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A Supporting derivations

A.1 Models
We consider a network of N leaky integrate-and-fire neurons whose membrane
potentials undergo the dynamics

τ V̇i(t) = −λV Vi(t) +N − τoi(t)− τ
∑
j 6=i

oj

(
t− δ

N

)
+
√
τσηi(t), and

neuron i emits a spike when Vi >
1

2
.

(S1)
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Vi is the ith neuron’s membrane potential, " ˙ " indicates a time derivative, λV
controls the strength of the leak, N is the input current, oj(t) is the jth neuron’s
spike train (represented as a sum of Dirac δ functions), ∆ = δ

N is the spike prop-
agation delay, σ controls the noise level, ηi are independent Wiener processes,
and the firing threshold is 1

2 . Note that neurons self-reset instantaneously to
Vi = − 1

2 . Note that the power of the time scale τ is chosen to ensure that each
term in Eq. (S1) has the same units as membrane voltage, which here we take
to be dimensionless. To see this note that a δ-function has units of inverse time
(so multiplying any spike train oi(t), which is composed of δ-functions, by τ
makes these terms dimensionless) and note that the Wiener process ηi(t) obeys
〈ηi(t)ηj(t′)〉t = δijδ(t− t′), implying that ηi(t) itself has units of inverse square
root of time. Thus we multiply the last term by

√
τ to ensure that the standard

deviation σ has the same units as the dimensionless membrane voltage. Finally,
note the leak term λV is also dimensionless.

Our goal is to derive an expression that describes the readout error, which
we define as the standard deviation σreadout of the readout x̂(t), as a function
of the number of neurons N , the delay δ, and the noise level σ.

x̂(t) =
1

N

N∑
i=1

ri(t) (S2)

τ ṙi(t) = −ri(t) + τoi(t) (S3)

σreadout =

√〈
(x̂(t)− 〈x̂(t′)〉t′)

2
〉
t

(S4)

We derive our central result—an approximate upper-bound for σreadout in the
δ � τ limit—in Subsection A.4. But before tackling the full complexity of this
system, we study a simpler system that exhibits the same noise tradeoff in the
presence of delay: a tight-balance network of soft-threshold neurons. For this
soft-threshold dynamics, we derive an exact expression for σreadout in the large
N , small delay δ � τ limit. The neurons undergo the dynamics

τ V̇i(t) = N − τoi(t)− τ
∑
j 6=i

oj(t−∆), and

neuron i emits spikes with probability rate ρ(Vi) =

{
ρ, Vi >

1
2

0, Vi ≤ 1
2

.

(S5)

To understand the behavior of this model, consider a simple situation where
the membrane voltages Vi of all the neurons are the same and equal to 0, as
would be the case when there is no external input, and if there were an additional
leak term to ensure all membrane potentials decay to 0. Then suppose the
external input equal to N is turned on at time t = 0. All the membrane
potentials will rise linearly at a rate N/τ and become superthreshold when
they reach Vi = 1

2 together at the same time τ/2N . The entire population
will remain superthreshold until the first neuron in the network spikes. Below,
we will denote the time interval from the simultaneous superthreshold crossing
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time to the time of first spike by the random variable tfirst. At this time tfirst,
the membrane potential of the first neuron to spike will be immediately reset
(i.e. decremented by 1). The rest of the network however, will first receive
inhibition from this initial spike only at time tfirst + ∆, due to the transmission
delay ∆. Of course during the entire time all membrane potentials are still
increasing at a rate N/τ due to the external input. Thus, as long as the time
tfirst +∆ is less than τ/N , the entire population will be subthreshold again after
responding to delayed inhibition from the first spike. More generally, we refer to
the interval of time between the entire population crossing above threshold and
then returning to subthreshold as a superthreshold interval. The smallest this
superthreshold interval can be is the tfirst + ∆, assuming the delayed inhibition
from a single spike is sufficient to return the entire population to subthreshold
state. Of course it could be longer if delayed inhibition from multiple spikes
is required to return the entire population to a subthreshold state. As we see
below, we will be working with short delays ∆ and high enough superthreshold
firing rates ρ so that typically a single spike suffices.

To find interesting, high performing operating regimes of this model, we
consider the statistics of spiking during a superthreshold interval. First, for any
individual superthreshold neuron, the probability of emitting a spike in a short
time interval of duration dt is ρ × dt, and the time to the next spike of that
neuron is exponentially distributed with mean 1/ρ. Thus the mean inter-spike
interval (ISI) of a single super-threshold neuron is 1/ρ. However, if allN neurons
cross threshold simultaneously, at some reference time t = 0, then the time tfirst
to the first spike in the entire network is exponentially distributed with mean
1
Nρ . Now if any individual neuron spikes, it can potentially immediately return
to a subthreshold state through its own reset mechanism that decrements the
membrane voltage by 1. However we will be operating in a large N regime
with a small number of neurons spiking between the first spike at tfirst and the
first network wide inhibition due to that spike at time tfirst + ∆. So for large
N we can neglect the small number of neurons that may have returned to a
subthreshold state due to their own spiking during this interval [tfirst . . . tfirst +
∆], and simply assume all N neurons are superthreshold during this interval.
Thus the superthreshold network ISI, defined to be the mean interval between
any successive pair of spikes occurring anywhere in the network, is 1

Nρ . So
during any part of the superthreshold interval of duration equal to the delay
∆, the expected number of spikes to occur is a Poisson random variable with
mean λ = Nρ∆. In order to ensure in the large N limit that a large number of
spikes do not impact the readout before the first spike has a chance to inhibit
the network, we therefore choose ∆ = δ/N where δ is O(1). This ensures that
λ = ρδ is O(1), and so O(1) spikes occur between the time the first spike occurs
at tfirst, and the time that spike first has a chance to inhibit the network at
time tfirst + ∆. Also, with this scaling of the delay ∆, the shortest possible
superthreshold interval, on average is simply the sum of the mean of the time
to first spike tfirst (which is 1

Nρ ) plus the delay (which is ∆ = δ
N ). During this

mean time, the membrane voltages, which are still integrating at a rate N
τ , rise
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above threshold by an amount N
τ ( 1

Nρ + δ
N ) = 1

τρ + δ
τ . As long as this quantity is

less than 1, then on average, delayed inhibition from a single spike is sufficient
to end the superthreshold interval. This quantity will be less than 1 at small
delays δ, and small mean time 1

ρ to first spike in a single neuron, all relative to
the single neuron integration time τ .

In summary, if the population first becomes superthreshold at a reference
time t = 0, then: (1) the mean of the time tfirst to the first network spike is
1
Nρ ; (2) the mean time when the network first receives delayed inhibition from
this first spike is 1

Nρ + δ
N ; (3) the mean number of extra, or spurious, network

spikes during this delay period is λ = ρδ; and (4) the final membrane voltage
at the end of this period (right before the inhibition) is 1

τρ + δ
τ . We will focus

our analysis on the following limits. First, in order to focus on regimes of good
encoding performance with low error, we assume the mean excess number of
spurious spikes λ = ρδ � 1. Second, for ease of analysis we focus on the regime
in which once the network is superthreshold, a single spike can on average
return the network to a subthreshold state, and moreover, the few neurons that
do spike during the superthreshold interval and are reset, do not return to a
superthrehsold state before the rest of the network becomes subthreshold. For
the first condition, we require 1

τρ + δ
τ = δ

τ ( 1
λ + 1) � 1 which implies δ

τ � 1
since we are already assuming λ� 1. Furthermore, consider a neuron that fired
during the superthreshold state and was immediately reset to a subthreshold
state corresponding to a membrane voltage that is below threshold by an O(1)
amount. Due to integration of the external stimulus at a rate N

τ it will return to
a superthreshold state within a time O( τN ). As long as the delay ∆ = δ

N is much
less than τ

N , the entire population will become subthreshold before this reset
neuron becomes superthreshold again. Thus, in the combined limit λ � 1 and
δ � τ , the entire network operates in a simple fashion: all membrane potentials
cross threshold together, a single first spike occurs, and then after a delay ∆
the entire network becomes subthreshold again. Then after a time O( τN ) all
the membrane potentials cross threshold simultaneously again. Interestingly as
we see below, performance is actually best when the network behaves in this
fashion.

A.2 Readout error for the soft-threshold model
First, we integrate Eq. (S3) to write the readout at a given time t as a sum of
exponential kernels from all spikes in the past.

x̂(t) =
1

N

∞∑
k=1

e−
∆tk
τ . (S6)

Here, ∆tk = t − tk where tk is the time of the k’th spike in the past from
any neuron in the network. Note that the time between any successive pair
of network spikes scales with N as O(1/N). To see this, consider two possible
cases. First consider the case where the entire population is superthreshold,
and a spike occurs. After a delay of ∆ = δ/N , this spike will inhibit the entire
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network, causing the entire population to become subthreshold. However, before
this happens, spikes can occur in any neuron at a rate Nρ and therefore the
typical ISI between any pair of spikes that occur in the same superthreshold
interval is O( 1

Nρ ). Now consider the the second case: the final spike in one
superthreshold interval and the first spike in the next superthreshold interval.
The time interval between these two spikes decomposes into 3 parts: (1) the
waiting time for network-wide inhibition to return to a subthreshold state; (2)
the time it takes for the external stimulus to drive the population back to a
superthreshold state; (3) the waiting time tfirst for the first network spike to
occur after becoming superthreshold. For (1), because we are working in a
limit where a single spike can typically return the network to a subthreshold
state, the waiting time for returning to a subthreshold state is at most the delay
∆ = δ

N from the last spike (and is shorter if there were earlier spikes in the
same superthreshold event before the last spike). For (2), we note that the
mean number of spikes in a superthreshold event is 1 + λ (the first spike plus
the mean number λ of spurious spikes). Each of these spikes will eventually
decrement the membrane voltage by an O(1) amount. Because λ � 1, the
membrane voltage of all neurons will never descend below threshold by more
than an O(1) amount, and because the membrane voltages integrate the external
drive at a rate N

τ , they will recover to a superthreshold state in a time O( τN ).
Finally, for (3), the mean of the time tfirst to the first network spike is 1

Nρ . Thus
the sum of these 3 intervals is O( δN + τ

N + 1
Nρ ), and is overall O( 1

N ).

A.2.1 Readout at a single point in time

In order to compute σreadout, we need to compute the standard deviation in x̂(t)
over a time window. To do so, we first compute the statistics of the readout at
a particular point in time tthres, defined as the time when the entire network
reaches threshold together. We denote the readout at this time by ξ := x̂(tthres).
To compute the mean and variance of ξ, we need to understand the statistics of
the past times ∆tk of all previous spikes, as these times contribute to the readout
through Eq. (S6). Figure A shows a schematic for the trajectory of the popula-
tion of membrane potentials undergoing the dynamics Eq. (S5). Assuming the
neural population starts with initial conditions Vi = 0 ∀i, the population reaches
threshold together (the first threshold-crossing shown in the schematic). Let zk
denote the duration of time between this threshold crossing and the first spike
anywhere in the network. As discussed above zk is an exponentially-distributed
random variable with mean 1

Nρ . Thereafter, there is a delay time ∆ = δ
N during

which the other N − 1 ≈ N neurons remain superthreshold and continue to fire
probabilistically. In a case where no extra spurious spikes occur, the rest of the
membrane potentials rejoin the first-firing neuron’s membrane potential after
receiving the inhibitory spike. The population then continues toward threshold,
and the process repeats. Occasionally (due to our assumption of small λ) one
(or more) spurious spikes may occur. For example, in the third superthreshold
interval in Figure A, two spikes occur at times z2 and z3 after the time the pop-
ulation crosses threshold. Each of these spikes will decrement the membrane
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voltage of all neurons by 1, and the entire population will recover arriving at
the next superthreshold crossing over a time proportional to the total number
of spikes in the previous superthreshold interval.
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Figure A: Schematic for spike generation and readout error in the soft-threshold
model. Top: the membrane potential dynamics Eq. (S5) generate a history of
spike-times ∆tk relative to the moment the membrane potnetials reach thresh-
old again, tthres. The spike-times include variation zk from the probabilistic
first-spike wait-time due to the soft threshold, and the possibility of spurious
synchronous spikes during the delay ∆. Bottom: integrating the readout devia-
tion over l-spike events in the computation of σreadout. E(ξ), the mean readout
at the time tthresh, is used as a reference point to compute the mean readout
and the squared deviation from that mean, integrated over time.

For ease of exposition, let us first compute the mean and variance of ξ in
the limit of extremely small λ. In this limit, the most probable scenario by far
in each superthreshold interval, is that only a single first spike occurs, with no

6



subsequent extra spurious spikes. Later we will consider corrections due to extra
spurious spikes that become relevant at larger λ. In this small λ limit, there is
a one-to-one correspondence between individual spikes and the previous super-
threshold crossing event of the population. We can use this correspondence to
calculate the times tk = tthres −∆tk of the k spike in the past. First, let ck be
the time at which the population crossed threshold just before the time tk of
the k’th spike in the past. Thus by the definition of zk we have tk = ck + zk.
Furthermore note that for any k the time between successive population super-
threshold obeys ck−ck+1 = τ

N . To see this, note that by definition, at time ck+1

the membrane potentials are at threshold Vi = 1
2 . During the entire time from

ck+1 to ck, the membrane potentials are rising at a rate N
τ , but they also suffer a

decrement of 1 when the neuron that spiked resets its own membrane potential
and when the rest of the neurons receive delayed inhibition from this spike. This
combination of integration at a constant rate N

τ , plus a decrement of 1, implies
the next time the population crosses threshold will be at time ck = ck+1 + τ

N .
This constancy of the time between population superthreshold crossings then
implies that ck = tthres − k τN and so tk = ck + zk = tthres − k τN + zk, and thus
∆tk = tthres − tk = k τN − zk.

Inserting this formula for ∆tk into Eq. (S6), we obtain

ξ =
1

N

∞∑
k=1

e−
k
N e

zk
τ . (S7)

We can see that ξ is an infinite sum of uncorrelated random variables. Using
the fact that the variables zk

τ are exponentially distributed with mean 1
Nρτ , we

have

E(e
zk
τ ) =

Nρτ

Nρτ − 1
≈ 1 +

1

Nρτ
(S8)

var(e
zk
τ ) =

Nρτ

(Nρτ − 1)2(Nρτ − 2)
≈
(

1

Nρτ

)2

, (S9)

where the approximate expressions denote the terms to leading orders in 1
N . We

can sum the geometric series, using the independence of the zk, to obtain

E(ξ) =
1

N

∞∑
k=1

(e−
1
N )k

Nρτ

Nρτ − 1
(S10)

=
1

N

Nρτ

Nρτ − 1

e−
1
N

1− e− 1
N

(S11)

≈ 1 +
(2− ρτ)

2ρτ

1

N
+O

(
1

N2

)
(S12)

and
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var(ξ) =
1

N2

∞∑
k=1

(e−
2
N )kvar(e

zk
τ ) (S13)

=
1

N2
var(e

zk
τ )

e−
2
N

1− e− 2
N

(S14)

=
1

2ρ2τ2
1

N3
+O

(
1

N4

)
(S15)

We note some important properties of E(ξ) and var(ξ). First, to leading
order in 1

N , E(ξ) = 1, which is expected for the constant stimulus x(t) = 1. The
next leading order term in E(ξ) decreases as O( 1

N ). Interestingly, in the limit
of large ρ, the subleading term approaches − 1

2N . This simple behavior can be
understood as follows. In the large ρ limit, the network spikes very soon after it
crosses superthreshold. This single spike increases the readout by exactly 1/N .
The readout subsequently decays at a rate τ but within a time O(1/N) the
membrane potentials recover to be subthreshold. By this time the readout has
decayed to below 1 and is ready to be boosted to above 1 by the next spike.
Thus, when we measure the readout specifically at the time the population has
crossed threshold, before this next spike, the readout will tend to underestimate
the input by an O(1/N) amount, while right after the spike, the readout will
overestimate the input by an O(1/N) amount. In this fashion, the readout
will zig-zag about the correct value. In fact it zig-zags symmetrically about
the correct value (in the large ρ limit), and is thus 1

2
1
N below 1 at threshold

crossing and 1
2

1
N above 1 just after the spike. In fact this zig-zag behavior of the

readout cannot be reduced either by reducing delays (by reducing δ) or reducing
variability in the time to first spike (by increasing ρ); it remains when δ = 0
and ρ is large.

Further note that the standard deviation of the readout at the time the
population crosses threshold (i.e.

√
var(ξ) in Eq. (S15)) is O( 1

N3/2 ), and so
is much smaller than the typical O(1/N) amplitude of the zig-zag behavior of
the readout about the correct value. Thus the variability in spike timing does
not contribute appreciable variance to the readout ξ at the single time tthres.
This can be understood intuitively, as follows. First, the time to spike after a
threshold crossing has variance O(1/N2) because N neurons are racing to spike
first. However, even though the decoder only integrates over a time scale τ , the
network generates spikes at a rate that is O(N). Thus the decoder value ξ at
time tthres feels variability from the last O(N) spikes in the past; the variabiilty
in the timing of these spikes all contribute to the variance of the readout at
tthres. The combination of O(N) spikes thus leads to an amplification of readout
variance by a factor of N due to the addition law of variance of independent
variables. But furthermore, the readout averages over N neurons leading to a
multiplicative reduction of variance by 1/N2. Thus the total variance of the
readout at any fixed time tthres due to the combination of decoder averaging,
decoder integration, and network racing to first spike is O( 1

N2N
1
N2 ) = O( 1

N3 ).
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Note that we have shown that the standard deviation of ξ, or the readout at
time tthres is negligible and only O( 1

N3/2 ) in the small λ limit where only single
spikes in any given superthreshold interval occur. Below, we will show that this
conclusion still holds, even at larger λ when multiple spikes could occur with
appreciable probability in a single superthreshold interval.

A.2.2 Mean readout error

So far, we have computed the mean and variance of the readout at a specific
time tthres. However, our fundamental goal is to compute the mean and variance
of the readout across time. In doing so we will find that both the bias and the
variance of the readout will be O(1/N). To see this, consider integrating the
readout across a long, contiguous time interval that starts at time t = 0 at the
beginning of a superthreshold interval and that ends at the start of a much later
superthreshold interval, at a time tend � τ/N . Then the mean readout is given
by

〈x̂(t)〉t :=
1

tend

∫ tend

0

x̂(t)dt (S16)

and with this definition, the bias of the readout is 〈x̂(t)〉t−〈x(t)〉t = 〈x̂(t)〉t−1.
The variance of the readout is given by

σ2
readout :=

1

tend

∫ tend

0

(x̂(t)− 〈x̂(t)〉t)2dt. (S17)

Importantly, many superthreshold intervals occur in this long contiguous time
interval from t = 0 to tend. To see this, recall that each superthreshold interval
contains O(1) spikes because the mean number of spurious spikes λ � 1, and
that a single spike inhibits the membrane potential population by 1. Thus
after each superthreshold interval, it takes O(1/N) time for the population to
return to superthreshold because the membrane potentials are driven by an
input current N/τ . For tend � τ/N then, many superthreshold intervals occur
in the time between t = 0 and tend.

Now, to evaluate Eq. (S16) and Eq. (S17), we wish to express the trajectory
of x̂(t) during and between these superthreshold intervals. Thus it is useful
to introduce the notion of an "event", which we define to be the interval of
time from the beginning of a superthreshold interval to the beginning of the
subsequent superthreshold interval. By definition, each event contains a single
superthreshold interval at its beginning. During this superthreshold interval,
recall that a random number l + 1 spikes occur, where l is a Poisson random
variable with mean λ. And after the superthreshold interval and before the end
of the event, no further spikes occur since the population is subthreshold. Thus
we can categorize events with the following nomenclature: events containing 1
spike are referred to as 1-spike events, events containing 2 spikes are referred
to as 2-spike events, and so on. We can use this definition of event to simplify
our primary task of integrating over the long time interval from t = 0 to tend
in Eq. (S16) and Eq. (S17) because the trajectory x̂(t) can be represented as
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a sequence of events—one event starting after another, stitched together—and
thus the integrals in Eq. (S16) and Eq. (S17) can be subdivided into a sum of
many smaller integrals, with one integral for the duration of each event. Let
M be the (large) number of events in the long time interval from t = 0 to tend,
then Eq. (S16) can be written as

〈x̂(t)〉t =
1

tend

M∑
i=1

µi (S18)

where

µi :=

∫ ti+1

ti

x̂(t)dt (S19)

is the readout integrated from the i’th event’s beginning, ti, to its end, ti+1.
(The beginning of a subsequent event is the end of the preceding event, and the
last event ends at time tM+1 = tend.) Similarly, Eq. (S17) can be written as

σ2
readout =

1

tend

M∑
i=1

si (S20)

where

si :=

∫ ti+1

ti

(x̂(t)− 〈x̂(t)〉t)2dt. (S21)

Now we must compute the sums of µi and si in Eq. (S18) and Eq. (S20),
and to help us do so, we will take advantage of an important property of x̂(t)
that we derived earlier. Namely, that the value of the readout at the time of
threshold-crossing ξ := x̂(tthres) has O(1/N3/2) fluctuations. Since we will soon
see that the variance of the readout σreadout is O(1/N), which is large compared
to O(1/N3/2), we can consider the value at the readout at threshold-crossing
as effectively fixed at the value E(ξ). And since every event begins and ends
at threshold-crossings, the readout at the beginning and end of each event is
effectively fixed at the value E(ξ). Thus each µi and si do not depend on the
history of x̂(t)—the value of the readout at the endpoints of integration in Eq.
(S19) and Eq. (S21) are always E(ξ) (x̂(ti) = E(ξ),∀i), and the spike times in
an event, relative to the start time of the event, are independent of all other
events, as the superthreshold interval in the event produces spikes with spike-
time distribution independent of other superthreshold intervals. Thus the µi
are independent random variables and the si are independent random variables.
(µi is independent of µj and sj ∀j 6= i, and si is independent of µj and sj
∀j 6= i; and of course, µi is correlated with si ∀i, because they are from the
same event.)

With this independence, we are free to perform the sums in Eq. (S18) and
Eq. (S20) in any order. We take advantage of this to group the events by their
spike number, which we will see makes a further simplification. We write

〈x̂(t)〉t =
1

tend

∞∑
l=0

Mp(l)+O(
√
M)∑

i=1

µi(l) (S22)
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σ2
readout =

1

tend

∞∑
l=0

Mp(l)+O(
√
M)∑

i=1

si(l) (S23)

where

p(l) :=
λle−λ

l!
(S24)

is a Poisson distribution with mean λ—the probability for an event to have l+1
spikes. Here, we have written that there areMp(l)+O(

√
M) (l+1)-spike events

for each l = 0, 1, ... because the number of l+1 spike events is a random variable
with mean Mp(l) and a deviation of order O(

√
M), as M is large, and we have

defined the random variables µi(l) and si(l) to have the same distribution as µi
and si, but conditioned on the number of spikes in the event i being l+ 1. (The
O(
√
M) deviation can be intuitively understood as the standard deviation from

a binomial distribution, where a successful trial is an event having l+ 1 spikes,
and a failure as having any other number of spikes.) Importantly, each µi(l)
and si(l) maintain independence from the other events because the conditional
distribution is simply nomenclature. Since the µi(l) are independent random
variables, we recognize the sum

∑Mp(l)+O(
√
M)

i=1 µi(l) as an expectation value
〈µi(l)〉i times Mp(l) + O(

√
M), where the angle brackets 〈·〉i denote average

over the distribution of µi(l). A parallel argument holds for si(l), and we can
write

〈x̂(t)〉t =
1

tend

∞∑
l=0

(
Mp(l) +O(

√
M)
)
〈µi(l)〉i (S25)

σ2
readout =

1

tend

∞∑
l=0

(
Mp(l) +O(

√
M)
)
〈si(l)〉i. (S26)

which distills our task down to calculating 〈µi(l)〉i, 〈si(l)〉i, and tend.
Since we had replaced the integral over the long time interval from t = 0 to

tend in Eq. (S16) and Eq. (S17) with a sum over M events, we also need to
express the normalizing fraction 1

tend
in terms of M so that we can eventually

cancel out M that appears in Eq. (S25) and Eq. (S26)—M should not appear
in the final result because we introduced it simply to express the long time
window over which we are averaging. Fortunately, it is easy to express tend
by recalling that there are Mp(l) + O(

√
M) (l + 1)-spike events ∀l in the long

time interval from t = 0 to tend, and that each l + 1 spike event has duration
(l+1)τ/N—each spike inhibits the membrane potential population by 1, yielding
a total inhibition of l + 1, and the input current N/τ constantly drives the
membrane potentials back to threshold, counteracting the inhibition, ending
the event when threshold is reached again at a time (l + 1)τ/N after the start
of the event. Thus we can simply sum up the duration of all events, to express
tend =

∑∞
l=0(Mp(l)+O(

√
M))(l+1)τ/N , and we can substitute this expression

into Eq. (S25) and Eq. (S26) to yield

〈x̂(t)〉t =

∑∞
l=0

(
Mp(l) +O(

√
M)
)
〈µi(l)〉i∑∞

l=0(Mp(l) +O(
√
M))(l + 1)τ/N

(S27)
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σ2
readout =

∑∞
l=0

(
Mp(l) +O(

√
M)
)
〈si(l)〉i∑∞

l=0(Mp(l) +O(
√
M))(l + 1)τ/N

. (S28)

Now we can see that dividing both the numerator and denominator byM makes
the M disappear from the expression: the terms with factor Mp(l) become
Mp(l)/M = p(l), and the terms of order O(

√
M) become O(1/

√
M), which go

to zero because M is large; thus dividing numerator and denominator by M
yields

〈x̂(t)〉t =

∑∞
l=0 p(l)〈µi(l)〉i∑∞

l=0 p(l)(l + 1)τ/N
(S29)

σ2
readout =

∑∞
l=0 p(l)〈si(l)〉i∑∞

l=0 p(l)(l + 1)τ/N
. (S30)

Finally, it remains to calculate the expectation values 〈µi(l)〉i and 〈si(l)〉i,
which we recall are averages over the random variables Eq. (S19) and Eq. (S21),
conditioned on there being l + 1 spikes in the event in the time interval ti to
ti+1 in Eq. (S19) and Eq. (S21). Let us consider an instantiation of an l + 1-
spike event, compute µi(l) and si(l) for this event, and then consider taking an
average over instantiations of l+ 1-spike events to compute 〈µi(l)〉i and 〈si(l)〉i.
Recall that for an instantiation of an l + 1-spike event, the readout x̂(t) has
value E(ξ) at the beginning and end of the event, that the time to first spike
in the superthreshold interval at the beginning of the event is a exponentially-
distributed random variable z0 with mean 1/Nρ and standard deviation 1/Nρ,
and that l spikes occur during the delay ∆, after the first spike. We illustrate
the readout’s trajectory during this event in Figure A (bottom).

We highlight some important features of this trajectory of x̂(t) during the
l + 1 spike event. First, the readout x̂(t) is E(ξ) + O(1/N) during the entirety
of the event, because each spike contributes O(1/N) to the readout (Although
we consider l = 0, ...,∞ in Eq. (S27) and Eq. (S28), we recall that λ � 1,
and thus l > O(1) events are exponentially suppressed in p(l), Eq. (S24).) And
since the duration of the event is short, with duration (l + 1)τ/N = O(1/N),
compared to the decay of the readout, with time constant τ = O(1), the readout
trajectory can be expressed as (E(ξ) + O(1/N))e−t

′/τ = (E(ξ) + O(1/N))(1 −
t′/τ + O(t′2)), where time t′ is time since the start of the event (time t in x̂(t)
is t = ti + t′, where ti is the start time of the event). Thus to first order in
time, the readout decreases linearly during the event (with the exception of
discontinuous increases due to spikes), with slope −(E(ξ) + O(1/N))/τ , which
is −1/τ to leading order in N , because E(ξ) is 1 to leading order in N (Eq.
(S12)). We do not consider higher-order corrections to this approximately linear
decrease in the readout, because the constant slope −1/τ provides consistency
with our assumption that the readout at the beginning and end of the event,
x̂(ti) and x̂(ti+1), are effectively fixed at the expectation value of ξ—the constant
slope of −1/τ over the duration of the event (l + 1)τ/N perfectly balances
the contribution (l + 1)/N to the readout from the (l + 1) spikes, i.e. 0 =
(l + 1)/N − 1/τ × (l + 1)τ/N , returning the readout to E(ξ) at the end of

12



the event—and the constant slope is sufficient to find O(1/N) contributions to
σreadout as we will see.

Second, the standard deviation of the first-spike time ti + z0 (where ti is
the start time of the event) is much larger than the variability of the l spurious
spike-times that occur during the delay ∆; importantly, this fact will allow us to
collapse the spike-times of the l spurious spikes to a single time for the purposes
of calculating the most salient contributions to 〈x̂(t)〉t and σreadout, as a more
finely-timed treatment would only provide higher-order corrections. To see why
this fact is true, recall that we are working in the λ = δρ � 1 limit. Dividing
both sides of this inequality by Nρ, we arrive at δ/N � 1

Nρ , and substituting
in ∆ = δ/N , we have ∆ � 1

Nρ . Recalling that the standard deviation of z0
is 1/Nρ, we see here that the standard deviation of z0 is much larger than the
delay ∆. Now, while the first spike time is exponentially distributed, for the
spike-times of the l spurious spikes we must remember that the l+1 spike event
is an event that is conditioned on having l spurious spikes occur during the delay
∆. (This assumes, as we did earlier, that we are working in a regime in which
the first spike’s inhibition is sufficient to return the population to subthreshold
after the delay ∆, preventing the possibility of further spikes until the population
reaches threshold again, which marks the end of the event.) Thus these l spikes
are not exponentially distributed like the first spike—indeed, they must occur
between time ti + z0 and ti + z0 + ∆. Regardless of the spike-time distribution
in this interval, the l spurious spikes have spike-times that are bounded in a
time interval of width ∆, which is much smaller than the standard deviation of
z0. Thus the chief contribution to spike-time variability for the l spurious spikes
comes from z0, and we can collapse the l spikes to the same spike-time ti + z0,
which we illustrate in Figure A (bottom).

Using these features together—the constant slope of the readout decay and
the collapsing of the l spurious spike-times—we can write down µi(l) and si(l)
for an instantiation of an l + 1 spike event:

µi(l) =

∫ z0

0

(
E(ξ)− t′

τ

)
dt′ +

∫ (l+1)τ/N

z0

(
E(ξ) +

1

N
(l + 1)− t′

τ

)
dt′ (S31)

si(l) =

∫ z0

0

[(
E(ξ)− t′

τ

)
− 〈x̂(t)〉t

]2
dt′ +

∫ (l+1)τ/N

z0

[(
E(ξ) +

1

N
(l + 1)− t′

τ

)
− 〈x̂(t)〉t

]2
dt′

(S32)

where the first integral is from the beginning of the event to the time of the
first spike, and the second integral is from the time of the first spike to the end
of the event. We next want to average over instantiations i to obtain 〈µi(l)〉i
and 〈si(l)〉i. Importantly, recall that z0 is an exponentially distributed random
variable with mean and standard deviation 1/Nρ, so we must average over this
distribution. Averaging over this distribution yields

〈µi(l)〉i = (l + 1)
τ

N
E(ξ) +

1

N2

(l + 1)(lρτ + ρτ − 2)

2ρ
(S33)
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〈si(l)〉i =
1 + l

3N3ρ2τ

(6 + ρτ(−3(1 + l − 2(〈x̂(t)〉t − E(ξ))n) + ((1 + l)2−
3(1 + l)(〈x̂(t)〉t − E(ξ))N + 3(〈x̂(t)〉t − E(ξ))2N2)ρτ)))

(S34)

Now we can calculate the mean readout 〈x̂(t)〉t by substituting the expression
for 〈µi(l)〉i (Eq. (S33)) into the expression for 〈x̂(t)〉t (Eq. (S29)), which yields

〈x̂(t)〉t = E(ξ) +
1

N

λ2ρτ + 3λρτ + ρτ − 2λ− 2

2(λ+ 1)ρτ
. (S35)

And then we can calculate the variance of the readout σ2
readout by substituting

the mean readout (Eq. (S35)) into the expression for 〈si(l)〉i (Eq. (S34)), and
substituting Eq. (S34) into the expression for σ2

readout (Eq. (S30)), which yields

σ2
readout =

1

N2

[
(δ/τ)2

λ2
+

1 + λ(14 + λ(19 + λ(10 + λ)))

12(1 + λ)2

]
(S36)

=
1

N2

[
1

12
+

(δ/τ)2

λ2
+ λ+O(λ2)

]
, (S37)

where we have used λ = ρδ to substitute ρ for λ
δ .

We can find the optimal noise level and minimal σreadout by differentiating
σreadout with respect to λ and setting the derivative equal to zero. This yields

λ∗ = 21/3(δ/τ)2/3 (S38)

σ∗readout = α

√
1

12
+

3(δ/τ)2/3

22/3
(S39)

We corroborate these results with simulations (Figure 2).

A.2.3 Additional variance from random interspersing of
2-spike events

Importantly, we had assumed in our calculations for the mean readout 〈x̂(t)〉t
and the readout fluctuations σreadout that the variance of the readout at the time
of threshold-crossings ξ := x̂(tthresh) is to leading order var(ξ) = O(1/N3); we
used this fact to consider the value of the readout at the start and end of events
as effectively fixed, compared to the leading order fluctuations in σreadout, which
were O(1/N). However, we had only shown var(ξ) = O(1/N3) if one considers
that only 1-spike events occur, and no l + 1 spike events occur (where l > 0)
(the derivation leading to Eq. (S15)). So it remains to confirm that, when there
is an appreciable probability that l + 1 spike events occur (where l > 0), the
variance var(ξ) is still O(1/N3).

To see why this is the case, we first imagine a readout trajectory x̂(t) that
consists only of 1-spike events, of which we know var(ξ) = O(1/N3); then
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we modify x̂(t) so that it includes l-spike events, calling this new trajectory
ˆ̃x(t); and finally we calculate how much the variance var(ξ̃) of the readout at
threshold-crossing ξ̃ := ˆ̃x(tthres) changes under the perturbation x̂(t) → ˆ̃x(t),
compared to the original variance var(ξ). If the change var(ξ̃) − var(ξ) is an
O(1/N3) amount, then the var(ξ̃) is O(1/N3) as well, since we already know
var(ξ) is O(1/N3).

Recalling that the mean number of spurious spikes λ� 1, the most prevalent
type of event is a 1-spike event (0 spurious spikes), and the second-most preva-
lent type of event is a 2-spike event (1 spurious spike). Thus we can consider the
perturbation x̂(t)→ ˆ̃x(t) to leading order in λ by only considering the addition
of 2-spike events. Now let us consider what adding 2-spike events looks like. The
readout trajectory x̂(t) is a sequence of 1-spike events, while the readout trajec-
tory ˆ̃x(t) is a sequence of 1-spike events and 2-spike events, with 1-spike events
accounting for the fraction p(0) = 1−λ+O(λ2) of all events and 2-spike events
accounting for the fraction p(1) = λ + O(λ)2 of all events. Importantly, the
few 2-spike events are randomly interspersed among the many 1-spike events,
as we recall that the number of spikes in a given event is independent of all
other events. Thus, we can imagine adding 2-spike events to x̂(t) by randomly
replacing a fraction λ of (randomly selected) 1-spike events with 2-spike events.
Now importantly, 2-spike events have duration 2τ/N , while 1-spike events have
duration τ/N , which means replacements must shift other events (events before
the replacement to earlier times and/or events after the replacement to later
times) in order to create room for the longer 2-spike event. Thus instead of
considering this complicated dependency of the other event times due to each
single replacement, let us instead consider replacing subsequent pairs of 1-spike
events with 2-spike events; a subsequent pair of 1-spike events has duration
2τ/N , which matches that of a 2-spike event, and thus the other event times do
not change when such a pair replacement is made.

To understand how many such replacements are necessary to result in a
fraction λ of 2-spike events in ˆ̃x(t), consider starting with a large number M
of events in a long time interval of x̂(t) as we did earlier. We wish to perform
replacements of 1-spike events in x̂(t) so that the fraction of 2-spike events after
replacements ˆ̃x(t) is λ. The question is—how many 1-spike pair replacements
should we make? Let us consider replacing K 1-spike event pairs. The number
of 1-spike events is initiallyM (there are only 1-spike events in x̂(t)). Replacing
K 1-spike pairs removes 2K 1-spike events and introduces K 2-spike events.
Thus the number of 1-spike events becomes M − 2K and the number of 2-spike
events becomes K. We wish for the fraction of 2-spike events K

M−2K to be λ.
Solving for K, we find K = Mλ + O(λ2). This means that we must replace a
fraction K/M = λ+O(λ2) pairs of 1-spike events to make the fraction of 2-spike
events to be λ.

Now that we know the fraction of 1-spike event pairs to replace with 2-spike
events to represent the perturbation x̂(t) → ˆ̃x(t), we need to consider what
the effect such a perturbation has on var(ξ̃) − var(ξ). First, let us consider
the replacement of one pair of 1-spike events, whose end is at a time treplace,
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which is nτ/N before the time tthresh (treplace = tthresh − nτ/N). Recall that
the replacement only changes the spike times of the 2 spikes in the pair of 1-
spike events, and the spike times in all other events remain the same. The
perturbation in the readout at tthresh, ξ̃ − ξ, is

d(n) :=
1

N
((e−(n+1)/N + e−n/N )− 2e−(n+1)/N ), (S40)

where we have neglected any differences due to first-spike times because they
are much smaller than the change due to the replacement. (The first-spike times
in the original 1-spike events each have standard deviation 1/Nρ, which is much
smaller than the O(τ/N) jump in spike-time due to replacing the pair of 1-spike
events with a 2-spike event. As discussed earlier, we are considering the regime
in which a single spike’s inhibition is sufficient to return the entire population to
subthreshold, which means 1/Nρ � τ/N , and thus all spikes happen near the
beginning of an event—the second spike here, which is originally in the second
1-spike event, now takes place near the beginning of the 2-spike event, being
pushed back O(τ/N).)

Importantly, individual replacements are probabilistic, happening with prob-
ability λ for each pair of 1-spike events. Thus, now that we know the difference
ξ̃ − ξ due to a replacement, we can use it to express how a single probabilistic
replacement effects var(ξ̃)− var(ξ). Consider any pair of 1-spike events in x̂(t)
(indexed by n in their end time treplace = tthresh − nτ/N); the probability that
this n’th pair is replaced by a 2-spike event is λ. Thus the change in mean
readout at tthresh, E(ξ̃)− E(ξ), due to this single probabilistic replacement is

〈d(n)〉 := d(n)λ+ 0(1− λ). (S41)

where the change d(n) due to the potential replacement is weighted by its proba-
bility λ. Furthermore, the contribution to the variance in the readout at tthresh,
var(ξ̃)− var(ξ), due to this single probabilistic replacement is

var(d(n)) := (d(n)− 〈d(n)〉)2λ+ (0− 〈d(n)〉)2(1− λ). (S42)

where we have used the fact that the probabilistic replacement is independent
of other sources of variance.

Finally, we must sum over all probabilistic replacements to express the total
effect of 2-spike events on var(ξ̃)− var(ξ). We can sum the additional variance
from each probabilistic replacement var(d(n)), where each pair of 1-spike events
considered for replacement is indexed by n in their end time treplace = tthresh−
nτ/N :

var(ξ̃)− var(ξ) =

∞∑
n=1

var(d(n)) (S43)

= − 1

N2

e−2α(e1/N − 1)(λ− 1)λ

1 + e1/N
(S44)

= −1

2
((λ− 1)λ)

1

N3
+O(

1

N4
). (S45)
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where we have safely neglected the low-probability event that two pairs of 1-spike
events that share a 1-spike event (subsequent pairs of 1-spike events, overlapping
in time) are both replaced, which has probability O(λ2). We can see that the
leading-order term in Eq. (S45) is O(1/N3), which completes the argument that
var(ξ̃) = O(1/N3) because we had already shown that the variance considering
1-spike events only, var(ξ), is O(1/N3).

A.3 Readout error for the LIF model with zero delay
Our ultimate goal is to study the standard deviation σreadout as a function of
the delay ∆ and noise σ in the membrane potential dynamics Eq. (S1); as
mentioned in Models, our study will uncover an upper-bound for σreadout as a
function of delay ∆ and noise σ. But for ease of exposition, let us first study
σreadout in the case of zero delay ∆ = 0, with noise σ > 0. In this case, the
membrane potentials undergo the dynamics

τ V̇i(t) = −λV Vi(t) +N − τ
N∑
j=1

oj(t) +
√
τσηi(t), and

neuron i emits a spike when Vi >
1

2
.

(S46)

Studying this delay ∆ = 0 case, we will uncover properties of the membrane
potential dynamics Eq. (S46) that will serve as a baseline for studying the
dynamics when there is a delay ∆ > 0 (the dynamics in Eq. (S1))—we study
∆ > 0 in the next section.

To understand the behavior of the population of membrane potentials Vi
in Eq. (S46), consider for the purpose of pedagogy the situation in which the
membrane potentials start with some initial condition Vi(0), and inhibitory spike
terms are disabled (oj(t) terms are removed, and the neurons never spike, even
when they surpass threshold). The dynamics become

τ V̇i(t) = −λV Vi(t) +N +
√
τσηi(t). (S47)

These dynamics correspond to an OU process [1, 2]—each membrane potential
Vi(t) undergoes an independent OU process with time constant τ , leak constant
λV , drift term N , and independent noise

√
τσηi(t). In particular if the process

starts at a well specified initial condition Vi(0), then its mean E(Vi(t)) evolves
in time as

E(Vi(t)) = Vi(0)e−
λV
τ t +

N

λV

(
1− e−

λV
τ t
)
. (S48)

Notably, the initial condition Vi(0) is exponentially forgotten on a time scale of
τ
λV

and the external drive N forces the mean to saturate at the value N/λV ,
again over a time scale of τ

λV
. Importantly, however, the temporal autocovari-

ance of the stochastic process Vi(t), is independent of the drift term:

cov(Vi(s), Vi(t)) := 〈(Vi(s)− E(Vi(s))) (Vi(t)− E(Vi(t)))〉 (S49)

=
σ2

2λV

(
e−

λV
τ |t−s| − e−

λV
τ (t+s)

)
. (S50)
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where s and t are two times and the angle brackets 〈·〉 denote an average over the
stochastic trajectory ηi. The second term e−

λV
τ (t+s) reflects the non-stationarity

of the autocovariance due to the definite initial condition at time 0, and for large
times s, t� τ this non-stationary term vanishes. Let us consider large times, as
we are interested in the setting in which the network is continuously operating.
And for a time s = t, the first term e−

λV
τ |t−s| is 1, showing us that for a

particular large time t� τ , the variance of Vi(t) is

var(Vi(t)) := 〈(Vi(t)− E(Vi(t)))
2〉 (S51)

=
σ2

2λV
=: σ2

OU . (S52)

Thus, for an instant in time t, each Vi(t) is a random variable with mean E(Vi(t))

and variance var(Vi(t)) = σ2

2λV
, which we have also named σ2

OU for a more
brief notation in future calculations. Furthermore, it is known that Vi(t) is
Gaussian-distributed (a property of the OU process). Thus a simple picture
emerges here—for any moment in time t � τ , the membrane potentials are
Gaussian-distributed with variance σ2

2λV
, forming what we call a "packet" that

is centered at E(Vi(t)) = N/λV . Of course, the individual membrane potentials
fluctuate as time goes on, but the packet remains the same size, with variance
σ2
OU = σ2

2λV
.

Next, let us consider reintroducing the inhibitory terms oj(t), and describe
the dynamics Eq. (S46). Compared to our preceding description of the dy-
namics without inhibitory terms, we see one difference: the drift term N is
now counteracted by the inhibitory spike term −τ

∑N
j=1 oj(t). The question

is, what effect does this have on the evolution of the packet we previously il-
lustrated? To answer this question, let us highlight one important property of
the autocovariance equation describing the packet, Eq. (S50). Namely, that
this equation does not depend on the initial condition Vi(0). Then imagine the
following: the packet of membrane potentials evolves according to our previous
description, until one neuron reaches threshold. This neuron fires a spike, and,
importantly, this spike is instantaneously delivered to all other neurons through
the −τ

∑N
j=1 oj(t) term (as the delay ∆ = 0), which simultaneously decrements

the entire membrane potential packet. Since the decrement is simultaneous,
the relative positions of the membrane potentials in the packet are preserved
over that instant in time (but of course, the mean membrane potential is decre-
mented). Thus the development of the autocovariance of the packet is preserved
(it continues to grow or saturate to a steady state as in Eq. (S50)) because we
can consider the new position of the packet after the spike to simply be a new
set of initial conditions, and the autocovariance does not depend on the ini-
tial conditions. Of course, the mean membrane potential oscillates in a zig-zag
fashion, driving upward due to the drift term N and being decremented with
each spike, but the packet eventually grows to the same steady-state variance
of σ2

OU = σ2

λV
.

Thus to summarize the dynamics of Eq. (S46), we have a Gaussian packet
of membrane potentials Vi(t) rising toward threshold at a rate N/τ (driven
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by the input current N) and discouraged from deviating from zero due to the
leak term −λV Vi(t). Since we are interested in an operating regime where
the network dynamics are driven by tight balance (the input current N term),
let us assume the leak term −λV Vi(t) is small compared to the input current
N , i.e. |λV Vi(t)| � N ; thus the input current N surely drives the packet to
threshold. When the top neuron in the packet hits threshold at a time we call
tthresh, it fires a spike that instantaneously decrements the entire population of
membrane potentials by 1 (the −τ

∑N
j=1 oj(t) term integrates to 1 because of the

time constant τ multiplying V̇i(t) in Eq. (S46)). Then, the membrane potential
packet continues traveling toward threshold, and the process repeats. Note that
in this repeated process, the same neuron does not necessarily fire successively—
the membrane potentials continuously fluctuate within the packet, and thus a
different neuron can become the top neuron in the membrane potential packet
at any time.

Importantly, we wish to consider high-performing networks, and it is helpful
to identify what regime of parameters facilitates high performance, i.e. small
readout standard deviation σreadout. First, let us consider the noise level σ.
The width of the membrane potential packet σOU is controlled by σ through
σOU = σ2/2λV . Thus for small σ, the packet width is small, and for larger
σ, the packet width is large. Now, to understand how the width of the packet
affects the readout standard deviation σreadout, let us consider first small σ,
such that σOU � 1. In this case, the fluctuation in the membrane potential of
the top neuron in the packet is small because the packet itself is tight. Thus
the time between spikes ∆t from when the top neuron, say, neuron i, spikes at
a time tthresh,1, and when the top neuron, neuron j (neuron j is not necessarily
the same neuron as neuron i), subsequently spikes again at time tthresh,2 (∆t :=
tthresh,1−tthresh,2) has very little variation. To see this, recall that the inhibition
from the first spike at time tthresh,1 inhibits the membrane potential packet by
1. The packet then travels toward threshold due to the input current N (recall
that we can ignore the leak term −λV Vi(t)� N). Now, if the packet is infinitely
tight, i.e. σOU = 0, then it takes a time ∆t = τ/N for the population to reach
threshold again at time tthresh,2, with no fluctuations in the time ∆t. (a point
packet is travelling toward threshold with constant current N and repeatedly
inhibited) This results in perfectly regular interspike intervals of τ/N , which
correspond to an the ideal zig-zag readout as discussed in the large ρ limit
of the soft-threshold model—the best performance achievable, given that the
readout is defined as a sum of firing rates that are filtered spike-trains Eq.
(S2). Next, consider a small σ > 0, in which σOU > 0. Now the fluctuations
in the membrane potential of the top neuron can be significant because the
membrane potentials fluctuate within a packet of finite width; thus variations
are introduced in ∆t. These variations are a departure from the perfectly regular
spike-times of the σ = 0 case, thus they increase σreadout. Thus we find here
that high-performing networks correspond to low levels of noise σ.

Importantly, the magnitude of the fluctuations in the interspike interval
time ∆t is controlled by the standard deviation of the membrane potential
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packet σOU = σ/2
√
λV . Thus another way to achieve consistent interspike

interval times, aside from small σ, is to choose large λV because this will make
σOU small as well. But we cannot adjust λV arbitrarily, as we recall that we
would like to consider values of λV that correspond to the regime in which
the network dynamics are dominated by tight balance, i.e., |λV Vi(t)| � N .
Now, importantly, we are considering σOU � 1, and the membrane potentials
Vi(t) exhibit O(1) fluctuations due to decrements from inhibitory spikes when
the top neuron reaches threshold—thus the combined effects of the packet’s
width σOU � 1 and the inhibitory spikes create an overall membrane potential
dynamics that exist in an O(1) dynamic range. Hence, the leak term λV Vi(t)
indeed satisfies |λV Vi(t)| � N , so long as λV scales less than O(N). Let us
assume that λV is a given property of the network dynamics that satisfies this
constraint.

Equipped with an understanding of the membrane potential dynamics Eq.
(S46) and a qualitative understanding of how noise σ affects the dynamics, let
us work toward our goal of quantitatively expressing the readout x̂(t)’s standard
deviation σreadout as a function of the noise σ for a network with some given leak
parameter λV . We start by recalling that the readout x̂(t) is a sum of decaying
exponentials, with each term corresponding to a spike-time in the network:

x̂(t) =
1

N

∞∑
k=1

e−
∆tk
τ . (S53)

Here, we have written ∆tk := t− tk where tk is the time of the k’th spike in the
past from any neuron in the network. For ease of exposition, it is useful to define
the notion of an "event" here as the interval of time between two subsequent
spikes. Thus the time interval from t2 to t1 is an event, the time interval from t3
to t2 is an event, and so on. (Note that this is the same definition of "event" as
in our description of the soft-threshold model, because spike-times are equal to
membrane potential threshold-crossing times in the LIF model; also note that
we only have 1-spike events here, as there are no delays.)

A.3.1 Readout at a single point in time

Now, we eventually want to compute the integral of x̂(t) over time to determine
σreadout (Eq. (S17)), but to begin let us consider the readout x̂(t) at just one
point in time, tmid := t1 + τ

2N , that is near the middle of the event that starts
at time t1. Let us call the value of the readout at this time ξ := x̂(tmid). To see
why this time tmid is near the middle of the event, consider the typical duration
of an event—the membrane potential packet has been inhibited by 1 from the
spike at the beginning of the event, and the driving current N takes a time τ/N
to push the packet back to threshold, if we ignore fluctuations in the membrane
potential packet. Thus, tmid = t1+τ/2N is about halfway through the duration
of the event.

Now importantly, the spike times tk are random variables that depend on
the fluctuations of the membrane potentials due to the noise term

√
τσηi(t) in
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Eq. (S46), and so ξ is also a random variable that depends on the the spike
times ∆tk through Eq. (S53). Thus we need to study the spike times ∆tk.
To simplify our analysis, let us first consider small λV , where λV � 1. To
understand how small λV simplifies the dynamics of the membrane potentials,
first consider Eq. (S50). Notice that λV sets the time-scale of autocorrelations
in membrane potential trajectory Vi(t) to τ/λV , as seen in the first term of
Eq. (S50). Thus a small λV corresponds to a long mixing time τ/λV of the
membrane potential packet. In essence on time scales much less than that of
τ/λV , the relative order of membrane potentials will be preserved. Note also
that the time it takes for the mean of the packet to travel to threshold right
after experiencing inhibition is τ/N . Thus if the mixing time τ/λV is much
greater than the time to rise to threshold τ/N , from event to event the identity
of the top-neuron that first spikes will largely be preserved for successive events.
We can see this effect in spike raster plots from simulations of the membrane
potential dynamics Eq. (S46) (Figure 3(a)). Notably, as λV is decreased, the
same neuron repeatedly spikes; i.e., the same neuron remains the top neuron
in the packet over many events. Thus for small λV � N , we can approximate
the spike-time generation dynamics by only considering the dynamics of a single
neuron’s membrane potential—that of the top neuron.

Considering just the single membrane potential of the top neuron evolving
according to Eq. (S46), we can easily calculate the statistics of event durations,
i.e., the time between the last spike of the top neuron and its next spike. This
will in turn allow us to calculate the statistics of ∆tk in Eq. (S53). Let us
consider an event that starts at time ts and ends at time tf , and let us call the
membrane potential of the top neuron Vα(t) (α is the index of the top neuron).
At the instant of ts, the membrane potential Vα(t) has just reached threshold,
the top neuron spikes, and the membrane potential Vα(t) is decremented by 1
by the inhibitory spike. Next, the membrane potential Vα(t) is driving back
toward threshold by the input current N , and experiences two other effects
during its journey: the leak −λV V α(t) and the noise σηα(t). Since λV is small
and Vα(t) is O(1), we can neglect the leak term. But the noise term

√
τσηα(t)

is accumulated in the integration of Eq. (S46) while the membrane potential
Vα(t) travels toward threshold, and the total time tfp := tf − ts it takes for
the top neuron to reach threshold is a random variable. Fortunately, we can
recognize tfp as the first-passage time of a particle undergoing Brownian motion
with drift N , noise level σ, time constant τ , and with a goal that is a distance
1 away. The moments of tfp are known [2]. The mean is

〈tfp〉 =
τ

N
(S54)

and the variance is

var(tfp) :=
〈
(tfp − 〈tfp〉)2

〉
=
σ2τ2

N3
. (S55)

Furthermore, the duration of the next event is simply another instance of the
random variable tfp, as the history of previous events is not recorded in any
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way in the state of the top neuron. Thus, defining the random variable tnfp as
the time between spike time tn+1 and spike time tn, i.e., tnfp := tn − tn+1, we
can write the spike times ∆tk in Eq. (S53) a time t = tmid as

∆tk = tmid − t1 +

k−1∑
n=1

tnfp (S56)

= τ/2N +

k−1∑
n=1

tnfp, (S57)

where by definition tmid − t1 = τ/2N .
Now that the ∆tk are expressed as sums of random variables tnfp, we can

consider evaluating the readout at time tmid, ξ = x̂(tmid). We rewrite Eq. (S53)
as

ξ =
1

N

∞∑
k=1

e−( τ
2N+

∑k−1
n=1 t

n
fp)/τ . (S58)

Here we can recognize that ξ is a sum of correlated random variables, because
the exponent of the k’th term is a sum of the first k − 1 tnfps; for instance, the
k = 2 term contains t1fp, and all k > 2 terms also contain t1fp. Furthermore,
the first-passage times tnfp are not Gaussian-distributed [2]. Thus evaluating
this sum in non-trivial, in contrast to our analysis for the soft-threshold model.
However, to make evaluating this sum more tractable, we note one important
property: in the vast majority of e−(...) terms, the sum

∑k−1
n=1 t

n
fp itself contains

many terms. (For only the first few e−(...) terms (k = 1, 2, 3, ...), does the
sum

∑k−1
n=1 t

n
fp have few terms.) Thus using the central limit theorem, we can

approximate the sum
∑k−1
n=1 t

n
fp as a Gaussian distribution. Furthermore, this

Gaussian distribution only depends on the mean and variance of the tnfp. Of
course, even with this simplification, we still need to take into account that the
e−(...) terms are correlated.

To formalize our central limit theorem approximation, let us rewrite Eq.
(S58) as

ξ =
1

N

∞∑
k=1

e−( τ
2N+

∑k−1
n=1 τ/N+γn)/τ , (S59)

where
γn ∼ N (0, std =

στ

N3/2
) (S60)

is a zero-mean Gaussian-distributed random variable with variance equal to that
of tnfp. (We pulled out the mean of tnfp to create the τ/N term in Eq.(S59)).

Now recall that we are ultimately interested in computing the variance of
the readout σ2

readout, and so as a starting point, let us compute the variance of
the readout at the particular time tmid, σ2

ξ := 〈(ξ−〈ξ〉)2〉. We begin calculating
σ2
ξ by making some simplifications. First, we pull out the common factor for all

terms e−τ/2N , and we substitute in the simple relation
∑k−1
n=1 τ/N = (k−1)τ/N
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to obtain

ξ =
1

N
e−1/2N

∞∑
k=1

e−((k−1)τ/N+
∑k−1
n=1 γn)/τ . (S61)

Second, we note that the sum h(k) :=
∑k−1
n=1 γn has zero terms for k = 1, i.e.,

h(1) =
∑0
n=1 γn = 0, one term for k = 2, i.e., h(2) =

∑1
n=1 γn = γ1, and so

on. Thus there is a mismatch between the term-number k and the number of
γn in the sum for term k. We would like to remove this mismatch to make the
expression simpler, so we therefore pull out the first k = 1 term in Eq. (S61),
and re-choose the index k → k − 1 so that it now starts at k = 1 with the term
that contains one γn (that is, γ1). This results in an equivalent expression to
Eq. (S61),

ξ =
1

N
e−1/2N +

1

N
e−1/2N

∞∑
k=1

e−(kτ/N+
∑k
n=1 γn)/τ . (S62)

Now, we can see that the first term in Eq. (S62) is constant and not a
random variable, so the variance σ2

ξ does not depend on it, thus we can neglect
it in our calculation of σ2

ξ . Thus our goal is to compute the variance due to the
other terms in Eq. (S62). Importantly, the e−1/2N that we factored from all
terms is simply a multiplicative factor, thus if we define

ζ :=

∞∑
k=1

e−(kτ/N+
∑k
n=1 γn)/τ (S63)

then the variance of ξ is the variance of ζ times (e−1/2N )2, i.e., σ2
ξ = ( 1

N e
−1/2N )2σ2

ζ .
Keeping this conversion from σ2

ζ to σ2
ξ in mind, we can turn our focus to com-

puting σ2
ζ .

Looking at Eq. (S63), we need to understand how we will compute the vari-
ance of a sum of correlated random variables. We note that we can break down
the k’th term into a factor e−k/N multiplying the random variable e−

∑k
n=1 γn/τ .

And we can see that the random variable e−
∑k
n=1 γnτ is log-normal distributed,

because the γn are Gaussian-distributed and so is their sum. Thus we see that we
have a sum of weighted, correlated log-normal random variables. Importantly,
the variance of the sum depends on the variance of the individual correlated
random variables (and how they are correlated), thus it is useful to introduce
here a definition for the variance σ2

0 of the log-normal random variable e−γn/τ :

σ2
0 := eσ

2/N3

(eσ
2/N3

− 1). (S64)

Now, we can actually compute the variance of σ2
ζ by adding variances and

splitting according to the contributions from each γn to account for correlations.
To do this, we introduce a simple approximation that is accurate for small σ � 1;
namely, that the variance of the random variable e−

∑k
n=1 γn/τ is approximately
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equal to the variance of the random variable
∑k
n=1 e

−γn/τ for all k. Thus,
using this approximation as we consider the contribution to the variance from
each term in ζ, we encounter a sum of now uncorrelated random variables, with
coefficients determined by the term number k. Namely, the first few terms when
considering the variance of ζ are e−1/Ne−γ1/τ , e−2/N (e−γ1/τ + e−γ2/τ ), and so
on. Thus we can sum the coefficients for each independent random variable
(each γn), and add the coefficient sums in quadrature to yield the variance σ2

ζ .
We write

σ2
ζ = σ2

0

( ∞∑
k=1

rk

)2

+

( ∞∑
k=2

rk

)2

+ ...

 (S65)

where we have introduced the definition

r := e−1/N (S66)

for brevity.
Next, to simplify Eq. (S65), we can recognize that the sums

∑∞
k=j r

k are
geometric series, whose totals are rj

1−r and write

σ2
ζ = σ2

0

[(
r

1− r

)2

+

(
r2

1− r

)2

+

(
r3

1− r

)2

+ ...

]
. (S67)

And factoring out r2

(1−r)2 , we see that the result Eq. (S67) is itself a geometric
series, with constant ratio r2, which we can substitute for its total 1

1−r2 , writing

σ2
ζ =

σ2
0r

2

(1− r)2
[
1 + r2 + r4 + ...

]
(S68)

=
σ2
0r

2

(1− r)2
1

1− r2
. (S69)

Thus finally we can substitute back in the definitions for r and σ2
0 into Eq.

(S69), and recall the conversion σ2
ξ = ( 1

N e
−1/2N )2σ2

ζ to obtain

σ2
ξ =

(
1

N
e

1
2N

)2
e−2/N

(1− e−1/N )2
1

1− e−2/N
eσ

2/N3

(eσ
2/N3

− 1) (S70)

σ2
ξ =

σ2

2

1

N2
+O

(
1

N3

)
. (S71)

A.3.2 Mean readout error

To summarize the result Eq. (S71), it tells us that the value of the readout at a
time τ/2N into an event, x̂(tmid), is a random variable with standard deviation
σ/
√

2N to leading order. This is a useful fact, because it gives us a starting
point for calculating σreadout, as we now illustrate. Recall from our discussion of
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the soft-threshold model, that we can express the trajectory of x̂(t) as a series of
events (here events go from spike to subsequent spike, while in the soft-threshold
model events went from superthreshold crossing to superthreshold crossing), and
we can express the integrals over time that define the mean readout 〈x̂(t)〉 and
the variance of the readout σ2

readout as sums of of smaller integrals over the
duration of individual events (Eq. (S18), Eq. (S19), Eq. (S20), and Eq. (S21)).
But importantly, in contrast to the soft-threshold model, the value of the readout
x̂(t) during each event is not independent of all other events; in fact, for the LIF
model, our calculation for Eq. (S71) shows spike-time variability accumulated
over many spikes (the

∑k
n=1 γn) creates fluctuations in ξ that are O(1/N).

Indeed, individual spike-time variability (the standard deviation of each γn) is
only στ/N3/2 = O(1/N3/2), which is much smaller than the O(1/N) spike-time
variability in the soft-threshold model (the standard deviation of the first spike
time) that was required to produce fluctuations σreadout = O(1/N) in the soft-
threshold model where spike-time variability does not accumulate. Recognizing
this important property that the readout x̂(t) is correlated from event to event,
we can still however use our result for σξ (Eq. (S71)) to compute σreadout
because we need to take a sum over many events, and addition is commutative.
The sum for σreadout (Eq. (S20)) can be executed in any order—thus all we
need to know is the distribution of the integrated squared deviation si for an
individual event.

Thus, we can perform a parallel computation for σreadout to that in the soft-
threshold model (Equation Eq. (S18) to Eq. (S37)), except here we only have
1-spike events. Eq. (S29) becomes

〈x̂(t)〉t =
〈µi〉i
τ/N

, (S72)

and Eq. (S30) becomes

σ2
readout =

〈si〉i
τ/N

, (S73)

where we recall that the denominator in these equations expresses the mean
duration of an event, which for LIF model we recall is simply 〈tfp〉 = τ/N . To
express the expectation values 〈µi〉i and 〈si〉i, we can first consider a particular
instance of an event, integrate over the duration of this event to compute µi and
si, and then take the average over i to yield 〈µi〉i and 〈si〉i. For a particular
event then, we can write

µi =

∫ tifp

0

(
ξi +

1

2N
− 1

τ
t′
)
dt′ (S74)

si =

∫ tifp

0

[(
ξi +

1

2N
− 1

τ
t′
)
− 〈x̂(t)〉t

]2
dt′ (S75)

where ξi is an instance of the random variable ξ, and the time t′ starts at the
beginning of the event with t′ = 0. The expression in () in Eq. (S74) and
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Eq. (S75) is the readout x̂(t′). Importantly, x̂(t′) starts with value ξi + 1/2N
at t′ = 0, and decays approximately linearly with slope −1/τ (by the same
reasoning for the constant slope of −1/τ in the soft-threshold model). Thus at
time t′ = τ/2N , the readout equals ξi, as the definition of ξi requires. Finally,
the readout continues to decay until the event ends at time t′ = tifp.

To evaluate 〈µi〉i, let us represent the deviation of ξi from E(ξ) with the unit
Gaussian random variable yi multiplied by σξ. Eq. (S74) becomes

µi =

∫ tifp

0

(
E(ξ) + σξyi +

1

2N
− 1

τ
t′
)
dt′ (S76)

and its expectation value (averaging over yi and tifp) is

〈µi〉i = E(ξ) +O(1/N3/2) (S77)

because yi has zero mean, the integral from t′ = 0 to the mean tifp at t′ =
τ/N evaluates to exactly E(ξ)τ/N , and any additional contributions from the
deviations of tifp from its mean τ/N are order O(1/N3/2) (Eq. (S55)). Thus
the mean readout Eq. (S73) to leading order is

〈x̂(t)〉t = E(ξ). (S78)

This result can be understood intuitively by comparing to the nominal operation
of the predictive coding framework (the large ρ limit discussed in the soft-
threshold model). Intuitively, for high-performing networks (low noise), the
network produces perfectly regular spikes, and thus the decaying readout x̂(t) ≈
1 by tracing a zig-zag around the encoded variable x(t) = 1. Since each spike
contributes 1/N to the readout, the value of the readout immediately before each
spike is 1− 1/2N , so that when the spike arrives, the readout is 1 + 1/2N . This
centers the zig-zag perfect around x̂(t) ≈ 1, and notably, since the time between
spikes is short (O(1/N)), the readout decays linearly to 1 at the mid-point time
between subsequent spikes. Hence, 〈x̂(t)〉t = E(ξ) for high-performing networks.

Next, to evaluate 〈si〉i, let us again introduce the random variable yi and
substitute into si Eq. (S78) to obtain

si =

∫ tifp

0

[(
E(ξ) + σξyi +

1

2
− 1

τ
t′
)
− E(ξ)

]2
dt′ (S79)

=

∫ tifp

0

[
σξyi +

1

2N
− 1

τ
t′
]2
dt′. (S80)

Performing this integral and taking the expectation value over i (averaging over
yi and tifp), we obtain to leading order

〈si〉i =
σ2τ

N3

(
1

12
+
σ2

2

)
(S81)
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where we have again neglected any higher-order contributions from the devia-
tions of tifp from its mean, 〈tfp〉 = τ/N . Substituting the leading-order term in
this expression into Eq. (S73) and taking a square root, we finally obtain

σreadout =
1

N

√
1

12
+
σ2

2
. (S82)

Now importantly, we recall that we made two important assumptions to
arrive at this result. The first was that λV � 1, and the second was that the
sum of spike-time variations

∑k
n=1 γn could be well-approximated as Gaussian

with the central limit theorem and that any deviations from this approximation
are small because only a few sums

∑k
n=1 γn have a small number of terms

(small k, while in the calculation, k ranges from 1 to∞). Thus for small λV , we
evaluate our Gaussian approximation by comparing our result Eq. (S82) against
Monte Carlo simulations that only contain the top neuron (Figure B). Secondly,
to understand how our result relates to networks with larger λV—when the top
neuron alone is not sufficient to describe the network’s dynamics—we perform
simulations with a variety of values of λV . Interestingly, we find empirically that
Eq. (S82) provides an upper-bound for σreadout (Figure 3c). This upper-bound
is an important result that will be used in the next section.

𝑡𝑓𝑝
𝑖 s from Gaussian PDF with moments 

from Brownian first-passage PDF

𝑡𝑓𝑝
𝑖 s from OU first-passage PDF with

0.001

0.01

0.1

1.

10.

1

12
+
𝜎2

2

= 𝜆𝑉

Figure B: The Gaussian approximation Eq. (S59) to the first-passage time dis-
tribution provides a good approximation for σreadout when compared to Monte
Carlo simulations that contain only the top neuron. The standard deviation,
σreadout, of the readout (Eq. (S4)) when the tifps are drawn from the first-
passage-time distribution of an OU process (red lines of different shades for dif-
ferent λV ), appear to match σreadout when the tifps are drawn from a Gaussian
distribution with moments from the first-passage-time distribution of Brownian
motion (light blue lines, redundant simulations; black line, Eq. (S82)). These
single-neuron simulations are equivalent to assuming the top neuron in the mem-
brane potential packet remains the top neuron forever, like in the λV � 1 limit
in Figure 3a.
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A.4 Readout error for the LIF model with delay
In the previous section, we studied the dynamics Eq. (S1) with no delay (delay
∆ = 0) to determine the readout standard deviation σreadout as a function of
the noise level σ. This provides a good starting point to determine σreadout as
a function of both σ and nonzero delay ∆ > 0. To begin, let us consider the
regime of parameters we would like to consider; in particular, we are interested
in studying networks that exhibit high performance, i.e. small σreadout, and
networks that are driven by tight-balance, i.e., the leak term −λV Vi(t) in Eq.
(S1) is small compared to the driving current N . As discussed in the previous
section, this regime corresponds to noise level σ � 1, and we consider λV
as a given network property that satisfies the constraint that the leak term
is small. Thus it remains to consider what values of delay ∆ correspond to
high performance. Intuitively, from our analysis of the soft-threshold model,
we understand that small delays correspond to high performance—small delays
allow one neuron to quickly inhibit the others, and this helps prevent spurious
spikes that would otherwise increase readout error. Therefore, we consider small
delays ∆ for the LIF model. And more precisely, for ease of analysis, we will
consider delays that are much smaller than the typical time between subsequent
network spikes. The typical time between subsequent network spikes is 〈tfp〉 =
τ/N (see previous section), and so we will consider delays ∆ = δ/N , where
δ � τ .

To understand how the membrane potentials evolve in the presence of delay
∆ > 0, let us first recall our description of the dynamics when ∆ = 0 from
the previous section. The membrane potentials travel in a Gaussian packet of
width σOU = σ/

√
2λV toward threshold, driven by the input current N . When

the top neuron in the packet hits threshold it fires a spike, and this spike then
propagates to the other neurons, decrementing their membrane potentials, and
thus prevents the other neurons from firing (until the packet reaches threshold
again). Now this is where we see a departure from these dynamics due to the
propagation delay ∆ in Eq. (S1). The top neuron indeed fires a spike and
resets itself when it reaches threshold (through the self-reset −τoi(t) term), but
the spike takes a time ∆ to decrement the other membrane potentials (through
the −τ

∑
j 6=i oj(t − ∆) term). Thus the other neurons in the packet continue

to travel toward threshold while they are waiting to receive the top neuron’s
inhibitory spike, and they may themselves cross threshold and fire spurious
spikes. We will see, just as we saw in the soft-threshold model, that spurious
spikes increase the readout error σreadout, and thus one of our goals in this
section will be to calculate the number of spurious spikes and the effect they
have on the readout.

Now as we continue to describe the dynamics with delay ∆ > 0 and even-
tually calculate quantities like the mean number of spurious spikes, we will see
as in the previous section, that defining the notion of an "event" is helpful.
Thus we define an event here as the interval of time from when a top neuron
in the membrane potential packet reaches threshold, at a time we refer to as
tthresh,1, to the next time a top neuron reaches threshold again (this latter top
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neuron need not be the same as the previous top neuron), at a time we refer
to as time tthresh,2. Importantly, we define neurons that spike within the time
interval tthresh,1 to tthresh,1 + ∆ as spuriously spiking neurons, and do not con-
sider these neurons as candidates for marking the end of the event at tthresh,2.
Instead, the neuron that next spikes after tthresh,1 + ∆ is denoted as the next
top neuron to reach threshold, marking the end of the event when it reaches
threshold at time tthresh,2. To understand why this notion of event is well-
defined, recall that we are focusing on the limit of small noise and small delays.
In particular, note that the inhibition from one or more spikes (the first spike
from the top neuron at tthresh,1 and any additional spurious spikes that may
occur) decrements the membrane potentials by 1 or more, and the membrane
potentials are driven toward threshold by the current N . Thus it takes a mean
time of O(τ/N) for the next spike to occur after tthresh,1+∆ (the time when the
entire population is first inhibited due to delayed inhibition from the first spike
from the top neuron), with deviations from this mean time being small because
we are considering the limit of small noise. And since we are considering delays
δ � τ , which is equivalent to ∆ � τ/N , we see that the time interval during
which spurious spikes can occur is much smaller than the O(τ/N) time for the
next nonspurious spike to occur. Thus there is a clear separation between the
spike times of spurious spikes (between tthresh,1 and tthresh,1 +∆) and the spike
of the next top neuron tthresh,2 = tthresh,1 +O(τ/N).

Importantly, examining the interval from tthresh,1 to tthresh,1 + O(∆) more
closely, we see another departure from the zero-delay dynamics described in the
previous section when we consider that in any particular event, the top neuron is
decremented at time tthresh,1, while the other N−1 neurons are decremented at
time tthresh,1 +∆. (And if spurious spikes occur in the event, further differences
in inhibition times in the population are of O(∆).) Interestingly, this creates
a "head start" toward threshold for the top neuron in the packet, relative to
the other neurons, as the membrane potentials travel toward threshold until the
next top neuron spikes at time tthresh,2. To see this, recall that the top neuron’s
membrane potential is reset to −1/2 when it self-resets at time tthresh,1. At this
point in time, it is receiving an extra small, excitatory current from the leak
term −λV Vi because Vα (where α is the index of the top neuron) is negative—
this is in addition to the input current N . Meanwhile, the other membrane
potentials are still traveling toward threshold, and the membrane potentials
near the top of the packet are near the threshold at 1/2. Thus these neurons
experience a small, additional inhibitory current from the leak term −λV Vi(t),
slightly slowing their travel toward threshold. So we see that after all membrane
potentials have received the inhibitory spike after delay ∆, the top neuron has
integrated extra current relative to the other neurons near the top of the packet,
and so it has a head start on its way toward threshold. This corresponds to a
stretching of the upper tail of the membrane potential packet from the nominal
Gaussian distribution of width σOU . We will return to this subtle but important
departure from a Gaussian packet when the nature of the packet’s tail becomes
important in our calculations.
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A.4.1 Mean number of spurious spikes

Equipped with our understanding of the dynamics Eq. (S1) and the definition of
an event, let us now turn to quantifying the number of spurious spikes in a given
event, as spurious spikes increase the readout error and thus must be included in
our study of σreadout. With the objective of quantifying the number of spurious
spikes in an event, consider an event that starts at time tthresh,1 and ends at time
tthresh,2. At time tthresh,1, the top neuron in the membrane potential packet
has just reached threshold, and the rest of the neurons in the packet are below
threshold. At time tthresh,1, we can estimate the typical position of the mean of
the membrane potential packet, which we denote as V̄ , by computing what the
value of the mean must be so that the tail of the membrane potential distribution
that is above threshold is 1/N . When this tail probability is above 1/N it is
likely that out of the N neurons, the top neuron has just crossed threshold. The
probability density of the membrane potential packet is approximately Gaussian
with width σOU . Thus the approximate position of the mean V̄ of the membrane
potential packet relative to the threshold, i.e. θ := 1/2 − V̄ , is then estimated
via the condition

1

N
=

∫ ∞
θ

1√
2πσOU

e
− z2

2σ2
OU dz, (S83)

or equivalently,

θ =
√

2σOU erfc−1
(

2

N

)
. (S84)

Next, we integrate the passage of the Gaussian packet across the threshold
during the delay ∆ to estimate the mean number of spurious spikes, which we
define as λ:

λ = N

∫ θ

θ−δ/τ

1√
2πσOU

e
− z2

2σ2
OU dz. (S85)

To understand this expression, note that between the time tthresh,1 to time
tthresh,1 + ∆, the mean of the membrane potential distribution is shifting up at
a rate N/τ . So over this duration of length ∆ = δ/N the mean shifts up by δ/τ .
Thus the tail above threshold also shifts up. This integral reflects an integral
over the additional probability mass of the membrane potential distribution
that is above threshold between the time of the first spike tthresh,1 and the
time tthresh,1 + ∆ of the first inhibition to all neurons. Multiplying this by N
then yields an estimate for the mean number of spurious spikes λ. This simple
approximation of Eq. (S83) to Eq. (S85) for the mean number of spurious
spikes λ yields a good agreement with numerical simulations (Figure C) when
the distribution of membrane potentials is actually drawn from a Gaussian. We
note though that the approximation error consistently corresponds to a slight
overestimate at finite N ; this appears to be a finite size effect as this error
diminishes as N becomes large, as demonstrated in (Figure C).
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Figure C: The mean number of spurious spikes λ from Monte Carlo simulations
is upper-bounded by Eq. (S85). In these simulations, we sample the number
of spurious spikes 2× 105 times, using the following procedure for each sample.
First, we take N draws from a Gaussian of width σOU = 1 and mean zero,
with each draw representing the value of a membrane potential relative to the
mean membrane potential V̄ . Second, we take the maximum of these draws to
represent the top neuron’s membrane potential; we call this θ. Third, we count
how many membrane potentials lie between θ and θ−δ (we choose δ = τ×10−2

for this figure), and record the count as the number of spurious spikes. Finally,
we average over the 2× 105 samples obtained using this procedure to compute
the mean number of spurious spikes λ (blue dots). We also compute λ using
Eq. (S83) to Eq. (S85) with the same parameters, σOU = 1 and δ = τ × 10−2

(orange curve).

Now importantly, we recall the detail that the O(∆) time-difference be-
tween the top-neuron’s self-reset and the inhibition of the rest of the population
slightly stretches the upper tail of the membrane potential packet due to the
leak term −λV Vi(t) through the head start effect. Thus the actual tail of the
membrane potential packet is slightly thinner than the Gaussian tail we used
in our calculation for λ. However, we note that a thinner tail would facilitate
even fewer spurious spikes, because the membrane potentials are more spread
out. Thus our calculation for λ is a further overestimate, when this effect is
taken into account. Also importantly, we have neglected variations due to the
noise term

√
τσηi(t) in the membrane potentials that may cause extra neurons

to cross threshold and spuriously spike—but on the timescale of the delay ∆,
these diffusive fluctuations have a standard deviation of O(σ

√
∆) = O(σ

√
δ/N),

which is much smaller than the mean membrane potential increase due to the
driving current during the delay, which is O(∆N) = O(δ). Thus, these diffusive
fluctuations can be safely neglected in computing the mean number of spurious
spikes.

Importantly, the mean number of spurious spikes λ is small for high-performing
networks. While we have computed an estimate of the mean here, we will fur-
ther make the approximation that the distribution of the number of spurious
spikes is Poisson. In the limit of small λ, where large numbers of spurious spikes
are extremely rare, the detailed distribution of spurious spikes is not expected
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to have a large impact on the readout error, and so a Poisson approximation
with the same mean should suffice to approximately calculate the readout error.
We will confirm this expectation below.

A.4.2 Mean readout error

With this knowledge of the distribution of spurious spikes in an event, let us
compute σreadout by generalizing the calculation in the previous section. In the
previous section, we focused on the case where λV � 1 for ease of analysis,
and found empirically that this case provided an upper-bound for σreadout for
the case of larger λV . Thus here, we will again start by analyzing the λV � 1
case, with the expectation that this corresponds to an upper-bound. Now, the
primary difference between the dynamics of the network in the previous section
with ∆ = 0, and this section with ∆ > 0, is that we have 1 + l-spike events,
where l ≥ 0 as opposed to only 1-spike events. So to generalize our calculations
for the variation of the readout at a particular time in the previous section, let
us define here the value of the readout at a time tmid which is lτ/N+τ/2N after
the start of an event, to be ξ := x̂(tmid). Since we are considering the case of
high network performance, i.e. λ� 1, by far the most prevalent type of event is
1-spike events, followed by 2-spike events. Thus our calculation for the standard
deviation σξ of the random variable ξ in the previous section carries through to
zeroth order in λ. But remarkably, one can also repeat the calculation for σξ by
imagining a readout consisting of only 2-spike events, and one recovers the same
result, σξ = σ/

√
2N . (Intuitively, the sums of spike-time variation

∑k
n=1 γn in

the calculation now contain half as many terms, but each γn has twice the
variance because 2-spike events have twice the duration of 1-spike events and
integrate twice as much noise

√
τσηi(t).) Thus, aside from additional variance

from the random interspersing of 2-spike events among 1-spike events, σξ is
still σ/

√
2N . Notably, we have seen in the soft-threshold model that such an

additional variance is higher-order in 1/N . However, in the LIF model, we also
have the possibility that the membrane potential packet retains a leaky memory
of its history, thus 2-spike events may tend to occur in runs of some typical
length χ (a correlation length) as opposed to the single, randomly interspersed
2-spike events that we considered in the soft-threshold model. In the LIF model,
a 2-spike event is more likely to follow a preceding 2-spike event than a preceding
1-spike event, because in the preceding 2-spike event, a second-to-top neuron is
already close to threshold, ready to create a spurious spike with relatively high
probability. To understand the magnitude of the additional variance contributed
to σ2

ξ due to 2-spike event runs of length χ, one can repeat the calculation for
Eq. (S45) with 2-spike event run replacements instead of individual 2-spike
event replacements, and one finds that the additional variance to ξ scales as
χ/N3. So as long as χ scales < O(N), we can still safely neglect this additional
variance contribution, and our result of σξ = σ/

√
2N still holds to leading order

in N .
Equipped with the variance σ2

ξ of the readout at time tmid, the next step
toward computing σreadout is computing the integrated squared deviation si
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for an event, because σreadout is simply a sum of the si (Eq. (S20)). We can
categorize events by spike-number just like we did in the soft-threshold model, so
that we can use the simplified expression for σreadout, Eq. (S30), that expresses
the sum over all si as a weighted sum of expectation values of si(l), where si(l)
is defined as si conditioned on the event containing l+ 1-spikes. To compute an
instance of si(l) then, we can take our expression for si in the previous section
(Eq. (S75)) and modify it to include the fact that the event si(l) contains l
spurious spikes. We obtain the equation below, and explain the modifications
we made in turn.

si(l) =

∫ tifp(l)

0

[(
ξi +

1

2N
+

l

N
− 1

τ
t′
)
− 〈x̂(t)〉t

]2
dt′. (S86)

First, we have introduced the random variable tifp(l), which is the duration of
an l+ 1 spike event. Since the membrane potentials of an l+ 1-spike event must
recover to threshold from a decrement of l+ 1, the moments of tifp(l) are given
by the first-passage time distribution of a particle undergoing Brownian motion
(this is using our assumption of small λV ) with mean (l + 1)τ/N and standard
deviation that is O(1/N3/2), which we can neglect from our calculations as we
did in the previous section. Second, we have added the term l

N to denote the
increment in the readout near the beginning of the event due to the spurious
spikes that occur within a time ∆ from the beginning of the event. Note that
we have collapsed the spike-times of the l spurious spikes over a time interval
of size ∆, to a point time-interval at the beginning of the event. To understand
why this approximation accounts for the leading-order effect of delays, recall
that the time ∆� τ/N , and thus the contribution to the integral in Eq. (S86)
from the O(∆) spike-time variability of the l spurious spikes is much less than
the contribution of the l

N term, which is integrated over the entire O(τ/N)
duration of the event. Thus, collapsing the spike-times serves to capture the
leading-order effect of the delay ∆—that of the l

N term.
Now, to evaluate Eq. (S86), we still need to compute the mean readout

〈x̂(t)〉t. But instead of going through another calculation to evaluate 〈x̂(t)〉t,
we note that we are already describing an upper-bound for σreadout because the
result from the previous section (Eq. (S82)) is an upper-bound for general λV ,
and our estimate for the number of spurious spikes λ (Eq. (S85)) is also an
overestimate. Thus here too, we have the freedom to make an overestimate in
our calculation of si(l), and the usage of such an si(l) will ultimately result in
an upper-bound for σreadout. We take advantage of this freedom to avoid the
additional complexity of calculating 〈x̂(t)〉t, and instead substitute the result
〈x̂(t)〉t = E(ξ) from the case of zero delays (Eq. (S78)) into Eq. (S86). Clearly,
〈x̂(t)〉t may deviate from this result because in the case of delay ∆ > 0, there
are 1 + l-spike events to consider, and not just 1-spike events. But crucially,
the actual value of 〈x̂(t)〉t minimizes the mean squared deviation σreadout be-
cause of a general property of computations for mean-squared-error (Eq. (S17)).
Namely, calculating deviations relative to the mean of a random variable min-
imizes mean-squared error. Thus any value we substitute for 〈x̂(t)〉t can only
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yield the exact value or overestimate for the expectation of si(l), 〈si(l)〉i, which
is the quantity we will use to compute σreadout in Eq. (S30). Therefore, let us
implement this substitution, keeping in mind that this provides an overestimate.
Eq. (S86) becomes

si(l) =

∫ tifp(l)

0

[(
ξi +

1

2N
+

l

N
− 1

τ
t′
)
− E(ξ)

]2
dt′ (S87)

=

∫ tifp(l)

0

[
σξyi +

1

2N
+

l

N
− 1

τ
t′
]2
dt′ (S88)

where we have cancelled E(ξ) in the second line and introduced the unit Gaus-
sian random variable yi to express the variation in ξi. Taking the expectation
over the si(l), we then obtain

〈si(l)〉i =
1

N2

1

12
(l + 1)(1 + 2l + 4l2 + 6σ2) (S89)

Then, to compute σreadout, we can substitute Eq. (S89) into Eq. (S30):

σ2
readout =

∑∞
l=0 p(l)〈si(l)〉i∑∞

l=0 p(l)(l + 1)τ/N
(S90)

=
1

N2

(
σ2

2
+

1 + 13λ+ 18λ2 + 4λ3

12(1 + λ)

)
(S91)

=
1

N2

(
1

12
+
σ2

2
+ λ+O(λ2)

)
(S92)

where p(l) is a Poisson distribution as defined in Eq. (S24), but with λ from
Eq. (S85), and we recall that the denominator represents the mean duration
of an event. Now, recalling that we made several overestimates during our
derivation—the small λV limit corresponds to an upper-bound for σreadout for
general λV , our estimate for λ was an overestimate (Eq. (S85)), and our choice
to compute deviations relative to the E(ξ) instead of the mean readout was an
overestimate—and that we made the central limit theorem approximation in
the computation of σξ, this expression for σreadout is in fact an approximate
upper-bound. So we write

σ2
readout .

1

N2

(
1

12
+
σ2

2
+ λ

)
. (S93)

where we have also dropped high-order terms in λ because we are interested in
networks with high performance (λ� 1).

Importantly, Eq. (S91) can be evaluated numerically (numerically evaluat-
ing Eq. (S85)) and compared against simulation (Figure 4). Furthermore, we
can numerically compute the minimal readout standard deviation, σ∗readout, and
the associated optimal noise level, σ∗ (Figure 4). Finally, we numerically dif-
ferentiate σ∗readout and σ

∗ with respect to the delay δ and observe that σ∗readout
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and σ∗ grow as

σ∗readout ∼ (δ/τ)2/3 and (S94)

σ∗ ∼ (δ/τ)1/3 (S95)

for δ � τ , which matches the behavior of the soft-threshold model, Eq. (S39)
and Eq. (S38) (Figure D).
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Figure D: Numerically minimizing Eq. (S91) with respect to σ, we find that
σ∗readout and σ∗ (top/bottom, solid blue curve) grow with small delay δ � τ
as ∼ (δ/τ)2/3 and ∼ (δ/τ)1/3, respectively (top/bottom, dashed orange line).
Note that this limiting behavior matches that of the soft-threshold model. Noise
enters the soft-threshold model as the standard deviation of the first-spike time,
1
Nρ . And in the soft-threshold model, λ∗ ∼ (δ/τ)2/3 implies that 1

ρ∗ = δ
λ∗ ∼

(δ/τ)1/3, which matches the σ∗ ∼ (δ/τ)1/3 that we have here for the LIF model.

B Simulation details
We use τ = 1 in all simulations.
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B.1 Soft-threshold model
In Figure 2b, our simulations take advantage of the small delay ∆ (∆ = δ/N ,
where δ � τ) and large N limit of the soft-threshold model to efficiently com-
pute spike-times tk in Eq. (S6) and empirically estimate σreadout. We first
consider when all the neurons cross threshold together, and the neurons spike
with total probability rate Nρ. The first-spike time is an exponential random
variable with mean 1/Nρ, and so in our simulations, we simply draw the first-
spike time from this exponential distribution. Next, we consider the time after
the first spike, during the delay ∆. The other N − 1 ≈ N neurons continue
to spike probabilistically, with each neuron’s next-spike time exponentially dis-
tributed with mean 1/ρ, in the absence of inhibition. Here we draw N next-spike
times from this exponential distribution. Of course, inhibition arrives after a
time ∆, and so the only neurons that spike are the ones with next-spike time
less than ∆; we take these as the spuriously spiking neurons, and their spike
times are given by the first-spike time, plus the next-spike time for each neuron.
After the inhibition arrives from the first-spike neuron, the entire population is
subthreshold, and the population returns to threshold a time (1 + l)τ/N after
the first spike, where l is the number of spurious spikes. At this point, we repeat
our procedure, starting by drawing a new first-spike time, and so on. This yields
a list of spike-times, which we insert into Eq. (S6). We use N = 32 neurons, run
the simulation for 3×104 first-spikes, and sample 1.5×104 random times in x̂(t)
to empirically calculate σreadout. We sample from within the last 2× 104 spikes
in the simulation, to ensure that the readout has reached the steady state.

This simulation protocol has the advantage that it avoids traditional Euler-
timestep discretized time, which allows us to easily examine small delays. How-
ever, notably, this protocol does not consider the possibility that the first spike
takes so long to occur that the population travels so far above threshold and the
first spike is insufficient to return the population to subthreshold. Importantly,
for small δ, ρ is large, and the mean first-spike time is small. Furthermore,
very large first-spike times are exponentially suppressed; thus the simulation is
accurate for small δ.

B.2 LIF model
In Figures 3 and 4, we perform Euler time-step simulations of Eq. (S1) with
dt = 0.0001, and we use the second half of the simulation when computing
σreadout.

For Figure 3a, we use N = 32, σ = 0.1, and 1562500 time-steps in each
simulation (each dot). For Figure 3c, we use N = 64 and 781250 time-steps.

For Figure 4d, we use σ = 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1., 3., 10., or 30.,
and 781250 time-steps for each simulation. In Figure 4e, we take the minimum
over the σreadouts from Figure 4d, for each delay value δ, to compute σ∗readout
and σ∗.
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B.3 Simulation code
We include here our Euler time-step simulation code used for the LIF model. We
have described the other, simpler computations supporting this work directly in
the text.

# Julia 1.3.1
using LinearAlgebra

# Spiking neural network simulation
function snn_sim(;

D = 1, # Dimension of x(t), NOTE D=1 for this work
N = 32, # Number of neurons
lambda_V = 0.1, # Membrane leak
sigma_V0 = 0., # Standard deviation of membrane potential

# initialization
n_steps = 1562500, # Number of simulation time steps
n_step_save = 5000, # Number of steps between each snapshot save of

# simulation state
n_step_delay = 30, # Length of axonal propagation delay in number of

# time steps
hard_spike = true, # true => hard threshold, false => soft threshold
dt = .0001, # Time step size
W_input = Nothing, # Input weight connectivity matrix
membrane_noise = 1., # Noise level sigma
thres = Nothing, # Neuron thresholds
prob_fire_in_dt = 1., # Probability of spiking during time step dt (for

# soft threshold)
omega_f = Nothing, # Connectivity weight matrix
read_out = Nothing, # Readout weights
A = Nothing, # Emulated D-dimensional dynamical system
only_one_spike_per_dt = false # true => only allow 1 spike per time step

# (for zero delay), false => multiple
# neurons can spike in a single time step

)

# Example values
if W_input == Nothing

W_input = N * ones(N,D)
end
if omega_f == Nothing

omega_f = ones(N, N)
end
if read_out == Nothing
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read_out = 1.0 / N * ones(1, N)
end
if thres == Nothing

thres = 0.5 * ones(N)
end

# Setup for emulating x(t) as a low-pass filter of constant 1-D input c(t) = 1
if A == Nothing

A = -1. * I
end
c = ones(n_steps,1)

# Initialize simulation parameters
V0 = sigma_V0 * randn(N) # Membrane potentials
r0 = zeros(N) # Firing rates
x0 = [0.] # x(t)

V = copy(V0)
x = copy(x0)
r = copy(r0)

# Storage for simulation history
history_length = trunc(Int, n_steps/n_step_save)
V_history = zeros(history_length, N)
x_history = zeros(history_length,D)
r_history = zeros(history_length,N)
x_hat_history = zeros(history_length,D)

# Initialize readout error metrics
x_hat_squared_sum = 0.
x_hat_sum = 0.
error_calc_start = trunc(Int, n_steps/2) # Burn-in period

# Delayed spike delivery queue and spike time list
spike_queue = []
spike_times = []

# Euler time-step simulation
for step in 1:n_steps

V_dot = -lambda_V * V + W_input * c[step,:]

if membrane_noise != 0.
V_dot += membrane_noise/sqrt(dt) * randn(N)

end
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V += V_dot * dt

# Check for neurons crossing threshold
for n in 1:N

if V[n] > thres[n]
if hard_spike || rand() <= prob_fire_in_dt

index_and_delivery = (n, step + n_step_delay)
push!(spike_queue, index_and_delivery)
push!(spike_times, index_and_delivery)
V[n] -= omega_f[n,n] # Immediate self-reset

if only_one_spike_per_dt
break

end
end

end
end

# Deliver delayed spikes
while length(spike_queue) > 0 && step >= spike_queue[1][2]

spike_index = splice!(spike_queue,1)[1]
V -= omega_f[:,spike_index]
V[spike_index] += omega_f[spike_index, spike_index] # Undo extra

# self-reset from
# previous line

r[spike_index] += 1.
end

# Update state of D-dimensional dynamical system
x_dot = A * x + c[step,:]
x += x_dot * dt

# Update firing rates and output
r_dot = -r
r += r_dot * dt

x_hat = read_out * r

# Compute error starting after burn-in period
if step > error_calc_start

x_hat_squared_sum += norm(x_hat) ^ 2
x_hat_sum += norm(x_hat)

end

# Log simulation parameters
if step % n_step_save == 0
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history_index = trunc(Int, step/n_step_save)
V_history[history_index, :] = V
r_history[history_index, :] = r
x_history[history_index, :] = x
x_hat_history[history_index, :] = x_hat

end

end

sigma_readout2 = (x_hat_squared_sum / (n_steps - error_calc_start) -
(x_hat_sum / (n_steps - error_calc_start))^2 )

return Dict(
:N => N,
:D => D,
:V_history => V_history,
:r_history => r_history,
:x_history => x_history,
:x_hat_history => x_hat_history,
:spike_times => spike_times,
:sigma_readout2 => sigma_readout2,
)

end
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