric J. Chow¹, Timothy M. Uyeki² and Helen Y. Chu^{1*}

¹Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA, USA ²Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, USA

Contents

Supplementary Table 1. Community Endemic viruses Associated with Respiratory Infections in H	Humans2
Supplementary References	8

Name	Taxonomy	Virology	Clinical Features	Seasonality	Methods of Transmission	Community Activity Changes During the COVID-19 Pandemic
Adenovirus ¹	Family: Adenoviridae Genus: Mastadenovirus Species: Human mastadenovirus A-G Seroptye: > 80 serotypes	Double-stranded, non-enveloped DNA virus	Range of clinical disease phenotypes including upper and lower respiratory tract and gastrointestinal disease that may differ by serotype; systemic disease in those who are immunocompromised; exacerbation of underlying conditions; can cause latent infections and reactivate when the immune system is compromised ²⁻⁸	Year-round circulation with peaks in the winter and early spring in temperate climates; possible species and serotype-specific seasonality ²	Transmission likely influenced by clinical disease phenotype including respiratory droplets, mucosal and conjunctival inoculation, fecal- oral spread, fomite transfer and exposure to bodily fluids; can have long shedding period	• Adenoviruses experienced a decrease in community activity at the beginning of the COVID-19 pandemic, but detections increased and persisted despite ongoing use of non- pharmaceutical interventions in some locations. ⁹⁻¹²
Human bocavirus ^{13,14}	Family: Parvoviridae Genus: Bocaparovirus Species: Human bocavirus 1-4	Single-stranded, non- enveloped DNA virus	Respiratory tract disease frequently accompanied by other viral co-infections; may also be associated with gastrointestinal disease in some people; exacerbation of underlying conditions ^{13,15,16}	Not well described, but in temperate climates appears to circulate year-round with highest prevalence in the autumn to spring ^{13,17}	Thought to be primarily transmitted via respiratory droplets, may also be transmitted via fecal- oral transmission; found in respiratory secretions, blood and feces; theoretical fomite transmission given its resistance to environmental factors on frequently touched surfaces ^{15,18-20}	• Across most locations, human bocavirus activity decreased at the onset of the COVID-19 pandemic with reports of infection resurgences later in 2020. ^{12,21-24}
Human coronavirus, seasonal ^{20,25,26}	Family: Coronaviridae Genus: Alphacoronavirus Species: HCoV-229E, HCoV-NL63	Single-stranded, positive-sense, enveloped RNA virus	Upper and lower respiratory tract disease; exacerbation of underlying conditions; likely species-specific clinical disease phenotypes ²⁷⁻²⁹	Contributes to annual winter peaks with alternating predominance of species; HCoV-OC43 typically shows an annual peak in winter	Transmitted primarily through respiratory droplets and aerosols and less commonly through direct contact or self- inoculation through	•All four seasonal human coronaviruses experienced marked reductions early in the COVID-19 pandemic and remained suppressed through the end of 2020 in the US. ^{36,37}

Supplementary Table 1 Community Endemic Viruses Associated with Respiratory Infections in Humans

	Family: <i>Coronaviridae</i> Genus: <i>Betacoronavirus</i> Species: HCoV-HKU1, ³⁸ HCoV-OC43			months; Tropical climates and in temperate sites in China, there is less of a defined seasonality with HCoV circulation ^{27,30,31}	fomites; has been recovered in feces, although oral-fecal route is not considered to be a significant transmission mode in humans ³²⁻³⁵	•In the US, seasonal epidemics of all four seasonal human coronavirus occurred early in 2021. Timing of these peaks varied by geography and species with elevated detection extending into summer in most locations. ³⁷
Enterovirus ³⁹	Family: Picornaviridae Genus: Enterovirus Species: Enterovirus A-D	Single-stranded, positive-sense, non- enveloped RNA virus	Respiratory tract and gastrointestinal disease, systemic infection, acute cardiovascular events and central nervous symptom infection, dermatologic disease; clinical phenotype frequently associated with specific species and serotypes; exacerbation of underlying conditions ^{39,40}	Regional variations by latitudinal gradients; in the US southern states have more year-round circulation while seasonal peaks occur more in northern regions and a national peak typically during summer months; shifting patterns of serotypes with possible unique seasonality (e.g. Enterovirus D68 with biennial regional circulation) ^{41,42}	Transmission can vary by species and serotype affected by the clinical disease phenotype, Transmission via respiratory droplets or the fecal-oral route are most common; possible vertical transmission perinatally ⁴³	 Most molecular tests are not able to distinguish between enteroviruses and rhinoviruses. Reports across different countries and regions demonstrated decreased rhinoviruses and respiratory enterovirus activity associated with broad non-pharmaceutical intervention implementation early in the COVID-19 pandemic.⁴⁴⁻⁴⁶ Unlike other respiratory viruses that remained suppressed, respiratory enterovirus and rhinovirus detection increased back to or above baseline seasonal levels in the middle of 2020. Activity levels persisted despite the ongoing use of non- pharmaceutical interventions in most localities and may reflect inherent viral properties that allow infections to quickly return when NPI implementation is loosened. 922.2445.46
Influenza virus ^{47,48}	Family: Orthomyxoviridae Genus: Alphainfluenzavirus Species: Influenza A Virus Subtype: A(H3N2), A(H1N1)pdm09	Single-stranded, negative-sense, enveloped segmented RNA virus	Influenza A and B viruses cause upper and lower respiratory tract disease; associated with extrapulmonary manifestations including neurologic complications and acute cardiovascular events; exacerbation of underlying conditions; Influenza C virus infection typically associated with mild upper respiratory tract	Seasonal epidemic peaks in temperate climates with variability of seasonality in tropical locations including year-round circulation; Species, subtype, and virus strain predominance may vary by year ^{48,52-55}	Transmission by respiratory droplets including aerosols from infected individuals at the onset of symptoms; fomite transmission possible as well although not thought to be a large contributor to	 Global seasonal influenza activity including healthcare burden associated with influenza virus infection abruptly decreased at the onset of the COVID-19 pandemic coinciding with broad non-pharmaceutical intervention implementation.^{11,44,59-64} Influenza activity remained low

	Family: Orthomyxoviridae Genus: Betainfluenzavirus Species: Influenza B virus Lineage: B/Victoria, B/Yamagata		disease with lower respiratory tract and gastrointestinal disease also reported ⁴⁹⁻⁵¹		infection; asymptomatic or pauci-symptomatic individuals may play a role in community transmission ⁵⁶⁻⁵⁸	in many localities through 2021 with sporadic outbreaks reported and interseasonal epidemics; relative increase in influenza activity in 2021-2022 influenza seasons in northern temperate zones and countries in the tropics and subtropics. ^{10,65-68}
	Family: Orthomyxoviridae Genus: Gammainfluenzavirus Species: Influenza C virus Lineage: C/Taylor, C/Mississippi, C/Aichi, C/Yamagata, C/Kanagawa, C/Sao Paulo ^{51,70}			Poorly understood; peaks during colder months with possible biennial epidemics ⁵¹		 Low levels of circulating influenza virus may create challenges for annual vaccine strain selection. While influenza A(H3N2), A(H1N1)pdm09, B/Victoria viruses have been reported since the start of the COVID-19 pandemic, there have been no confirmed reports of influenza B/Yamagata since March 2020. ⁶⁹
Human metapneumovirus ⁷¹⁻⁷³	Family: Pneumoviridae Genus: Metapneumovirus Species: Human metapneumovirus Lineage: A1, A2a, A2b, B1, B2	Single-stranded, negative-sense, enveloped RNA virus	Upper and lower respiratory tract disease; exacerbation of underlying conditions; common cause of community-acquired pneumonia in hospitalized young children	Annual co-circulation of HMV lineages with alternating predominant lineages that show variability in seasonal peaks; Noted biennial peaks every 2 years in winter and spring ^{74,75}	Transmission via respiratory droplets and close/direct contact with others; infectious viral particles can be found on frequently touched surfaces but to what extent fomite transmission contributes to community burden is unknown ⁷¹	•Community circulation as well as healthcare burden associated with human metapneumovirus was reduced with the spread of SARS-CoV-2 and remained low through the end of 2020. ^{9-11,21,76,77}
	Family: Paramyxoviridae Genus:Respirovirus		Upper and lower respiratory	HPIV-1: Seasonal peaks in autumn every other year ^{80,81}	Transmission	•Along with other enveloped viruses, human parainfluenza
Human parainfluenza virus ^{78,79}	Species: Humanrespirovirus 1 (HPIV-1),Human respirovirus 3(HPIV-3)Single-stranded,negative-sense,enveloped RNA virus	tract disease; exacerbation of underlying conditions ⁷⁸	HPIV-3: Seasonal peaks in the spring ^{80,81}	respiratory droplets and less likely aerosolized particles; possible self- inoculation through	virus circulation decreased at the outset of the COVID-19 pandemic and remained low through the end of 2020; this corresponded with reductions in amereancy department winits and	
	Family: Paramyxoviridae Genus:Orthorubulavirus Species: Human orthorubulavirus 2 (HPIV- 2), Human		HPIV-2 most commonly associated with less severe upper respiratory tract disease but can also cause lower respiratory tract disease; HPIV-4 can also cause	HPIV-2: Inconsistent seasonal peaks occasional occurring in the autumn ⁷⁹⁻⁸¹	touching of contaminated surfaces ⁷⁸	hospitalizations associated with human parainfluenza virus infection. 9-11,21,76,77

	orthorubulavirus 4 (HPIV- 4)		both upper and lower respiratory tract disease but is overall less commonly detected; exacerbation of underlying conditions ⁷⁸	HPIV-4: Autumn-winter seasonality ⁷⁹⁻⁸¹		
Human parechovirus ^{82,83}	Family: Picornaviridae Genus: Parechovirus Species: Parechovirus A Genotype: HPEV 1-19	Single-stranded, positive-sense, non- enveloped RNA virus	Respiratory tract and gastrointestinal disease; central nervous system infection reported; infection leading to myocarditis reported as well	Year-round circulation with summer peaks ^{83,84}	Transmitted through respiratory secretions, droplets and feces ⁸⁵⁻⁸⁸	•Few studies have been published on human parechovirus activity during the COVID-19 pandemic and baseline surveillance data are limited; however available data suggest there was decreased detection of human parechovirus in young children early in 2020. ²¹

Respiratory syncytial virus ⁸⁹	Family: Pneumoviridae Genus: Orthopneumovirus Species: Human orthopneumovirus (RSV) Subtype: RSV-A, RSV-B	Single-stranded, negative-sense, enveloped RNA virus	Upper and lower respiratory tract disease; exacerbation of underlying conditions; leading cause of lower respiratory tract disease including bronchiolitis and pneumonia in young children; c primary infectious cause of infant hospitalizations in the US before the COVID-19 pandemic; cause of pneumonia in adults; central nervous system disease has also been reported ^{90- 92}	Seasonal peaks in winter often overlapping with influenza virus circulation in temperate climates; seasonal peaks also seen in tropical climates in colder months ^{93.95}	Transmission via respiratory droplets between close contacts; self- inoculation through touching of contaminated surfaces; Contact and fomite transmission also possible ⁹⁶⁻⁹⁸	 In 2020, respiratory syncytial virus (RSV) circulation decreased across geographical regions and climate zone in association with stay-at-home orders which reduced non-household social interactions and limited transmission through close contacts in childcare or school-age environments. During subsequent seasons, countries reported rapid resurgence of RSV infections with some localities experiencing inter-seasonal RSV circulation with uncharacteristic peaks during times of the year not typical of RSV seasonality.^{100,101} RSV-associated emergency department visits and hospitalizations similarly decreased with healthcare burden mirroring community circulation levels as cases returned from 2021 onward.^{24,36,77,100-110} RSV-associated diagnoses including acute respiratory illness and bronchiolitis experienced similar changes with decreases early in the COVID-19 pandemic and then a return to equivalent or higher levels as non-pharmaceutical intervention measures were relaxed.¹¹¹ RSV genomic diversity may have been affected by the reduction in community circulation with regional shifts in subtype predominance; Reports from Australia showed reductions in RSV-A sublineages and emergence of novel lineages.¹¹¹
--	---	--	--	---	--	--

Rhinovirus ^{82,112,113}	Family: Picornaviridae Genus: Enterovirus Species: Rhinovirus A, Rhinovirus B, Rhinovirus C Serotype: ~ 160 serotypes	Single-stranded, positive-sense, non- enveloped RNA virus	Upper and lower respiratory tract disease; exacerbation of underlying conditions; causes community acquired pneumonia in young children and elderly adults ^{91,114-117}	Year-round circulation with occasional seasonal peaks in late summer to autumn and spring; regional variation in seasonality has been reported; seasonality also may be dependent on circulating serotype ^{113,118-122}	Transmission via respiratory droplets and aerosols between close contacts; long shedding period; self- inoculation via contaminated surfaces, person-to- person contact and fomite transmission also possible ¹²³⁻¹²⁶	 •Most molecular tests are unable to differentiate between rhinoviruses and enteroviruses given their genetic relatedness; genomic sequencing is frequently required to differentiate these viral species •Decreases in rhinovirus and respiratory enterovirus activity coincided with the near- simultaneous implementation of COVID-19 community mitigation measures, but early relaxing of these policies was associated with a rebound of activity returning to pre-COVID- 19 pandemic levels. ^{22,24,36,44,127,128} •One genomic study of rhinovirus activity in South Korea showed similar predominance of rhinovirus species before and during the COVID-19 pandemic.²²
----------------------------------	---	---	---	---	--	---

Supplementary References

- 1 Lynch, J. P., 3rd & Kajon, A. E. Adenovirus: Epidemiology, Global Spread of Novel Serotypes, and Advances in Treatment and Prevention. Semin Respir Crit Care Med 37, 586-602 (2016). <u>https://doi.org:10.1055/s-0036-1584923</u>
- 2 Lynch, J. P., 3rd, Fishbein, M. & Echavarria, M. Adenovirus. Semin Respir Crit Care Med 32, 494-511 (2011).
- https://doi.org:10.1055/s-0031-1283287
 Crenshaw, B. J., Jones, L. B., Bell, C. R., Kumar, S. & Matthews, Q. L. Perspective on Adenoviruses: Epidemiology, Pathogenicity, and Gene Therapy. *Biomedicines* 7 (2019). https://doi.org:10.3390/biomedicines7030061
- Heim, A., Ebnet, C., Harste, G. & Pring-Akerblom, P. Rapid and quantitative detection of human adenovirus DNA by real-time PCR. J Med Virol 70, 228-239 (2003). https://doi.org.10.1002/jmv.10382
- 5 Biggs, H. M. et al. Adenovirus-Associated Influenza-Like Illness among College Students, Pennsylvania, USA. Emerg Infect Dis 24, 2117-2119 (2018). https://doi.org:10.3201/eid2411.180488
- 6 Killerby, M. E. et al. Respiratory Illness Associated With Emergent Human Adenovirus Genome Type 7d, New Jersey, 2016-2017. Open Forum Infect Dis 6, ofz017 (2019). https://doi.org/10.1093/ofid/ofz017
- 7 Vento, T. J. et al. Pneumonia in military trainees: a comparison study based on adenovirus serotype 14 infection. J Infect Dis 203, 1388-1395 (2011). https://doi.org:10.1093/infdis/jir040
- 8 Brosch, L. *et al.* Adenovirus serotype 14 pneumonia at a basic military training site in the United States, spring 2007: a case series. *Mil Med* **174**, 1295-1299 (2009). https://doi.org:10.7205/milmed-d-03-0208
- 9 El-Heneidy, A. et al. Respiratory virus detection during the COVID-19 pandemic in Queensland, Australia. Aust N Z J Public Health 46, 10-15 (2022). https://doi.org:10.1111/1753-6405.13168
- 10 Seattle Flu Study: Pathogens, <<u>https://seattleflu.org/pathogens</u>> (2022).
- 11 Park, K. Y., Seo, S., Han, J. & Park, J. Y. Respiratory virus surveillance in Canada during the COVID-19 pandemic: An epidemiological analysis of the effectiveness of pandemic-related public health measures in reducing seasonal respiratory viruses test positivity. *PLoS One* 16, e0253451 (2021). <u>https://doi.org;10.1371/journal.pone.0253451</u>
- 12 Ippolito, G. *et al.* Disappearance of Seasonal Respiratory Viruses in Children Under Two Years Old During COVID-19 Pandemic: A Monocentric Retrospective Study in Milan, Italy. *Front Pediatr* 9, 721005 (2021). <u>https://doi.org:10.3389/fped.2021.721005</u>
- 13 Guido, M. et al. Human bocavirus: Current knowledge and future challenges. World J Gastroenterol 22, 8684-8697 (2016). https://doi.org:10.3748/wjg.v22.i39.8684
- 14 Kapoor, A. et al. Human bocaviruses are highly diverse, dispersed, recombination prone, and prevalent in enteric infections. J Infect Dis 201, 1633-1643 (2010). https://doi.org:10.1086/652416
- 15 Foulongne, V., Rodiere, M. & Segondy, M. Human Bocavirus in children. *Emerg Infect Dis* **12**, 862-863 (2006). https://doi.org:10.3201/eid1205.051523
- 16 Anderson, L. J. Human bocavirus: a new viral pathogen. Clin Infect Dis 44, 911-912 (2007). https://doi.org:10.1086/512438
- 17 Lau, S. K. et al. Clinical and molecular epidemiology of human bocavirus in respiratory and fecal samples from children in Hong Kong. J Infect Dis 196, 986-993 (2007). <u>https://doi.org:10.1086/521310</u>
- 18 Vicente, D., Cilla, G., Montes, M., Perez-Yarza, E. G. & Perez-Trallero, E. Human bocavirus, a respiratory and enteric virus. *Emerg Infect Dis* 13, 636-637 (2007). <u>https://doi.org:10.3201/eid1304.061501</u>
- 19 Schildgen, O. Human bocavirus: lessons learned to date. *Pathogens* 2, 1-12 (2013). https://doi.org:10.3390/pathogens2010001
- 20 Ljubin-Sternak, S., Mestrovic, T., Luksic, I., Mijac, M. & Vranes, J. Seasonal Coronaviruses and Other Neglected Respiratory Viruses: A Global Perspective and a Local Snapshot. *Front Public Health* 9, 691163 (2021). https://doi.org:10.3389/fpubh.2021.691163
- 21 Takashita, E. et al. Increased risk of rhinovirus infection in children during the coronavirus disease-19 pandemic. Influenza Other Respir Viruses 15, 488-494 (2021). https://doi.org:10.1111/irv.12854
- 22 Kim, H. M. *et al.* Impact of coronavirus disease 2019 on respiratory surveillance and explanation of high detection rate of human rhinovirus during the pandemic in the Republic of Korea. *Influenza Other Respir Viruses* 15, 721-731 (2021). https://doi.org:10.1111/irv.12894
- 23 Li, Z. J. et al. Broad impacts of COVID-19 pandemic on acute respiratory infections in China: an observational study. Clin Infect Dis (2021). <u>https://doi.org:10.1093/cid/ciab942</u>
- 24 Park, S., Michelow, I. C. & Choe, Y. J. Shifting Patterns of Respiratory Virus Activity Following Social Distancing Measures for Coronavirus Disease 2019 in South Korea. J Infect Dis 224, 1900-1906 (2021). <u>https://doi.org:10.1093/infdis/jiab231</u>
- 25 Coronaviridae Study Group of the International Committee on Taxonomy of, V. The species Severe acute respiratory syndromerelated coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. *Nat Microbiol* 5, 536-544 (2020). https://doi.org:10.1038/s41564-020-0695-z
- 26 V'Kovski, P., Kratzel, A., Steiner, S., Stalder, H. & Thiel, V. Coronavirus biology and replication: implications for SARS-CoV-2. Nat Rev Microbiol 19, 155-170 (2021). https://doi.org:10.1038/s41579-020-00468-6
- 27 Killerby, M. E. et al. Human coronavirus circulation in the United States 2014-2017. J Clin Virol 101, 52-56 (2018). https://doi.org:10.1016/j.jcv.2018.01.019
- 28 Gerna, G. et al. Genetic variability of human coronavirus OC43-, 229E-, and NL63-like strains and their association with lower respiratory tract infections of hospitalized infants and immunocompromised patients. J Med Virol 78, 938-949 (2006). https://doi.org:10.1002/jmv.20645
- 29 Gaunt, E. R., Hardie, A., Claas, E. C., Simmonds, P. & Templeton, K. E. Epidemiology and clinical presentations of the four human coronaviruses 229E, HKU1, NL63, and OC43 detected over 3 years using a novel multiplex real-time PCR method. *J Clin Microbiol* 48, 2940-2947 (2010). https://doi.org:10.1128/JCM.00636-10
- 30 Li, Y., Wang, X. & Nair, H. Global Seasonality of Human Seasonal Coronaviruses: A Clue for Postpandemic Circulating Season of Severe Acute Respiratory Syndrome Coronavirus 2? J Infect Dis 222, 1090-1097 (2020). https://doi.org:10.1093/infdis/jiaa436
- 31 Monto, A. S. et al. Coronavirus Occurrence and Transmission Over 8 Years in the HIVE Cohort of Households in Michigan. J Infect Dis 222, 9-16 (2020). <u>https://doi.org:10.1093/infdis/jiaa161</u>

- 32 Aboubakr, H. A., Sharafeldin, T. A. & Goyal, S. M. Stability of SARS-CoV-2 and other coronaviruses in the environment and on common touch surfaces and the influence of climatic conditions: A review. *Transbound Emerg Dis* **68**, 296-312 (2021). https://doi.org:10.1111/tbed.13707
- 33 Leung, N. H. L. Transmissibility and transmission of respiratory viruses. Nat Rev Microbiol 19, 528-545 (2021). https://doi.org:10.1038/s41579-021-00535-6
- 34 Monto, A. S., Cowling, B. J. & Peiris, J. M. Coronaviruses. 199-223 (Springer Science+Business Media, 2014).
- 35 Zulli, A. *et al.* Occurrence of respiratory viruses on school desks. *Am J Infect Control* **49**, 464-468 (2021). https://doi.org:10.1016/j.ajic.2020.12.006
- 36 Song, X. *et al.* Common seasonal respiratory viral infections in children before and during the coronavirus disease 2019 (COVID-19) pandemic. *Infect Control Hosp Epidemiol*, 1-5 (2021). <u>https://doi.org:10.1017/ice.2021.430</u>
- 37 Centers for Disease Control and Prevention. Census Regional Trends for Common Human Coronaviruses, <<u>https://www.cdc.gov/surveillance/nrevss/coronavirus/region.html</u>> (2021).
- 38 Woo, P. C. *et al.* Comparative analysis of 22 coronavirus HKU1 genomes reveals a novel genotype and evidence of natural recombination in coronavirus HKU1. *J Virol* **80**, 7136-7145 (2006). <u>https://doi.org:10.1128/JVI.00509-06</u>
- 39 Centers for Disease Control and Prevention. Enteroviruses., <<u>https://www.cdc.gov/dotw/enteroviruses/index.html</u>> (2021).
- 40 de Graaf, H. *et al.* Severe Enterovirus Infections in Hospitalized Children in the South of England: Clinical Phenotypes and Causative Genotypes. *Pediatr Infect Dis J* **35**, 723-727 (2016). <u>https://doi.org:10.1097/INF.000000000001093</u>
- 41 Pons-Salort, M. *et al.* The seasonality of nonpolio enteroviruses in the United States: Patterns and drivers. *Proc Natl Acad Sci U S A* **115**, 3078-3083 (2018). <u>https://doi.org:10.1073/pnas.1721159115</u>
- 42 Messacar, K., Pretty, K., Reno, S. & Dominguez, S. R. Continued biennial circulation of enterovirus D68 in Colorado. *J Clin Virol* 113, 24-26 (2019). https://doi.org:10.1016/j.jcv.2019.01.008
- 43 Chuang, Y. Y. & Huang, Y. C. Enteroviral infection in neonates. J Microbiol Immunol Infect **52**, 851-857 (2019). https://doi.org:10.1016/j.jmii.2019.08.018
- 44 Olsen, S. J. *et al.* Changes in Influenza and Other Respiratory Virus Activity During the COVID-19 Pandemic United States, 2020-2021. *MMWR Morb Mortal Wkly Rep* **70**, 1013-1019 (2021). <u>https://doi.org:10.15585/mmwr.mm7029a1</u>
- 45 Cooksey, G. L. S. *et al.* Severe Acute Respiratory Syndrome Coronavirus 2 and Respiratory Virus Sentinel Surveillance, California, USA, May 10, 2020-June 12, 2021. *Emerg Infect Dis* 28, 9-19 (2022). <u>https://doi.org:10.3201/eid2801.211682</u>
- 46 Kuitunen, I., Artama, M., Haapanen, M. & Renko, M. Rhinovirus spread in children during the COVID-19 pandemic despite social restrictions-A nationwide register study in Finland. *J Med Virol* **93**, 6063-6067 (2021). https://doi.org:10.1002/jmv.27180
- 47 Koutsakos, M., Wheatley, A. K., Laurie, K., Kent, S. J. & Rockman, S. Influenza lineage extinction during the COVID-19 pandemic? *Nat Rev Microbiol* **19**, 741-742 (2021). <u>https://doi.org:10.1038/s41579-021-00642-4</u>
- 48 Li, Y. *et al.* Global patterns in monthly activity of influenza virus, respiratory syncytial virus, parainfluenza virus, and metapneumovirus: a systematic analysis. *Lancet Glob Health* **7**, e1031-e1045 (2019). https://doi.org;10.1016/S2214-109X(19)30264-5
- 49 Chow, E. J. et al. Acute Cardiovascular Events Associated With Influenza in Hospitalized Adults : A Cross-sectional Study. Ann Intern Med 173, 605-613 (2020). https://doi.org:10.7326/M20-1509
- 50 Chow, E. J. *et al.* Respiratory and Nonrespiratory Diagnoses Associated With Influenza in Hospitalized Adults. *JAMA Netw Open* **3**, e201323 (2020). https://doi.org:10.1001/jamanetworkopen.2020.1323
- 51 Sederdahl, B. K. & Williams, J. V. Epidemiology and Clinical Characteristics of Influenza C Virus. Viruses 12 (2020). https://doi.org:10.3390/v12010089
- 52 Centers for Disease Control and Prevention. Fluview: Flu Activity & Surveillance, https://www.cdc.gov/flu/weekly/fluactivitysurv.htm> (2022).
- 53 Drori, Y. *et al.* Influenza vaccine effectiveness against laboratory-confirmed influenza in a vaccine-mismatched influenza B-dominant season. *Vaccine* **38**, 8387-8395 (2020). <u>https://doi.org:10.1016/j.vaccine.2020.10.074</u>
- 54 Owusu, D. et al. Early Season Pediatric Influenza B/Victoria Virus Infections Associated with a Recently Emerged Virus Subclade -Louisiana, 2019. MMWR Morb Mortal Wkly Rep 69, 40-43 (2020). https://doi.org:10.15585/mmwr.mm6902e1
- 55 Azziz Baumgartner, E. et al. Seasonality, timing, and climate drivers of influenza activity worldwide. J Infect Dis 206, 838-846 (2012). <u>https://doi.org:10.1093/infdis/jis467</u>
- 56 Cowling, B. J. *et al.* Aerosol transmission is an important mode of influenza A virus spread. *Nat Commun* **4**, 1935 (2013). https://doi.org:10.1038/ncomms2922
- 57 Milton, D. K., Fabian, M. P., Cowling, B. J., Grantham, M. L. & McDevitt, J. J. Influenza virus aerosols in human exhaled breath: particle size, culturability, and effect of surgical masks. *PLoS Pathog* 9, e1003205 (2013). https://doi.org:10.1371/journal.ppat.1003205
- 58 Ip, D. K. *et al.* Viral Shedding and Transmission Potential of Asymptomatic and Paucisymptomatic Influenza Virus Infections in the Community. *Clin Infect Dis* **64**, 736-742 (2017). <u>https://doi.org:10.1093/cid/ciw841</u>
- 59 Laurie, K. L. & Rockman, S. Which influenza viruses will emerge following the SARS-CoV-2 pandemic? Influenza Other Respir Viruses 15, 573-576 (2021). https://doi.org:10.1111/irv.12866
- 60 Olsen, S. J. *et al.* Decreased Influenza Activity During the COVID-19 Pandemic United States, Australia, Chile, and South Africa, 2020. *MMWR Morb Mortal Wkly Rep* **69**, 1305-1309 (2020). <u>https://doi.org:10.15585/mmwr.mm6937a6</u>
- 61 Feng, L. *et al.* Impact of COVID-19 outbreaks and interventions on influenza in China and the United States. *Nat Commun* **12**, 3249 (2021). <u>https://doi.org:10.1038/s41467-021-23440-1</u>
- 62 Hills, T., Kearns, N., Kearns, C. & Beasley, R. Influenza control during the COVID-19 pandemic. *Lancet* **396**, 1633-1634 (2020). https://doi.org:10.1016/S0140-6736(20)32166-8
- 63 Arellanos-Soto, D. *et al.* Decline in influenza cases in Mexico after the implementation of public health measures for COVID-19. *Sci Rep* **11**, 10730 (2021). <u>https://doi.org:10.1038/s41598-021-90329-w</u>
- 64 Sullivan, S. G. *et al.* Where has all the influenza gone? The impact of COVID-19 on the circulation of influenza and other respiratory viruses, Australia, March to September 2020. *Euro Surveill* **25** (2020). <u>https://doi.org:10.2807/1560-7917.ES.2020.25.47.2001847</u>
- 65 Huang, W. *et al.* Epidemiological and Virological Surveillance of Seasonal Influenza Viruses China, 2020-2021. *China CDC Wkly* **3**, 918-922 (2021). <u>https://doi.org:10.46234/ccdcw2021.224</u>
- 66 World Health Organization. Weekly Epidemiological Record (WER), 25 March 2022, Vol. 97, No. 12, <<u>https://reliefweb.int/report/world/weekly-epidemiological-record-wer-25-march-2022-vol-97-no-12-pp109-132-enfr</u>> (2022).

- 67 Nott, R., Fuller, T. L., Brasil, P. & Nielsen-Saines, K. Out-of-Season Influenza during a COVID-19 Void in the State of Rio de Janeiro, Brazil: Temperature Matters. *Vaccines (Basel)* **10** (2022). <u>https://doi.org:10.3390/vaccines10050821</u>
- 68 Delahoy, M. J. *et al.* Influenza A(H3N2) Outbreak on a University Campus Michigan, October-November 2021. *MMWR Morb Mortal Wkly Rep* **70**, 1712-1714 (2021). <u>https://doi.org:10.15585/mmwr.mm7049e1</u>
- 69 World Health Organization. Recommended composition of influenza virus vaccines for use in the 2022-2023 northern hemisphere influenza season, <<u>https://cdn.who.int/media/docs/default-source/influenza/who-influenza-recommendations/vcm-northern-hemisphere-recommendation-2022-2023/202202_recommendation.pdf?sfvrsn=5c88e006_13&download=true> (2022).</u>
- 70 Matsuzaki, Y. *et al.* Genetic Lineage and Reassortment of Influenza C Viruses Circulating between 1947 and 2014. *J Virol* **90**, 8251-8265 (2016). https://doi.org:10.1128/JVI.00969-16
- 71 Kroll, J. L. & Weinberg, A. Human metapneumovirus. Semin Respir Crit Care Med **32**, 447-453 (2011). <u>https://doi.org/10.1055/s-0031-1283284</u>
- 72 Yi, L. *et al.* Epidemiology, evolution and transmission of human metapneumovirus in Guangzhou China, 2013-2017. *Sci Rep* **9**, 14022 (2019). <u>https://doi.org:10.1038/s41598-019-50340-8</u>
- 73 Soto, J. A. et al. Human Metapneumovirus: Mechanisms and Molecular Targets Used by the Virus to Avoid the Immune System. Front Immunol 9, 2466 (2018). <u>https://doi.org:10.3389/fimmu.2018.02466</u>
- 74 Aberle, J. H., Aberle, S. W., Redlberger-Fritz, M., Sandhofer, M. J. & Popow-Kraupp, T. Human metapneumovirus subgroup changes and seasonality during epidemics. *Pediatr Infect Dis J* 29, 1016-1018 (2010). <u>https://doi.org/10.1097/INF.0b013e3181e3331a</u>
- 75 Aberle, S. W., Aberle, J. H., Sandhofer, M. J., Pracher, E. & Popow-Kraupp, T. Biennial spring activity of human metapneumovirus in Austria. *Pediatr Infect Dis J* 27, 1065-1068 (2008). https://doi.org;10.1097/INF.0b013e31817ef4fd
- 76 Zhang, K. *et al.* Rapid disappearance of influenza following the implementation of COVID-19 mitigation measures in Hamilton, Ontario. *Can Commun Dis Rep* **47**, 202-209 (2021). <u>https://doi.org:10.14745/ccdr.v47i04a04</u>
- 77 Rodgers, L. *et al.* Changes in Seasonal Respiratory Illnesses in the United States During the Coronavirus Disease 2019 (COVID-19) Pandemic. *Clin Infect Dis* **73**, S110-S117 (2021). <u>https://doi.org:10.1093/cid/ciab311</u>
- 78 Henrickson, K. J. Parainfluenza viruses. Clin Microbiol Rev 16, 242-264 (2003). https://doi.org:10.1128/CMR.16.2.242-264.2003
- 79 Chellapuri, A. et al. Human parainfluenza 2 & 4: Clinical and genetic epidemiology in the UK, 2013-2017, reveals distinct disease features and co-circulating genomic subtypes. Influenza Other Respir Viruses (2022). <u>https://doi.org:10.1111/irv.13012</u>
- Greiff, D. R. L., Patterson-Robert, A., Blyth, C. C., Glass, K. & Moore, H. C. Epidemiology and seasonality of human parainfluenza serotypes 1-3 in Australian children. *Influenza Other Respir Viruses* 15, 661-669 (2021). <u>https://doi.org:10.1111/irv.12838</u>
 Centers for Disease Control and Prevention HPIV Seasons
- 81 Centers for Disease Control and Prevention. HPIV Seasons, <<u>https://www.cdc.gov/parainfluenza/seasons.html#:~:text=HPIV%2D3%20infections%20usually%20occur,2%20are%20not%20in%2</u> <u>0season.></u> (2019).
- 82 Chieochansin, T., Puenpa, J. & Poovorawan, Y. Phylogenetic molecular evolution and recombination analysis of complete genome of human parechovirus in Thailand. *Sci Rep* **11**, 8572 (2021). <u>https://doi.org:10.1038/s41598-021-88124-8</u>
- 83 Kabuga, A. I., Nejati, A., Soheili, P. & Shahmahmoodi, S. Human parechovirus are emerging pathogens with broad spectrum of clinical syndromes in adults. J Med Virol (2020). <u>https://doi.org:10.1002/jmv.26395</u>
- 84 Fischer, T. K., Midgley, S., Dalgaard, C. & Nielsen, A. Y. Human parechovirus infection, Denmark. *Emerg Infect Dis* 20, 83-87 (2014). <u>https://doi.org:10.3201/eid2001.130569</u>
- 85 Izumita, R. et al. Intrafamilial Transmission of Parechovirus A and Enteroviruses in Neonates and Young Infants. J Pediatric Infect Dis Soc 8, 501-506 (2019). https://doi.org:10.1093/jpids/piy079
- 86 Karelehto, E. et al. Polarized Entry of Human Parechoviruses in the Airway Epithelium. Front Cell Infect Microbiol 8, 294 (2018). https://doi.org:10.3389/fcimb.2018.00294
- 87 Aizawa, Y., Yamanaka, T., Watanabe, K., Oishi, T. & Saitoh, A. Asymptomatic children might transmit human parechovirus type 3 to neonates and young infants. *J Clin Virol* 70, 105-108 (2015). <u>https://doi.org:10.1016/j.jcv.2015.07.300</u>
- Wildenbeest, J. G. *et al.* Clinical relevance of positive human parechovirus type 1 and 3 PCR in stool samples. *Clin Microbiol Infect* 20, 0640-647 (2014). <u>https://doi.org:10.1111/1469-0691.12542</u>
- 89 Borchers, A. T., Chang, C., Gershwin, M. E. & Gershwin, L. J. Respiratory syncytial virus--a comprehensive review. Clin Rev Allergy Immunol 45, 331-379 (2013). <u>https://doi.org:10.1007/s12016-013-8368-9</u>
- 90 Stockman, L. J., Curns, A. T., Anderson, L. J. & Fischer-Langley, G. Respiratory syncytial virus-associated hospitalizations among infants and young children in the United States, 1997-2006. *Pediatr Infect Dis J* 31, 5-9 (2012). https://doi.org;10.1097/INF.0b013e31822e68e6
- 91 Jain, S. et al. Community-acquired pneumonia requiring hospitalization among U.S. children. N Engl J Med 372, 835-845 (2015). https://doi.org:10.1056/NEJMoa1405870
- 92 Leader, S. & Kohlhase, K. Respiratory syncytial virus-coded pediatric hospitalizations, 1997 to 1999. *Pediatr Infect Dis J* **21**, 629-632 (2002). https://doi.org:10.1097/00006454-200207000-00005
- 93 Yu, J. et al. Respiratory Syncytial Virus Seasonality, Beijing, China, 2007-2015. Emerg Infect Dis 25, 1127-1135 (2019). https://doi.org:10.3201/eid2506.180532
- 94 Staadegaard, L. *et al.* Defining the seasonality of respiratory syncytial virus around the world: National and subnational surveillance data from 12 countries. *Influenza Other Respir Viruses* **15**, 732-741 (2021). <u>https://doi.org:10.1111/irv.12885</u>
- 95 Jackson, M. L. *et al.* Epidemiology of Respiratory Syncytial Virus Across Five Influenza Seasons Among Adults and Children One Year of Age and Older-Washington State, 2011/2012-2015/2016. *J Infect Dis* 223, 147-156 (2021). https://doi.org:10.1093/infdis/jiaa331
- 96 French, C. E. et al. Risk of nosocomial respiratory syncytial virus infection and effectiveness of control measures to prevent transmission events: a systematic review. Influenza Other Respir Viruses 10, 268-290 (2016). https://doi.org:10.1111/irv.12379
- Hall, C. B., Douglas, R. G., Jr. & Geiman, J. M. Possible transmission by fomites of respiratory syncytial virus. *J Infect Dis* 141, 98-102 (1980). https://doi.org:10.1093/infdis/141.1.98
- 98 Hall, C. B. Respiratory syncytial virus: its transmission in the hospital environment. Yale J Biol Med 55, 219-223 (1982).
- 99 Yeoh, D. K. *et al.* Impact of Coronavirus Disease 2019 Public Health Measures on Detections of Influenza and Respiratory Syncytial Virus in Children During the 2020 Australian Winter. *Clin Infect Dis* 72, 2199-2202 (2021). <u>https://doi.org:10.1093/cid/ciaa1475</u>

- 100 Foley, D. A. *et al.* The Interseasonal Resurgence of Respiratory Syncytial Virus in Australian Children Following the Reduction of Coronavirus Disease 2019-Related Public Health Measures. *Clin Infect Dis* 73, e2829-e2830 (2021). https://doi.org:10.1093/cid/ciaa1906
- 101 Ferrero, F., Ossorio, M. F. & Rial, M. J. The return of RSV during the COVID-19 pandemic. *Pediatric pulmonology* 57, 770-771 (2022). <u>https://doi.org:10.1002/ppul.25802</u>
- 102 Kuitunen, I. *et al.* Effect of Social Distancing Due to the COVID-19 Pandemic on the Incidence of Viral Respiratory Tract Infections in Children in Finland During Early 2020. *Pediatr Infect Dis J* **39**, e423-e427 (2020). https://doi.org:10.1097/INF.00000000002845
- 103 Stamm, P. *et al.* Influenza and RSV incidence during COVID-19 pandemic-an observational study from in-hospital point-of-care testing. *Med Microbiol Immunol* **210**, 277-282 (2021). https://doi.org:10.1007/s00430-021-00720-7
- 104 Nolen, L. D. et al. Impact of Social Distancing and Travel Restrictions on Non-Coronavirus Disease 2019 (Non-COVID-19) Respiratory Hospital Admissions in Young Children in Rural Alaska. Clin Infect Dis 72, 2196-2198 (2021). https://doi.org:10.1093/cid/ciaa1328
- 105 Stera, G. *et al.* Impact of SARS-CoV-2 Pandemic on Bronchiolitis Hospitalizations: The Experience of an Italian Tertiary Center. *Children (Basel)* 8 (2021). <u>https://doi.org:10.3390/children8070556</u>
- 106 Bermudez Barrezueta, L. et al. Variation in the seasonality of the respiratory syncytial virus during the COVID-19 pandemic. Infection (2022). https://doi.org:10.1007/s15010-022-01794-y
- 107 Torres-Fernandez, D., Casellas, A., Mellado, M. J., Calvo, C. & Bassat, Q. Acute bronchiolitis and respiratory syncytial virus seasonal transmission during the COVID-19 pandemic in Spain: A national perspective from the pediatric Spanish Society (AEP). J Clin Virol 145, 105027 (2021). https://doi.org:10.1016/j.jcv.2021.105027
- 108 Tempia, S. et al. Decline of influenza and respiratory syncytial virus detection in facility-based surveillance during the COVID-19 pandemic, South Africa, January to October 2020. Euro Surveill 26 (2021). <u>https://doi.org:10.2807/1560-7917.ES.2021.26.29.2001600</u>
- 109 Centers for Disease Control and Prevention. Respiratory Syncytial Virus (RSV) Hospitalization Surveillance Network (RSV-NET), <<u>https://www.cdc.gov/rsv/research/rsv-net.html</u>> (2021).
- 110 Olsen, S. J. *et al.* Changes in influenza and other respiratory virus activity during the COVID-19 pandemic-United States, 2020-2021. *Am J Transplant* **21**, 3481-3486 (2021). <u>https://doi.org:10.1111/ajt.16049</u>
- 111 Eden, J. S. et al. Off-season RSV epidemics in Australia after easing of COVID-19 restrictions. Nat Commun 13, 2884 (2022). https://doi.org:10.1038/s41467-022-30485-3
- 112 Kim, J. H., Jang, J. Y. & Jang, Y. J. Human rhinovirus serotypes induces different immune responses. Virol J 18, 232 (2021). https://doi.org:10.1186/s12985-021-01701-1
- 113 Falsey, A. R. & Branche, A. R. in *International Encyclopedia of Public Health (Second Edition)* (ed Stella R. Quah) 363-369 (Academic Press, 2017).
- 114 Jain, S. et al. Community-Acquired Pneumonia Requiring Hospitalization among U.S. Adults. N Engl J Med 373, 415-427 (2015). https://doi.org:10.1056/NEJMoa1500245
- 115 Zlateva, K. T. *et al.* Prolonged shedding of rhinovirus and re-infection in adults with respiratory tract illness. *Eur Respir J* 44, 169-177 (2014). https://doi.org:10.1183/09031936.00172113
- 116 Stobart, C. C., Nosek, J. M. & Moore, M. L. Rhinovirus Biology, Antigenic Diversity, and Advancements in the Design of a Human Rhinovirus Vaccine. *Front Microbiol* **8**, 2412 (2017). https://doi.org/10.3389/fmicb.2017.02412
- 117 Sansone, M. *et al.* Rhinovirus infections in western Sweden: a four-year molecular epidemiology study comparing local and globally appearing types. *Eur J Clin Microbiol Infect Dis* **32**, 947-954 (2013). <u>https://doi.org:10.1007/s10096-013-1832-x</u>
- 118 Monto, A. S. The seasonality of rhinovirus infections and its implications for clinical recognition. *Clin Ther* 24, 1987-1997 (2002). https://doi.org:10.1016/s0149-2918(02)80093-5
- 119 Matthew, J. *et al.* Distribution and seasonality of rhinovirus and other respiratory viruses in a cross-section of asthmatic children in Trinidad, West Indies. *Ital J Pediatr* **35**, 16 (2009). https://doi.org:10.1186/1824-7288-35-16
- 120 Ng, K. T. *et al.* Viral Load and Sequence Analysis Reveal the Symptom Severity, Diversity, and Transmission Clusters of Rhinovirus Infections. *Clin Infect Dis* 67, 261-268 (2018). <u>https://doi.org:10.1093/cid/ciy063</u>
- 121 Taipale, A. *et al.* Human rhino- and enteroviruses in children with respiratory symptoms in Luanda, Angola. *Paediatr Int Child Health* 34, 128-132 (2014). https://doi.org:10.1179/2046905513Y.0000000101
- 122 Lopes, G. P. *et al.* Identification and seasonality of rhinovirus and respiratory syncytial virus in asthmatic children in tropical climate. *Biosci Rep* **40** (2020). <u>https://doi.org:10.1042/BSR20200634</u>
- 123 Gwaltney, J. M., Jr. & Hendley, J. O. Transmission of experimental rhinovirus infection by contaminated surfaces. Am J Epidemiol 116, 828-833 (1982). <u>https://doi.org:10.1093/oxfordjournals.aje.a113473</u>
- 124 Winther, B., McCue, K., Ashe, K., Rubino, J. R. & Hendley, J. O. Environmental contamination with rhinovirus and transfer to fingers of healthy individuals by daily life activity. *J Med Virol* **79**, 1606-1610 (2007). https://doi.org;10.1002/jmv.20956
- 125 Dick, E. C., Jennings, L. C., Mink, K. A., Wartgow, C. D. & Inhorn, S. L. Aerosol transmission of rhinovirus colds. J Infect Dis 156, 442-448 (1987). <u>https://doi.org:10.1093/infdis/156.3.442</u>
- 126 Peltola, V. et al. Rhinovirus transmission within families with children: incidence of symptomatic and asymptomatic infections. J Infect Dis 197, 382-389 (2008). <u>https://doi.org/10.1086/525542</u>
- 127 Poole, S., Brendish, N. J., Tanner, A. R. & Clark, T. W. Physical distancing in schools for SARS-CoV-2 and the resurgence of rhinovirus. *Lancet Respir Med* 8, e92-e93 (2020). https://doi.org:10.1016/S2213-2600(20)30502-6
- 128 Zhang, R. X. *et al.* Surges of hospital-based rhinovirus infection during the 2020 coronavirus disease-19 (COVID-19) pandemic in Beijing, China. *World J Pediatr* **17**, 590-596 (2021). https://doi.org:10.1007/s12519-021-00477-2