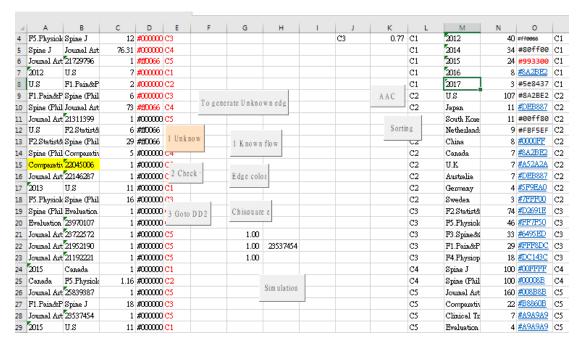
How to draw the Sankey diagram and forest plot

A.The Sankey diagram

1. Step 1: getting data from the link


Download 100-top cited articles for the two journals in this study at

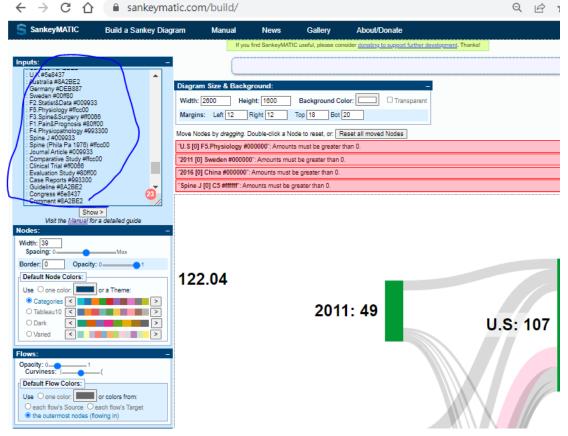
http://www.healthup.org.tw/html100/spine2journals.htm

4	А	В	С	D	Е	F	G	Н	1
1	Citation		Year	Country	Category	Journal	Туре	PMID	
2	374		2011	U.S	F5.Physiol ogy	Spine J	Journal Article	21729796	374
3	213		2012	U.S	F1.Pain& Prognosis	Spine (Phila Pa 1976)	Journal Article	21311399	213
4	172		2012	U.S	F2.Statist &Data	Spine (Phila Pa 1976)	Comparati ve Study	22045006	172
5	163		2012	U.S	F1.Pain& Prognosis	Spine (Phila Pa 1976)	Journal Article	22146287	163
6	138		2013	U.S	F5.Physiol ogy	Spine (Phila Pa 1976)	Evaluation Study	23970107	138
7	135		2013	U.S	F2.Statist &Data	Spine (Phila Pa 1976)	Journal Article	23722572	135
0	120		2011	U.S	F1.Pain& Prognosis	Spine (Phila Pa	Journal Article	21952190	120

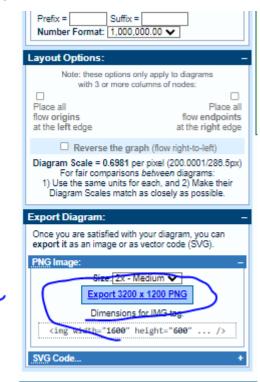
2. Step 2: SNA approach to get the element counts and relations between elements

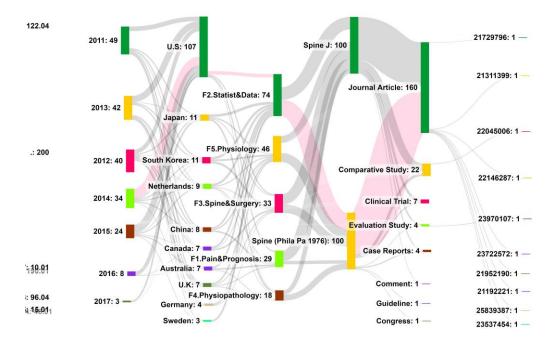
4	Α	В	С	D	Е	F		G	Н	
1					1					
2	C1	2011	49	21729796	1			2011	U.S	
3	C1	2013	42	21311399	1			U.S	F5.Physiol	
4	C1	2012	40	22045006	1			F5.Physiolo	Spine J	
5	C1	2014	34	22146287	1			Spine J	Journal Art	
6	C1	2015	24	23970107	1			Journal Art	21729796	
7	C1	2016	8	23722572				2012	U.S	
8	C1	2017	3	21952190		citation		U.S	F1.Pain&P	
9	C2	U.S	107	21192221			1	F1.Pain&P	Spine (Phil	
LO	C2	Japan	11	25839387				Spine (Phil:	Journal Art	
1	C2	South Kore	11	23537454		Count only		Journal Art	21311399	
١2	C2	Netherland	9	24113358			1	U.S	F2.Statist&	
L3	C2	China	8	26208232	\leftarrow_1			F2.Statist&	Spine (Phil	
L4	C2	Canada	7	24412416				Spine (Phil:	Comparativ	
L5	C2	U.K	7	23369494	C	STR (number)		Comparativ	22045006	
۱6	C2	Australia	7	24239490				Journal Art	22146287	
.7	C2	Germany	4	23830297				2013	U.S	
18	C2	Sweden	3	23369495		T 5		F5.Physiolo	Spine (Phil	
١9	C3	F2.Statist&	74	24412032	x-index Top 5			Spine (Phil	Evaluation	
20	C3	F5.Physiole	46	21192288				Evaluation	23970107	

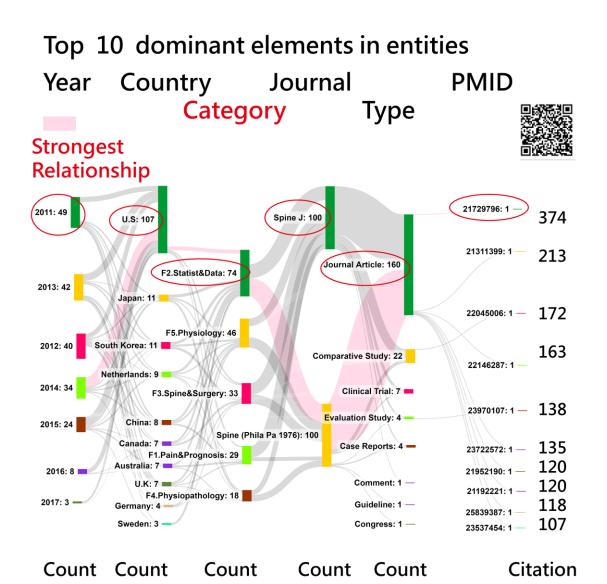
Excel module to draw the Sankey


To arrange data as the form below:

3. Step 3: to draw the Sankey diagram


	Α	В	С				
1							
2	. [0.0001]	20					
3	CO [0.0001] C1					
4	. [49] 2011						
5	. [42] 2013						
6	. [40] 2012						
7	. [34] 2014						
8	. [24] 2015						
9	. [8] 2016						
10	.[3]2017						
11	2013 [23] H	72.Statist&E	Date				
12	2012 [17] E	72.Statist&E	Date				
13	2014 [9] F2	2014 [9] F2.Statist&Date					
14	2015 [12] I	72.Statist&E	Date				
15	2016 [4] F2	2.Statist&Da	ate				
16	2017 [2] F2	2.Statist&Da	ate				


Codes generated to fit the requirement of Sankey format at https://sankeymatic.com/

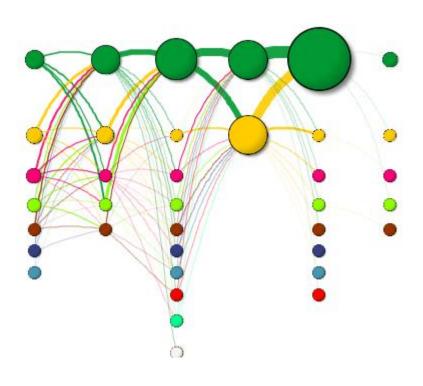

4. Step 4: Copy and Paste them onto the Sankey maker https://sankeymatic.com/build/

Download it

If data were pasted on the website at http://www.healthup.org.tw/kpiall/forestplot.asp

, the Sankey can be drawn in this way below:

← → C ⚠ 不安全 | healthup.org.tw/kpiall/forestplot.asp responses(rows for person and columns for items) F2.Statist&Date F5.Physiology 46 F3.Spine&Surgery 33 F1.Pain&Prognosis 29 F4.Physiopathology U.S 107 Japan 11 South Korea 11 Netherlands For the format from differene sources, see below examples... 2011 F5.Physiology 26.00000 F5.Physiology U.S 50.00000 U.S Spine J 122.00000


F5.Physiology U.S 50.00000
U.S Spine J 122.00000
Spine J Journal Article 180.0000
Journal Article 21729796 2.00000
2012 F1.Pain&Prognosis 12.00000
F1.Pain&Prognosis U.S 44.00000
U.S Spine (Phila Pa 1976) 92.00000
Spine (Phila Pa 1976) Journal Article 140.00000
Journal Article 21311399 2.00000
2012 F2.Statist&Date J. 200000
F2.Statist&Date U.S 82.00000
Spine (Phila Pa 1976) Comparative Study 38.00000
Comparative Study 22045006 2.00000
Journal Article 22146287 2.00000
2013 F5.Physiology 16.00000

opy from MS Excel and Paste them onto the boxes: one for data, another for sample size, respectively orst plot immediately appeas on Google Maps.

Forest Source [the Sankey V]

Clear

Submit

B. The Forest plot http://www.healthup.org.tw/kpiall/forestplot.asp

For the format from differene sources, see below examples...

60 60 65 65 40 40 200 200 50 45 85 85

copy from MS Excel and Paste them onto the boxes: one for data, another for sample size, respectively orst plot immediately appeas on Google Maps.

Forest Source SMD(SD equal)

Clear

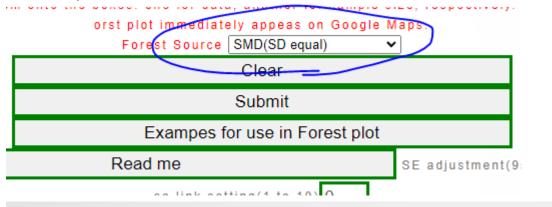
Data1:

Item01 22 92 20 94 item02 98 21 92 22 Item03 98 28 88 26 Item04 94 19 82 17 Item05 98 21 88 22 Item06 21 92 22 96

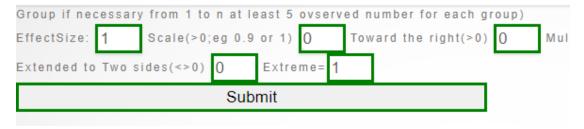
Data2 for sample:

60 60

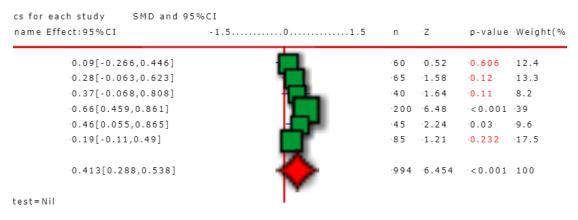
65 65


40 40

200 200


50 45

85 85


Data were pasted onto the website.

Item01,0.09,0.18,-0.266,0.446,60,0.52,0.606,12.43 item02,0.28,0.18,-0.063,0.623,65,1.58,0.12,13.34 Item03,0.37,0.22,-0.068,0.808,40,1.64,0.11,8.21 Item04,0.66,0.1,0.459,0.861,200,6.48,0.001,38.95 Item05,0.46,0.21,0.055,0.865,45,2.24,0.03,9.6 Item06,0.19,0.15,-0.11,0.49,85,1.21,0.232,17.48 Overall,0.413,0.06,0.288,0.538,994,6.454,0.001,100

To confirm the parameters as shown below and click on the submit icon.

Appendices:

Word cloud tutorial in Excel

Latent Semantics Analysis (LSA) in Excel tutorial

https://help.xlstat.com/6470-latent-semantics-analysis-lsa-excel-tutorial

k-means clustering in Excel tutorial

Text Mining5

- Latent Semantics Analysis (LSA) in Excel tutorial
- Cleaning text data in Excel tutorial
- Convert text data to lower or upper case in Excel
- Word cloud tutorial in Excel
- Feature extraction tutorial in Excel
 - https://help.xlstat.com/tutorial-guides/text-mining

Feature extraction tutorial in Excel

• https://help.xlstat.com/6751-feature-extraction-tutorial-excel

4	Α	В	С	D	Е	F	G	Н
1	PMID	surgeri	method	effect	advers	patholog	imag	diagnost
2	26689395	1	0	0	0	0	0	0
3	26555839	2	2	0	0	0	0	0
4	26335676	2	0	0	0	0	0	0
5	26208232	0	0	0	0	0	0	0
6	26020847	3	0	0	0	0	0	0
7	25955086	4	2	0	0	0	0	0
8	25893353	0	0	0	0	2	1	0
9	25839387	0	0	0	0	0	0	0
10	25394317	3	2	0	0	0	0	0
11	24480958	4	0	0	0	0	0	0
12	24270931	0	0	0	0	0	4	4
13	24253796	0	0	0	0	0	0	0
		_		_	_	_	_	_

BF	BG	ВН	ВІ	ВЈ	BK	BL
riew	class	F1	F2	F3	F4	F5
0	2	-0.32101	0.03681	-0.0707	2.33759	-0.09017
0	5	-0.39668	-0.28528	-0.39899	-0.22724	-0.33354
0	5	-0.4033	-0.19003	-0.2521	-0.27256	-0.29651
0	2	-0.15271	-0.09869	-0.57433	-0.12948	-0.32873
0	5	-0.42683	0.1435	1.70921	2.36492	-0.47225
0	5	-0.60801	-0.3051	-0.21353	-0.44124	-0.49399
0	2	-0.09026	-0.26332	-0.71941	-0.23679	0.06833
0	<u>/=</u> 2	-0.21022	-0.46192	-0.23579	-0.84111	0.33493
0	5	-0.44818	-0.30172	-0.31189	-0.2248	-0.33361
0	5	-0.35832	-0.18718	-0.18751	-0.06884	-0.09843
0	4	-0.5094	-0.37439	-1.29245	0.43195	-0.36751
0	2	0.59565	-0.00099	-0.69276	-0.18936	-0.6921
0	5	-0.326	-0.21978	-0.38035	-0.15048	-0.21591
0	2	-0.28894	-0.22263	-0.77322	0.0557	-0.4598
0	2	-0.20421	-0.11514	-0.48723	-0.12704	-0.32881
0	4	-0.5094	-0.37439	-1.29245	0.43195	-0.36751

Fig. Results by EFA

EFA in Excel

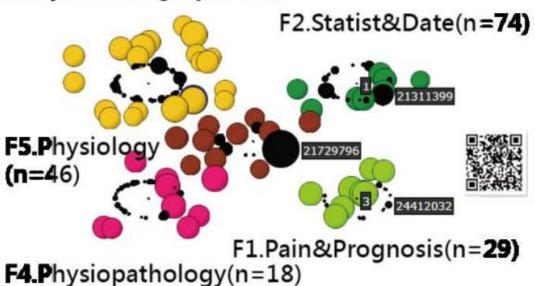
https://www.real-statistics.com/multivariate-statistics/factor-analysis/

Δ	Α	В	С	D	Е
4	low	0.935			
5	back	0.935			
6	pain	0.876			
7	prognosi	0.785			
8	psycholog	0.599			
9	factor	0.507			
10	review	0.301			
11	model	0.289			
12	patholog	0.136			
13	data		0.899		
14	statist		0.899		
15	numer		0.899		
16	econom		0.546		
17	cost		0.526		
18	health		0.368		
19	trend		0.154		
20	spine			0.531	
21	spinal			0.479	
22	fusion			0.478	

BG	ВН	ВІ	ВЈ	BK	BL
class	F1	F2	F3	F4	F5
2	-0.32101	0.03681	-0.0707	2.33759	-0.09017
5	-0.39668	-0.28528	-0.39899	-0.22724	-0.33354
5	-0.4033	-0.19003	-0.2521	-0.27256	-0.29651
2	-0.15271	-0.09869	-0.57433	-0.12948	-0.32873
5	-0.42683	0.1435	1.70921	2.36492	-0.47225
. 5	-0.60801	-0.3051	-0.21353	-0.44124	-0.49399
2	-0.09026	-0.26332	-0.71941	-0.23679	0.06833
<u>/</u> 2	-0.21022	-0.46192	-0.23579	-0.84111	0.33493
5	-0.44818	-0.30172	-0.31189	-0.2248	-0.33361
5	-0.35832	-0.18718	-0.18751	-0.06884	-0.09843
4	-0.5094	-0.37439	-1.29245	0.43195	-0.36751
2	0.59565	-0.00099	-0.69276	-0.18936	-0.6921
5	-0.326	-0.21978	-0.38035	-0.15048	-0.21591

Using the factor scores to perform the k-means clustering and select the number of clusters to five equal to the factor number.

The document related to the cluster can be obtained.


To classify articles into subject categories:

1. dataset

{PMID, MeSh terms, Keywords} using SNA and determine cluster number=5 that will be clustered as below:

That is, each article can be classified into each category using the SNA.

F3.Spine&Surgery(n=33)

2. factor scores in two journals:

Because each articles with each factor score have been known, the SMD can be compared using the forest plot.

Similarly, the counts in each category for each journal can be obtained to perform the ChiSQ test for examining the count distributions equally across categories.