SUPPORTING INFORMATION

Chemical Toolkit for PARK7: Potent, Selective and High-Throughput

Yuqing Jia,^a Robbert Q. Kim,^a Raymond Kooij,^a Huib Ovaa,^a Aysegul Sapmaz,^{*a} and Paul P. Geurink^{*a}

^a Oncode Institute & Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands

* Corresponding authors: p.p.geurink@lumc.nl, a.sapmaz@lumc.nl

Contents

Table S1. Data processing and refinement statistics for the PARK7-inhibitor cocrystal
structures
Table S2. Structures overview of fragments for hit validation. 4
Figure S1. Electron density maps of (A) PARK7-8RK64 (PDB: 7PA2) and (B) PARK7-
JYQ-88 (PDB: 7PA3) co-crystal structures
Figure S2. Inhibitory activity of 8RK64 towards PARK79
Figure S3. IC ₅₀ determination of STK793590 for PARK7 by DiFMUAc assay10
Figure S4. IC ₅₀ determination of JYQ-92, JYQ-93, and JYQ-107 for UCHL1 using Ub-
AMC as the substrate
Figure S5. Fluorescence labeling of DUBs to investigate their remaining activity by Rh-
Ub-PA after the treatment with PARK7 inhibitor JYQ-88 and probe JYQ-92 12
Figure S6. The development of the FP assay13
Figure S7. Change in FP value over time at different concentrations of inhibitor JYQ-55 .14
Figure S8. Heatmap displaying the validation of hits using the DiFMUAc assay15
Figure S9. Uncropped and unprocessed gel images in Figure 4
Figure S10. Uncropped and unprocessed gel images in Figure 6E18
Synthesis of STK793590 19
Synthesis of DiFMUAc assay reagent19
NMR spectra20
LC-MS of synthesized compounds

	PARK7 +8RK64	PARK7 +JYQ-88
Crystallization conditions	0.1 M Bicine pH 9.0	0.1 M Ammonium sulfate
	10% PEG 20000	0.1 M Bis-Tris pH 5.5
	2% w/v 1,4-Dioxane	25% PEG 3350
PDB accession code	7PA2	7PA3
Space group	P 65 2 2	P 65 2 2
Cell dimensions		
a (Å)	66.86	66.74
b (Å)	66.86	66.74
c (Å)	179.69	176.78
α (°)	90	90
β (°)	90	90
γ (°)	120	120
Processing statistics		
Resolution (Å)	59.90-1.21	58.93-1.42
Outer shell (Å)	1.23-1.21	1.44-1.42
Beamline	DLS i24	DLS i04
Wavelength (Å)	0.96871	0.97996
Observed reflections	1324702 (34068)	1462173 (19490)
Unique reflections	73359 (3558)	44987 (2131)
R _{pim}	0.028 (0.969)	0.033 (1.416)
CC(1/2)	0.999 (0.447)	1 (0.335)
Multiplicity	18.1 (9.6)	32.5 (9.1)
Completeness	100 (100)	100 (98.9)
Mean $(I/\sigma(I))$	16.1 (1.2)	17.5 (0.8)
Refinement statistics		
Monomers in ASU	1	1
No of protein atoms	1384	1380
Rwork	0.132	0.157
R _{free}	0.155	0.194
RMSD from ideality		
Bond lengths (Å)	0.0171	0.0148
Bond angles (°)	1.9326	1.8544
Chiral volume (Å ³)	0.1216	0.1094
Ramachandran plot		
Favoured (%)	98.9	98.9
Disallowed (%)	0.5	0
Average B-values (Å ²)	21.0	30
	Values within parentheses are for the outer resolution shell	

 Table S1. Data processing and refinement statistics for the PARK7-inhibitor cocrystal structures.

Compound	Enamine catalog ID	Structure
F1	Z1954803958	
F2	Z802671642	
F3	Z3236282166	CI CI
F4	Z763366298	CI O S OH
F5	Z2491497305	
F6	Z2768504793	CI F
F7	Z2492395560	CI CI F
F8	Z2491498268	CI
F9	Z235333089	
F10	Z85923410	

 Table S2. Structures overview of fragments for hit validation.

F11	Z56922153	
F12	Z56886389	
F13	Z86023354	
F14	Z56896308	
F15	Z190662892	
F16	Z220564178	
F17	Z56886400	
F18	Z56896170	
F19	Z57051055	

F20	Z1562123076	
		CI
F21	Z1672273218	O H N S N N F S
F22	Z1764361494	
F23	Z3396482545	O ₂ N S CF ₃
F24	Z2509451091	
F25	Z1832812427	S O S O
F26	Z1741956298	
F27	Z1764398070	N S O S F
F28	Z1713569375	F ₃ C ^{-S} H O S F
F29	Z1713569513	H O F O O O

F30	Z1713568698	O N O N H O S F
F31	Z1764375816	
F32	Z3242849759	HO V F O O
F33	Z3243697698	O ₂ N S O
F34	Z3223579620	NO ₂ O S O F
F35	Z2509462762	
F36	Z2509450956	
F37	Z3267389796	S H O F
F38	Z2509455014	
F39	Z1832812448	O O O O O O O O O O O O O O O O O O O
F40	Z1764309349	H O O N N S O S F

Figure S1. Electron density maps of (A) PARK7-**8RK64** (PDB: 7PA2) and (B) PARK7-**JYQ-88** (PDB: 7PA3) co-crystal structures.

Figure S2. Inhibitory activity of 8RK64 towards PARK7. PARK7 (1 μ M) was incubated with increasing concentrations of 8RK64, followed by incubation with 8RK59 for 30 min. at 37 °C.

Figure S3. IC_{50} determination of STK793590 for PARK7 by DiFMUAc assay.

Figure S4. IC₅₀ determination of **JYQ-92**, **JYQ-93**, and **JYQ-107** for UCHL1 using Ub-AMC as the substrate.

Figure S5. Fluorescence labeling of DUBs to investigate their remaining activity by Rh-Ub-PA after the treatment with PARK7 inhibitor **JYQ-88** and probe **JYQ-92**. UCHL1 inhibitors, **6RK73** and **8RK64**, were used as a control. HEK293T cell lysate was treated with 5 μM final concentration of the indicated compounds for 1 h at 37 °C, followed by incubating with Rho-Ub-PA for 30 min at 37 °C. The reactions were stopped by the addition of NuPAGETM LDS sample buffer (4X). Samples were resolved by SDS-PAGE using a 4-12% Bis-Tris gel with MOPS SDS running buffer (Novex, NuPAGE) and visualized by fluorescence scanning on a Typhoon FLA 9500 (GE Healthcare Life Sciences) using a Rhodamine channel (λex/em 473/530 nm), followed by transferring to Nitrocellulose membranes and Western blot analysis.

Figure S6. The development of the FP assay.(A) Relation between FP value and incubation times at different concentrations of PARK7. (B) Relation between the change in FP value and PARK7 concentration at different incubation times. (C) The corresponding Z' value. Panel B and C are full graphs of the graphs in Figure 5B in the main paper. (D) Determination of k_{inact}/K_I value for FP probe **JYQ-107**. Left panel: Relation between anisotropy and incubation times at different concentrations of PARK7. Middle panel: The probe bound fraction (F_b) was calculated for each datapoint by normalization of the anisotropy data to fully unbound (no PARK7) and fully bound (plateau) states followed by baseline correction. The pseudo-first order rate constant k_{obs} for each PARK7 concentration was determined by fitting the F_b data to the pseudo-first order association equation $Y=Y0 + (Plateau-Y0)*(1-exp(-k_{obs}*t))$, where $Y=F_b$. The data for the highest concentrations of PARK7 (4 and 5 μ M) could not be fitted because the reaction was too fast. Right panel: k_{obs} values were plotted against PARK7 concentration and the k_{inact}/K_I value was calculated from the slope of a linear fit of the data.

Figure S7. Change in FP value over time at different concentrations of inhibitor **JYQ-55**. PARK7 was incubated with increasing concentrations of inactive compound **JYQ-55** for 60 min. followed by the addition of FP probe **JYQ-107** and the change in FP was monitored over time.

Figure S8. Heatmap displaying the validation of hits using the DiFMUAc assay. (White: 0% inhibition, blue: 100% inhibition.)

Figure S9. Uncropped and unprocessed gel images in Figure 4. (A) Related to Figure 4D: Ingel fluorescence scanning of PARK7 activity by **JYQ-92** in HEK293T cell lysate with/without depletion of PARK7 or UCHL1 (top panel) and immunoblot of PARK7 with actin as a loading control (middle panel), together with immunoblot of UCHL1 (bottom panel). (B) Related to

Figure 4E: In-gel fluorescence scanning of PARK7 activity by JYQ-92 in HEK293T cell lysate after treatment with inhibitor **JYQ-88** (top panel) and immunoblot of PARK7 with actin as a loading control (bottom panel).

Figure S10. Uncropped and unprocessed gel images in Figure 6E. (A) In-gel fluorescence scanning of PARK7 activity by **JYQ-92** in HEK293T cell lysate after treatment with fragment F4 (left from the top panel) and F12 (right from the top panel), and immunoblot of PARK7 with actin as a loading control (bottom panel). (B) In-gel fluorescence scanning of PARK7 activity in HEK293T cell lysate by **JYQ-92** after treatment with fragment F22 (top panel) and immunoblot of PARK7 with actin as a loading control (bottom panel). (B) In-gel fluorescence scanning of PARK7 activity in HEK293T cell lysate by **JYQ-92** after treatment with fragment F22 (top panel) and immunoblot of PARK7 with actin as a loading control (bottom panel).

Synthesis of STK793590

STK793590

NMR spectra

¹H-NMR and ¹³C-NMR of compound 2b in CDCl₃.

¹H-NMR and ¹³C-NMR of compound 3b in CDCl₃.

¹H-NMR and ¹³C-NMR of compound JYQ-55 in DMSO.

 o

¹H-NMR and ¹³C-NMR of compound JYQ-76 in DMSO.

¹H-NMR and ¹³C-NMR of compound JYQ-77 in DMSO.

¹H-NMR and ¹³C-NMR of compound JYQ-78 in DMSO.

¹H-NMR and ¹³C-NMR of compound JYQ-79 in DMSO.

¹H-NMR and ¹³C-NMR of compound JYQ-88 in CDCl₃.

¹H-NMR and ¹³C-NMR of compound JYQ-92 in DMSO.

¹H-NMR of compound JYQ-107 in DMSO.

LC-MS of synthesized compounds

Compound JYQ-88: LC-MS

Compound JYQ-92: LC-MS

Compound JYQ-107: LC-MS

