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Referee #1 (Remarks to the Author): 

I am a behavioral neurophysiologist, and I reviewed this paper in conjunction with a computational 
neuroscientist/neurotheorist. Comments reflect our pooled suggestions to primarily aid the authors 
in improving the rigor and reproducibility of their work and enhancing communication of their 
findings for a broad scientific audience, and to secondarily aid in editorial consideration of this work 
for publication. The richness of our suggestions should not be misconstrued as a lack of support for 
this work, as noted in the summary paragraph. 

This study by Padilla-Coreano et al seeks to investigate the role of the PFC, and more specifically, a 
PFC->LH circuit in encoding social rank and dominance behavior. To achieve this, the authors begin 
by determining the social rank using a classic test assay in pairs of co-housed mice. Since the primary 
objective of this study is to uncover the neural representations of social rank, the authors suggest 
that the tube test has several clear limitations. First, the behavioral data that can be extracted from 
the tube test is less rich than other behavioral assays broadly deployed in mice. Secondly, I think the 
authors seem to suggest that the task does not enable the measurement of the electrical activity 
from the same cells across many trials (which is necessary to facilitate statistical analysis). Here I 
think its worth largely emphasizing the first point. As previously demonstrated in Zhou et al, Science 
2017 (cited by the authors), mice can be repeatedly subjected to the tube test. Since this is a widely 
accepted and stable (across trials and sessions) measure of social dominance in male mice, and PFC 
cellular responses to competition have already been described in Zhou et al, Science 2017, a major 
contribution here is showing that these responses are presented in a more ethologically relevant 
context. 

Thus, the authors develop a novel competition assay. Using a set of mice in which social hierarchy is 
previously established using the tube test, the authors successfully show that social dominance 
predicts behavioral outcomes in their competition assay. Nevertheless, here I would raise my next 
suggestion. With the tube test assay, five animals can be ranked 1-5 (to social rank). Mouse #2 has a 
high social rank, though it is submissive to Mouse 1. With competition assay and the analysis 
strategy taken by the authors, it is imperative to note that they are not probing social rank (i.e., 
Mouse #2 within the colony). Rather, they are probing relative social rank (Mouse 1 vs. Mouse 2)… 
the neural processes that encode being dominant to your partner. At this point, its unclear if mouse 
2 would look any different than mouse 4 if all five animals were performing the competition assay at 
the same time. At some places in the paper the authors appropriately use the term relative social 
rank, and in other places, they simply use the term social rank. 

 



After the authors establish their novel behavioral assay as a surrogate for relative social rank that 
also facilitates multiple trials, they strive to extract a rich set of behavioral measures using a novel 
ML coding algorithm. Importantly, their approach can monitor the behavior of non-labeled 
individual mice, and it can extract joint behavioral features from pairs of mice. Here, however, I 
would suggest toning down the novelty/utility claims of this approach a tiny bit. Its nice that their 
approach can track non labeled mice, but its not that difficult to label mice. Furthermore, while 
tracking non- labeled mice within a large colony might be exceptionally useful, they only show its 
effectiveness in tracking two mice. Thus, I would suggest that they revise the description of 
AlphaTracker to state that it tracks two mice, not multiple (in the abstract, text, and figure legend). 
Its a more precise claim that doesn’t take anything away from the utility of their scientific findings 

   
Once the authors identify behavioral clusters using AlphaTracker, they set out to determine whether 
PFC firing represents social rank and the behaviors observed during their task used to quantify 
relative social rank. Specifically, the authors implant animals with 32 wire electrodes, and perform 
wireless while mice engage in their task. Here, some missing details/confusing text made it more 
difficult for me to evaluate the rigor of their findings. First, I had a hard time determining the 
number of implanted mice subjected to their assay. I searched the text, figure legends, and 
methods, and I am sorry if I missed it. Second (and also related), it was hard for me the interpret the 
following statement (line 99) without that data, “when recording during the reward competition 
task, we did not detect statistically significant differences in the number of rewards earned by 
dominant and subordinate mice, allowing us to make comparisons about dominance behavior and 
competitive success without being confounded by the volume of reward consumption.” I was totally 
lost by this sentence. In Fig 1c, the authors validate their assay as a surrogate for social rank by 
showing that commutative rewards were related to outcomes in the tube task. Here, the authors 
seem to be suggesting that the outcomes of the tube task do not relate to successful competition for 
limited resources. There are several reasonable explanations for this. For example, the 
electrophysiological experiments may not be powered to detect this behavioral difference (but I 
can’t assess that without N). Did the partner mice wear the dummy headstage during the ephys 
competition (seems so in the video)? For these mice, there appears to be less cumulative rewards in 
the unimplanted mice. 

There are different behavioral measures shown in figures for the initial version of the competition 
task in un-implanted mice (cumulative rewards, ratio of port occupation, pushing success and time 
displaced), than for the implanted mice (cumulative rewards, pushing success, latency pushing 
success during tone). Here the only common measure that shows the same result is the pushing 
success. For the latencies, the trials appear to be treated as independent for this latter analysis. The 
authors should treat these behavioral observations as repeated observations of the same 
phenomenon for Fig S5c (specifically, within trial for a given subject). Also, the legend for Fig S5c 
says ‘slower latencies.’ It would be better to describe the data as ‘longer latencies.’ 

Since the nature/validity of the behavioral task is important for exploring the link between relative 
social-dominance and neural activity, my further commentary assumes that the suggestions I’ve 
provided up until this point can be easily addressed with additional experimental details and minor 
revisions to the analysis. Thus, I am providing additional suggestion based on the assumption that 
the authors will clearly establish behavioral outcomes of their competition task as measures of social 
dominance for the same animals used for their neural analysis in a revised version of the manuscript. 

 



The language around the authors population analysis is a little unclear. As I understand it, the 
authors used AlphaTracker to discover nine behavioral conditions defined by two mice in an arena. 
They then trained a SWM using PFC multiunit activity to predict these behavior conditions. Next, 
they hypothesized that PFC may better encode hidden states. Here, rather than PFC directly 
encoding the 9 specific behavioral conditions (or better stated, rather than discriminating the 
behavioral states from each other), the authors tested a model in which PFC encoded a number of 
states (six in this case) in which distinct profiles of their behavioral conditions were likely to emerge. 
They found that PFC decoding was more accurate using this latter model in comparison to their 
models where PFC encoded the behavioral conditions. 

The results on the modeling are unusual, where gains between the autoregressive model compared 
to the SVM and the GLM are drastic. It is rare that you see such dramatic gains when moving to an 
HMM based model, and the manuscript would be much improved by explaining this outcome. In 
fact, the authors show that there are drastic gains by using 2 clusters in the HMM based model 
(noting that the 1 cluster case is equivalent to the GLM model in your formulation). In this case, they 
are now distinguishing between 9 classes based on a mixture of 2 GLMs, where the GLM is chosen 
through the historical information. Compared to the classes, this is really a minor gain in modeling 
complexity, and I’m unclear from a mathematical perspective as to how such gains can be achieved. 
Additional justification and exploration would be warranted to ensure robustness of these findings. 

In any case, if my understanding of their objective is correct, the authors should revise their text for 
clarity. The term ‘behavioral state’ is used under too many different contexts. For example, the 
authors state “the proportion of time spent in each hidden state did not different by competitive 
success or by social rank, and the model performed equally well across ranks, suggesting that mPFC 
encoding of social competition behavior states is common across ranks.” It would be more 
appropriate to state that the encoding of social competition hidden states is common across ranks. 
Also, again, the authors should revise most statements regarding rank to read ‘relative rank’. 
Assuming that my understanding is correct and that the authors clarify the text accordingly, I believe 
the data argues that PFC activity encodes behavioral states in which distinct profiles of behavioral 
are likely to emerge. There is plenty of evidence to support this interpretation including studies from 
the senior author and many of the works literature cited in this manuscript. Nevertheless, the 
relevance for this particular study remains unclear since these behavioral states (hidden states) do 
not show a relationship to rank. 

Next, the authors set out to determine if PFC unit activity predicted social rank and task relevant 
behaviors in their competition assay. My concern with this approach, in particularly analyzing 
winning and losing, is that the authors did not find that winning vs. losing was related to social rank 
in the cohort of mice used for their electrophysiological study. Specifically, the authors found that 
the dominant and submissive mice consumed the same amount of reward. Thus, I’m not entirely 
convinced that decoding winning and losing is optimal. Imagine a situation where basal difference in 
PFC firing activity are related to relative social rank (a fair hypothesis). One would expect that a 
model using PFC activity could differentiate relative social rank irrespective of the behavioral 
condition as long as two mice were in the same arena. This appears the be the case, since the AUCs 
differentiate relative rank even prior to cue presentation. How then to interpret the trial by trial 
decoding of winning a losing? Would the PFC show this response in any area, even one in which 
resources were freely available? What if there were two poke holes, and the animals didn’t have to 

 



compete? Here, again, N (number of mice) would be useful. Is winning vs. losing unrelated to social 
dominance due to a lower number of mice (and thus pairs). Does the assay not work in implanted 
mice? Is the assay simply not reproducible? The strategy for addressing each of these options is 
quite different. 

The authors could certainly strengthen their claims by comparing data within subject across trials. 
For example, mice ranked 2-4 could be tested in conditions where they were both the dominant and 
the submissive. Then they can ask whether decoding of the task relevant variables change within 
mouse based on the rank of the partner, or does the neural activity across reflect fixed rank (and not 
relevant rank). This analysis should require no additional data and it would really add a lot to this 
study. 

Next, the authors analyzed whether single unit data represented task relevant variables in a manner 
that was different across ranks. I’m a huge fan of modeling, but the goal of models should be to 
make things explainable. Here, I worry that the authors models make their interpretations more 
complicated than they need to be. I have two suggestions. The authors apply an approach to cluster 
cells based on 6 response properties. However, the response properties appear to be different that 
the task variables used in other parts of the study. This analysis now includes responses to port 
entry during the inter-trial-interval, and I’m unclear why this response property was included as an 
input to their joint clustering model. 1) Its important to address this issue since two cells which show 
identical response properties in a given condition (winning) and different responses to another 
condition could be clustered differently. To this point, the authors go on to compare how the 
distribution of cells within the clusters differ between submissive and dominant trials. I found the 
text describing the interpretation of this analysis to be confusing and I spent some significant time 
with Extended Figure 9 trying to sort it out. Ultimately, I could only assume that reporting on the 
clustering analysis findings 182-185 was suboptimal and did not clearly describe that the model 
structure (and thus segregation of cells) was based on joint cellular properties. For example, in 
principle a cluster is defined by responses to condition A, B, and E, BUT NOT C, D and F. A cell that 
shows response to A, B, and F only could fall in a different cluster. Thus, 2) it is necessary to fully 
describe what is represented by a cluster, then one could perform post-hoc analysis. 

I found the subsequent analysis of individual response properties to be clearer. In fact, since the goal 
of the authors was to determine if single unit data represented task relevant variables in a manner 
that was different across ranks, I wondered why the complicated clustering model was even useful. 
As a general rule of thumb, a model should only be as complex as is necessary to explain the 
phenomenon of interest. Thus, in my opinion, the analysis in 4a-c should be removed. The analysis 
shown in 4f-I should expanded to include winning and losing (Extended Fig 9c). Discussion of these 
results should be simple and clear. If the authors choose to keep the analysis shown in 4a, a clearer 
description of the meaning of joint response properties and its importance in social rank should be 
discussed. For example, Clusters 2, 3, and 4 show strong excitation to winning. Though sub and dom 
show differences in % cluster 4 (Fig. 4e), no differences are observed in % of cells showing winning or 
losing (Fig. E9c). Thus, the authors would need to explain all of this more clearly if they intended to 
keep the complicated model (which I, again, argue is unnecessary for the goal of their study). 

Next the authors explore whether PFC->LH neurons contributed to the code for social rank. The 
authors chosen analysis pathway could be simplified substantially. In 5c-d they show neural 

 



responses to the 6 conditions outlined in their prior analysis. Then they show that a greater portion 
of PFC->LH neurons show responses to port entry during the inter trial interval. Did the authors test 
neural responses for all 6 behavioral conditions? Did they compare the three cell types? I’m 
assuming the answer is yes, but the authors didn’t correct for multiple comparisons (where is the 
statistics. N for PFC->BLA seems to be missing for legend 5e). If not, why did they only choose a 
limited number of comparisons. Differences were only observed in the self-entry for the ITI. How 
should this be interpreted? 

If the goal is to show that PFC->LH cells encode rank, why does it matter whether they respond to 
behavioral variables in the task. If the goal is to show that they carry unique information, why is the 
information in Fig 5e even necessary. Overall, the analysis in 5f-g seems more appropriate. Here, the 
strategy is to subtract the cells from the model, and determine if the model prediction improves. 
But several details are missing here. First of all, what is the classifier being trained on (i.e., what 
behavior condition)? Next, the comparison between the BLA and LH projecting neurons is not 
entirely warranted: a different number of cells are recorded for the two pathways, and it’s unclear 
how many mice that cellular activity was acquired from (important information because only 10 BLA 
neurons were recorded). 

Minor comments: 

There is some unusual language in the methods description of the machine learning methods. In the 
Support Vector Machines, it is noted that the SVM generates a likelihood. It does not, as it is not a 
probabilistic model. Additionally, the terminology of a “one-hot encoding” is not the standard usage 
of that term (which usually means that each of L classes is encoded as a 1 on the lth entry of an L 
length vector), but the one-vs-all approach seems fine. However, details are lacking here: what 
parameters were tuned? How was the model selection run? What method was used to deal with 
class imbalance? The definition of the AUC metric should also be given, since there are differing 
definitions in the multi-class setup. I assume that this is the average of the one-vs-all AUCs, but that 
needs to be stated. Also, an SVM looks at all data points while choosing the support vectors, so that 
language is unclear. 

The updates on the EM steps are complex, so the communication of this would be enhanced by the 
authors highlighting the differences in their EM algorithm in comparison to the Escola et al paper. 

The communication behind the figures can be improved by focusing on terminology. It was super 
hard to track at time. Winning/loosing seems to be event locked to the tone. Reward is event locked 
to port entry (but these trials are referred to as tone). ITI is event locked to port entry (but is 
referred to as ITI). Perhaps something simple like competition start (tone), competition end (port 
entry), and ITI for the blocks within trial. 

In general, the authors show adjust their training and testing strategy such that testing is performed 
using a trials from a hold-out with N-1 fold cross validation. 

 



In summary: The study by Padilla-Coreano explored the important question of the role of PFC in 
social hierarchy. A primary issue that needs to be addressed is whether the cohort of animals used 
for electrophysiological analysis actually show their primary competitive outcome measure based on 
rank. This may just be an issue of simply reporting experimental details (N, and needing a few more 
mice). Many suggestions for improving communication/clarity are provided to the authors; 
nevertheless, it is important to clearly state that much of the presented results and undergirding ML 
analyses are unnecessary to support the main theme of the manuscript. My suggestion would be to 
simplify the manuscript, and to focus the presentation of the findings towards the unit encoding of 
social preference in PFC, and the role of the PFC-LH circuit in this behavior. Especially considering 
the prior discoveries outlined by Zhou et al, projection specific findings is the knowledge advance I 
found most exciting. If these broader contributions (AlphaTracker, HiddenStates, MUA modeling, 
single cell clustering analysis approach) remain in the manuscript, substantial revisions to the 
communication of these findings and the analyses methodology are warranted as noted above to 
enable a clearer evaluation of rigor and robustness. 

Referee #2 (Remarks to the Author): 

In this study from Padilla-Coreano et al., in the Tye laboratory, the team presents research and 
computational efforts to examine the neurobiological basis for social dominance - a key feature of 
aggression behavior. They examine the role of the media prefrontal cortex (mPFC) because some 
prior evidence has suggested that in mammalian species this structure plays a critical role in 
determining social rank. They go on to develop a trial-based social competition assay, alongside 
using a custom machine learning approach they developed (Alpha-tracker). Using these two former 
approaches alongside electrophysiological measures (using a newer wireless method to better 
facilitate social interaction), they identify a unique behavioral states (9 in total, they claim), which 
can be decoded from mPFC ensemble activity - predicting social rank and competition winners and 
losers. Furthermore, they reveal that mPFC to LH projections are better predictions of behavior than 
an alternative circuit. Overall, this is a very thorough, elegant, and exciting development for the field 
of behavioral neuroscience, ethnologically relevant social behavior, and computational efforts in the 
field. It provides a potentially new (or perhaps just a bit better) method for identifying critical 
behavioral states in interacting/"socializing" mice , while also methods for decoding unique 
behavioral and neuronal ensembles in tandem within a specific circuit. 

However, in spite of this high enthusiasm for the provocative nature of the work, the potential for 
extensions of this work into other domains, behaviors, and neural circuits, there were some 
concerns. These primarily centered around controls and/or additional data analysis that would 
better substantiate their conclusions; along with some stronger rationale provided for particular 
experiments chosen over others, including the focus on mPFC to LH, vs a whole host of other 

 



possible PFC-related circuits which could have been examined. Below is a list of major concerns 
(those requiring new analysis, experimental data, or major text discussion/rationale), and then 
minor comments or concerns follow, that are of less consequence, and more suggestive in nature. 

Major: 

1) The biggest control that I see which is missing here, is to show data and the entire processing 
pipeline described (behavior, ensembles, and circuit specificity) in animals that engage in the task 
alone, and/or with the scent of more dominant animals nearby (the later not being as critical, just an 
interesting experiment). The "alone control" is important in particular for the trial-based task, that 
would allow for cross comparisons of activity while engaging in a social dominance bout from the 
activity and behavior which is independent and is reward - related or orthogonal to the social 
dominance behavior itself. 

1a) This is a sub-point of question 1, which can be more tightly controlled in the analysis, because 
the alone mouse can also account for starting positions and general posture of the animals in that 
regard. (which relates a bit to the point 2). The authors might just use their algorithms to look at 
other behaviors that would perhaps provide some clues to positioning (some ideas, approach, 
avoidance, orientation relative to mouse vs target reward, etc) 

2) The rationale for the tube-test isn't well defined as currently presented. Is social dominance 
encoded at the neuronal level or is it just dictated by which mouse is bigger in the tube, and who's 
stronger? I know it is well established, but since it is used a priori here, it is a more germane to the 
conclusions drawn. Conceptually both make sense , but the tube model of identification in this case 
leaves one wondering if the data are preselected and therefore biased in some way because of it. 
Can they shuffle the data in a way that accounts for differences in rank that the tube test doesn't 
account for? There are multiple social defeat behaviors and postures that can be easily quantified in 
social aggression and dominance interactions. Why were none of those examined here? They are 
very granular in nature and would provide rich confirmation and validation in their behavior tracker 
machine learning algorithms. 

3) The authors may already have these data, but as presented their data sets are binarized into 
subordinates and dominants. Do they see any correlations or decoding properties in mice that are 
ranked in the middle of a cages social hierarchy? (If a group of 5 has 1 dominant and 4 submissive, 
which one is the subordinate in their analysis, and would there be differences in accuracy of the 
decoder based on that social rank within the group - that would be an exciting finding, and it would 
lend additional biological credence to their predictive algorithms). 

 



4) Did the authors try to present any reward omissions in the task? Does it impact the neural coding 
and behavior? It might be worth controlling for especially if position and posturing are important. 

5) The paper ends with an experiment which shows that the PFC to LH circuit is most critical for the 
encoding the dominance behavior and predicting it therein. Yet, it wasn't clear to me from the data 
presented and/or the discussion why one would predict this circuit in the first place, when many 
other circuits could be better candidates, particularly within the context of social 
interaction/dominance. Do the photo-stimulation parameters used for the circuit really align with 
the decoder predictions? How is it so selective? Panel K of figure 5 doesn't appear to show a 
difference between the control eYFP and the CHR2 group? Is this just underpowered or due to other 
pathways or circuits being more necessary and sufficient? 

6) The authors use the AlphaTracker approach throughout the manuscript and make claims that this 
approach is superior to other methods. It very well may be, but as presented the authors should 
either tone down that claim, or substantiate it more with more stringent comparisons with 
benchmarked alternatives. Considering one of the novelty selling points of the paper is the 
computational technology it brings to the field. More evidence, data they may already have, and/or 
discussion for why this is a superior algorithm to other methods would help solidify the novelty of 
the method and impact. 

Minor- 

Figure 1 A. The cartoons are somewhat helpful, but it would almost be better presented if the 
authors took actual photos of the mice in these positions. Presumably they used a high frame rate 
camera to capture the behavior for Alphatracker, so they should be available. It would be more 
powerful to see the behavior live in snap shots 

This is more stylistics, but just a suggestion. Most of us aren't used to reading / or understanding the 
plots presented in Fig 3 panel a or c. The manuscript might benefit in this case from a cartoon of 
what these plots might look like (mock results) in various predictions followed by the plots 
presented here with the real data. 

Figure 3 panel f target plots are very hard to see. They should be increased in size, and/or de- 
pixelated (smoothened) to make a better case. 

Figure 4. The data in A and B are nice, and thorough, but difficult to see unless you are at 400X, it 
might make sense to zoom in on a few and simplify the figure and put the rest in supplemental. No 

 



one wants to part with all their data on main figures, but it'll help the reader digest the work in this 
dense paper. 

Referee #3 (Remarks to the Author): 

This is a very impressive tour-de-force study involving diverse expertise from multiple laboratories 
combining neurobiological, behavioral, and computational approaches, as well as a novel behavioral 
tracking methodology in order to establish a causal function of the mPFC-to-LH pathways in social 
rank and related dominance behaviors. The uses of both the AlphaTracker as well as the HMM-GLM 
using neural activity for detecting unique behavioral and neural states are innovative for linking 
across complex social behavioral patterns and neural activity. The results of this study demonstrate 
the role of the mPFC in processing social rank and provide new knowledge on the mPFC-to-LH 
pathways in generating dominance behaviors. The authors also have used a wide array of behavioral 
assays in mice to better examine the selectivity of the findings. Overall, this new knowledge provides 
an important causal “bridge” between social rank representation in the mPFC and behavioral 
regulation by the LH. The use of the BLA as a control projection area (mPFC-->BLA) was very helpful 
in supporting the specificity of the mPFC-->LH pathways. Additionally, these findings involving the LH 
nicely support the principle behind social homeostasis previously proposed by the authors, which I 
find it to be very exciting. For these reasons summarized above, I am very enthusiastic about this 
work. 

The reported findings and the ways that the authors have elegantly applied technical innovations 
should be highly interesting to both basic sciences and social sciences fields interested in social 
behaviors broadly, as well as clinical fields interested in regulating aggressive behaviors in social 
settings. All the statistical and data analytic approaches are sound, with appropriate displays of error 
bars and other useful information in the Extended Data for better understanding the data. 

I have the following specific comments for the authors to consider. 

1) The authors of the paper have developed a novel paradigm, combining wireless recording, 
automated tracking of behavior through computer vision, and a competitive reward gathering 
task aimed at investigating social ranks and dominance behavior. However, from the data 
presented, it requires more clarification with respect to how much of this task is measuring 
dominance and 
competitive behaviors on *every trial. On line 76, the authors state that “Importantly, differences in 
winning were not driven by overall location in the arena or distance to port prior to tone onset” and 
reference Extended Data Figure 1. However, data shown in Extended Data Figure 1B and in Figure 

                

 



predictive of which animal wins the trial, i.e., in Extended Data Figure 1B, Figure 3F and 3G it is clear 
that even at –5 seconds before the cue, the winning animals (regardless of “dom win” and “sub 
win”) are both closer to the port. The 2-way ANOVA in the legend of Extended Data Figure 1B found 
a main effect of trial type (presumably dominant win/subordinate lose vs. dominant 
lose/subordinate win), and no effect of rank (p=0.071) or interaction. It is unclear from the text what 
time period of the fifteen seconds shown this ANOVA is examining. 

If distance from the port prior to the cue onset is strongly predictive of trial outcome, then not *all 
trials may be actually “competitive” or “measuring dominance”. An alternative explanation would be 
that during some trials the nearest mouse to the port can more easily gather the reward, and this 
trial is either weakly or not contested by the other mouse (could be due to dominance or motivation 
level, for example). If this is the case, then it would change the interpretation of mPFC population 
dynamics that track “competitive success”. To address this, we would suggest the authors do one of 
the following: 

a) Specifically examine if the winner of each trial and the neural activity predictive of winning were 
not simply determined by distance from the port during the baseline periods. 

b) Exclude any trials from the analyses that do not include pushing, resistance, or displacement 
behaviors to provide additional neural insights when specifically examining only those trials with 
clearly observable competition (pushing, resistance, displacement). 

c) Examine if prior behavioral dynamics and underlying neural activity between the mice prior to the 
cue determined their relative positioning during the baseline period (i.e., the competitive behaviors 
were occurring in advance of the cue presentation) to better understand what behavioral dynamics 
and neural processes occur that led to the better positioning to begin with that ultimately resulted in 
winning. 

For future directions (note: I am definitely not suggesting the authors to collect more data), I would 
recommend including a condition where pairs of mice in an experimental chamber with multiple 
reward ports, where the location of the upcoming cue cannot be predicted and where presumably 
the positioning during baseline between the dominant and subordinate would average out to being 
equivalent. 

 



2) Similarly, further clarifications of the behavior would be useful in interpreting some of the data. 
For example, on line 74 the authors state that “Dominant animals, as defined by the tube test, 
obtained more rewards, spent more time at the reward port, and were more successful at displacing 
the competitor from the port (Fig. 1c).” This seems to be in contrast to line 99 of the manuscript 
which states “When recording during the reward competition task, we did not detect a statistically 
significant difference in the number of rewards earned by dominant and subordinate mice, allowing 
us to make comparisons about dominance behavior and competitive success without being 
confounded by the volume of reward consumption.” 

Does this indicate two separate behavioral datasets were used, one during neural recording and one 
without neural recording? Related: please add the test and the number of observations used for “we 
did not detect a statistically significant difference”. 

3) In all population level neural analyses, the authors have pooled together activity from multiple 
subjects and use the total number of recorded units as the sample size. This approach is not 
necessarily unorthodox in the field of behavioral neurophysiology where collection of spiking activity 
during interactive social behaviors is extremely challenging and large pseudo-populations of units 
are sometimes requisite for advanced analyses such as hidden markov models. In some areas, the 
authors made specific efforts to address the potential shortcomings of pooling together activity from 
multiple subjects. For example, in (Extended Data Fig. 7k-n) the pooled data was split between two 
different randomly selected subsets over 50 bootstrapping iteration, or in Figure 3B/3D where the 
authors employed the “leave one out” method excluding neurons from a single animal in each 
iteration to control for an individual mouse from strongly biasing the results. In other analyses, 
however, there is no control for potential between-subject variations. Specifically, if it is not possible 
to construct a HMM-GLM for each subject, or to split individual mPFC cells by rank-dependent 
responses for each subject, then a good alternative would be to also show inter-subject correlation 
coefficient that assesses the homogeneity (or potential / interesting differences) of neural responses 
between mice. 

4) In the comparison between PCA vector length, it is stated that subordinates had longer neural 
trajectories, speculated to be due to either higher or faster firing rate changes in the mPFC 
population activity. This result is quite intriguing, and although this is later addressed tangentially 
(Line 187; “subordinates had phasic responses of greater amplitude in response to events…”), the 
interpretation of this result would greatly improve if that question could be examined quantitatively 
with the existing data. 

5) In Figure 5J, the difference between cumulative rewards obtained by light OFF session vs light ON 
session appears to only emerges late in the experiment (past 15 trials). This is interesting. Do the 
authors have any interpretation for this time course? For example, the non-immediate effect of light 
delivery may suggest that the modulation of social dominance by the cortico-hypothalamic circuit is 
mediated through slower mechanisms, such as learning. 

 



6) Different analyses required using various sample sizes for good reasons. For example, both Figure 
3B and 3D use a sample size of thirteen (resulting from ‘leave one out’ method). This is only 
explained in the supplemental text, and the accompanying figures (3A and 3C) use a different 
sample size (507 and 490 neurons). Some other figures lack descriptions of sample size (e.g., 
Extended Data Figure 7). Please add N information and also add how many total mice were used in 
these studies and which mice (if any) overlapped between different aspects of the manuscript 
(which can even be in the method section). 

7) In several figures (Figure 1G, Extended Data Figure 3A and 3B) output from UMAP (Uniform 
Manifold Approximation and Projection) clustering is presented without any explanation in the 
main, or supplemental, text. Although this visualization is informative and appropriate, this 
technique is still relatively novel, and some readers may not be able to interpret the output (i.e., 
non-labelled axes) without some explanation or reference to McInnes Et al. 2018. 

(McInnes, Leland & Healy, John & Saul, Nathaniel & Grossberger, Lukas. (2018). UMAP: Uniform 
Manifold Approximation and Projection. Journal of Open Source Software. 3. 861. 
10.21105/joss.00861.) 
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Point-by-Point Response: 

Overall, we were delighted to receive the highly constructive and overwhelmingly positive comments on 
the first round of review from all three of the excellent reviewers who each provided insightful and thoughtful 
critical feedback on our manuscript, and collectively referred to our manuscript as “a very impressive tour-de- 
force study involving diverse expertise from multiple laboratories combining neurobiological, 
behavioral, and computational approaches, as well as a novel behavioral tracking methodology in 
order to establish a causal function of the mPFC-to-LH pathways in social rank and related dominance 
behaviors” that was “Overall, a very thorough, elegant, and exciting development for the field of 
behavioral neuroscience, ethologically relevant social behavior, and computational efforts in the field” 
and “a major contribution” comprised of “elegantly applied technical innovations.” We are also grateful 
that the Reviewers were such experts in the field they could appreciate that, “the uses of both the 
AlphaTracker as well as the HMM-GLM using neural activity for detecting unique behavioral and neural 
states are innovative for linking across complex social behavioral patterns and neural activity.” 

All three reviewers described our work as “exciting.” Reviewer 1 prefaced their deep, comprehensive, 
and constructive feedback by emphasizing that “the richness of our suggestions should not be 
misconstrued as a lack of support for this work,” while Reviewer 2 held “high enthusiasm” and Reviewer 
3 was also “very enthusiastic” about our manuscript. We are pleased that Reviewer 3 so concisely 
articulated our biological advance “Overall, this new knowledge provides an important causal “bridge” 
between social rank representation in the mPFC and behavioral regulation by the LH.” 

We thank the reviewers for their constructive comments and suggestions on our manuscript, and for 
their patience, as fully addressing their comments required several new, technically-challenging experiments. 
We thank the editor and reviewers for granting us the opportunity to respond to the critical comments from their 
thoughtful reading of our manuscript and feel that the incorporation of their very helpful comments have 
substantially expanded the scope of claims that we can make and thus strengthened the study. 

In this new version of the manuscript we have incorporated both new experiments and additional 
analyses: 

1. 
2. 

We have validated our AlphaTracker tool for tracking of four mice (Extended Data Fig. 2). 
We have compared our HMM-GLM model with additional models for increased rigor (Fig. 2 and 
Extended Data Fig. 5). 
We have now analyzed how mPFC neural dynamics change in intermediates when they are relative 
subordinates vs dominants (Fig. 3c, I; Extended Data Fig. 9). 
We have included the important control of recording from mPFC when mice perform the reward task 
alone as well as during competition. This experiment reflects new data collected using wirelessly- 
recording devices from the mPFC of 24 mice while performing the reward task alone. We now 
report that the mPFC dynamics we observe at the population and single cell level are not driven by 
baseline social rank differences (Fig. 3j-k; Fig. 4b-d). 
In a new experiment, we directly compared encoding of a reward received alone vs in social 
competition. We recorded the same neurons by using a continuous recording sessions that include 
alone and competition epochs. We demonstrate that encoding of receiving the reward alone vs winning 
is distinct and decodable (Fig. 3l-m). 

3. 

4. 

5. 
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We believe we have responded to each Reviewer‟s concerns completely and comprehensively, and in so 
Reviewer, doing, have included a table of contents for your convenience (comments 

Authors‟ responses are in black font). 
are color-coded by 

Reviewer #1: Comments and point-by-point responses – Pages 3-22 

Reviewer #2: Comments and point-by-point responses – Pages 23-36 
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Referees' comments: 

Referee #1 (Remarks to the Author): 

I am a behavioral neurophysiologist, and I reviewed this paper in conjunction with a computational 
neuroscientist/neurotheorist. Comments reflect our pooled suggestions to primarily aid the authors in 
improving the rigor and reproducibility of their work and enhancing communication of their findings for a broad 
scientific audience, and to secondarily aid in editorial consideration of this work for publication. The richness of 
our suggestions should not be misconstrued as a lack of support for this work, as noted in the summary 

 

This study by Padilla-Coreano et al seeks to investigate the role of the PFC, and more specifically, a PFC->LH 
circuit in encoding social rank and dominance behavior. To achieve this, the authors begin by determining the 
social rank using a classic test assay in pairs of co-housed mice. Since the primary objective of this study is to 
uncover the neural representations of social rank, the authors suggest that the tube test has several clear 
limitations. First, the behavioral data that can be extracted from the tube test is less rich than other behavioral 
assays broadly deployed in mice. Secondly, I think the authors seem to suggest that the task does not enable 
the measurement of the electrical activity from the same cells across many trials (which is necessary to 
facilitate statistical analysis). Here I think its worth largely emphasizing the first point. As previously 
demonstrated in Zhou et al, Science 2017 (cited by the authors), mice can be repeatedly subjected to the tube 
test. Since this is a widely accepted and stable (across trials and sessions) measure of social dominance in 
male mice, and PFC cellular responses to competition have already been described in Zhou et al, Science 
2017, a major contribution here is showing that these responses are presented in a more ethologically relevant 
context. Thus, the authors develop a novel competition assay. Using a set of mice in which social hierarchy is 
previously established using the tube test, the authors successfully show that social dominance predicts 
behavioral outcomes in their competition assay. 

We thank the reviewer for acknowledging that there is a major contribution of studying the PFC in a more 
ethologically relevant context. First let us say that the groundbreaking study of Zhou et al., Science 2017 was a 
landmark study that we are building off of and going beyond – our results are completely aligned with this 
published work, and we do not intend to replace the tube test, instead, we propose to contribute to the 
existing toolbox for probing the neural representation for social rank and provide a new paradigm 
optimized for neural recordings/systems-level investigations. Indeed, the tube test allows for repeated 
tests that can be used as trials, as previously published and it was an oversight on our part to not be clear with 
our the more clearly defining what we meant by “trial structure.” We have clarified in line 70 that we mean 
structured trials that are not initiated by the animal, but initiated by the experimenter. With the tube test, trial 
duration is determined by when the animals initiate and terminate movement in each trial and is therefore non- 
uniform, which represents a challenge for averaging across trials (which is necessary for certain types of 
population dynamics visualization). Our task provides a trial structure that is defined by the experimenter rather 
than initiated by the animal‟s behavior, that contains the identical conditioned stimulus to help determine which 
responses are to the value of the predicted outcome rather than the features of the unconditioned stimulus. 

Nevertheless, here I would raise my next suggestion. With the tube test assay, five animals can be ranked 1-5 
(to social rank). Mouse #2 has a high social rank, though it is submissive to Mouse 1. With competition assay 
and the analysis strategy taken by the authors, it is imperative to note that they are not probing social rank 
(i.e., Mouse #2 within the colony). Rather, they are probing relative social rank (Mouse 1 vs. Mouse 2)… the 
neural processes that encode being dominant to your partner. At this point, its unclear if mouse 2 would look 
any different than mouse 4 if all five animals were performing the competition assay at the same time. At some 
places in the paper the authors appropriately use the term relative social rank, and in other places, they simply 
use the term social rank. 
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Indeed the reviewer is correct that in our previously-submitted manuscript we were probing relative rank, and 
should specify such. Now in addition to stating that comparisons made will be relative rank in the manuscript 
(lines 78-79), we have now clarified in each figure where we mean relative rank. In this new version of the 
manuscript, we have introduced some analyses of absolute social rank, which we refer to as absolute rank 
where necessary. 

We are also now reporting the outcome of the competition by absolute social rank, showing that rank 1 animals 
win the highest percent of competitions, in Figures 1c and Extended Data Fig. 5b, shown here in Rebuttal 
Figure 1. Finally, to clarify that in all cases in our reward competition is done in pairs of mice, not all cage 
mates simultaneously, we have added extra details to legends for figures 1c-d and on the methods section 6 
we have the following details” During all competition sessions, two mice were placed in one chamber. Mice 
competed against one cagemate per session.” 

After the authors establish their novel behavioral assay as a surrogate for relative social rank that also 
facilitates multiple trials, they strive to extract a rich set of behavioral measures using a novel ML coding 
algorithm. Importantly, their approach can monitor the behavior of non-labeled individual mice, and it can 
extract joint behavioral features from pairs of mice. Here, however, I would suggest toning down the 
novelty/utility claims of this approach a tiny bit. Its nice that their approach can track non labeled mice, but its 
not that difficult to label mice. Furthermore, while tracking non-labeled mice within a large colony might be 
exceptionally useful, they only show its effectiveness in tracking two mice. Thus, I would suggest that they 
revise the description of AlphaTracker to state that it tracks two mice, not multiple (in the abstract, text, and 
figure legend). Its a more precise claim that doesn‟t take anything away from the utility of their scientific 
findings using the tool. 

We thank the reviewer for this suggestion. We have now included new data and analyses in Extended Data 
Fig. 2a, also included here in Rebuttal Figure 2, where we show that when tracking 2 or 4 unmarked mice 
AlphaTracker can track mice with near or higher accuracy than humans with an identity error rate of less than 
1%. We have also toned down our claim by explicitly stating that existing tools can track multiple marked 
animals in line 83. 

However, while the reviewer trivializes a feature of our tool with the statement “it‟s not that difficult to label 
mice” we would like to highlight the utility of this feature: 

1) computer vision tools for pose estimation/animal tracking in labeled and unlabeled subjects are 
distinct classes of tools; 

2) using markers can be trivial in some tasks, but in other tasks (for example, in social identity 
experiments where a marker could confound social identity recognition or when multiple mice are frequently 
occluding each other), markerless pose estimation is a significant advantage in any case when the marker 
could confound an experimental variable or where the marker could be occluded; and 

3) AlphaTracker certainly performs even better when animals are marked, but importantly performs well 
tracking in multiple unmarked mice (which may be a useful feature for certain experiments). 
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Rebuttal Figure 1: Competitions won by absolute 
rank. Left, percent competitions won by absolute 
rank without recordings (number of competitions: 
rank 1=5/6, rank 2=3/6, rank 3=2/6, rank 4=0/6). 
Right, percent competitions won by absolute rank in 
animals during recording sessions (rank 1 n=9/12; 
rank 2 n=3/12; rank 3 n=7/15; rank 4 7/14). In both 
cases rank 1 animals won more competitions. 

 

 



Once the authors identify behavioral clusters using AlphaTracker, they set out to determine whether PFC firing 
represents social rank and the behaviors observed during their task used to quantify relative social rank. 
Specifically, the authors implant animals with 32 wire electrodes, and perform wireless while mice engage in 
their task. Here, some missing details/confusing text made it more difficult for me to evaluate the rigor of their 
findings. First, I had a hard time determining the number of implanted mice subjected to their assay. I searched 
the text, figure legends, and methods, and I am sorry if I missed it. 

We apologize for the confusion and thank the reviewer for pointing out this omission. We have now indicated 
the number of mice utilized for recordings in Figures 2-5 legends and in the methods section 6. For Figure 2 
we used 13 mice with similar video settings (resolution and camera angle) to allow for the automated 
behavioral analysis. For Figure 3 we used 20 mice for the reward competition recordings, 24 mice for the 
alone recordings and 12 mice for the experiment in which mice received alone and competition trials in the 
same recording session. For Figure 4 we used 10 mice for the alone recordings (5 rank 1 and 5 rank 4) and 
20 mice for the reward competition recordings. For Figure 5 we recorded 20 mice of which 9 had viral 
injections for mPFC-LH phototagging and 8 had viral injections for mPFC-BLA phototagging. 

Second (and also related), it was hard for me the interpret the following statement (line 99) without that data, 
“when recording during the reward competition task, we did not detect statistically significant differences in the 
number of rewards earned by dominant and subordinate mice, allowing us to make comparisons about 
dominance behavior and competitive success without being confounded by the volume of reward 
consumption.” I was totally lost by this sentence. In Fig 1c, the authors validate their assay as a surrogate for 
social rank by showing that commutative rewards were related to outcomes in the tube task. Here, the authors 
seem to be suggesting that the outcomes of the tube task do not relate to successful competition for limited 
resources. There are several reasonable explanations for this. For example, the electrophysiological 
experiments may not be powered to detect this behavioral difference (but I can‟t assess that without N). Did the 
partner mice wear the dummy headstage during the ephys competition (seems so in the video)? For these 
mice, there appears to be less cumulative rewards in the unimplanted mice. 

We have now removed this sentence from the manuscript and clarified in the methods section 6 that during 
recording sessions both animals always wore the wireless devices and that to maximize the number of trials 
obtained sessions consisted of 30 trials for recording sessions (to enhance statistical comparison) and 20 trials 
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Rebuttal Figure 2: AlphaTracker performance for multiple animal tracking. Left, the root mean squared 
error (RMSE) in pixels for two animal tracking. Right, the RMSE in pixels for four animal tracking. In both 
cases identity tracking is more than 99% correct. 

 



for unimplanted mice. Furthermore, we now report the number of animals used in the figure legends and 
methods section 6. 

There are different behavioral measures shown in figures for the initial version of the competition task in un- 
implanted mice (cumulative rewards, ratio of port occupation, pushing success and time displaced), than for 
the implanted mice (cumulative rewards, pushing success, latency pushing success during tone). Here the 
only common measure that shows the same result is the pushing success. For the latencies, the trials appear 
to be treated as independent for this latter analysis. The authors should treat these behavioral observations as 
repeated observations of the same phenomenon for Fig S5c (specifically, within trial for a given subject). Also, 
the legend for Fig S5c says „slower latencies.‟ It would be better to describe the data as „longer latencies.‟ 

The statistical test we used for the latencies is a two sample Kolmogorov-Smirnov test which is adequate for 
this data because it does not require normality. Yet, it doesn‟t have a special case for repeated measures 
within group. Now we also report a repeated measures one way ANOVA showing a consistent effect of relative 
rank (One way RM-ANOVA F(1,24)=2.06, p=0.002). And yes, “longer latencies” is more accurate, we have made 
this change. 

Since the nature/validity of the behavioral task is important for exploring the link between relative social- 
dominance and neural activity, my further commentary assumes that the suggestions I‟ve provided up until this 
point can be easily addressed with additional experimental details and minor revisions to the analysis. Thus, I 
am providing additional suggestion based on the assumption that the authors will clearly establish behavioral 
outcomes of their competition task as measures of social dominance for the same animals used for their neural 
analysis in a revised version of the manuscript. 

During the recordings, food-restricted mice (weighing an average of 25g) carry on their heads a recording 
device that weighs 6-7g including cement of headstage (~25% of their body weight); it is inevitable that there 
will be some changes in behavior (Rebuttal Figure 3), even if they are minor in comparison to tethered mice. 
We have also made sure to report the same metrics across cohorts in the manuscript where relevant (Figure 1 
and Extended Data Fig. 1 for no recording cohort and Extended Data Fig. 5 for recording cohort). 
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In both cohorts, pushing success, which represents periods of high competition for both animals, is higher for 
relative dominant mice than for relative subordinate mice. In addition, our physiology experiments show that in 
the mPFC there are unique rank-related patterns of activity that emerge during the social competition but are 
not present at baseline when the animals are performing the task alone (Fig. 3j-m and Figure 4). 

The language around the authors population analysis is a little unclear. As I understand it, the authors used 
AlphaTracker to discover nine behavioral conditions defined by two mice in an arena. They then trained a 
SWM using PFC multiunit activity to predict these behavior conditions. Next, they hypothesized that PFC may 
better encode hidden states. Here, rather than PFC directly encoding the 9 specific behavioral conditions (or 
better stated, rather than discriminating the behavioral states from each other), the authors tested a model in 
which PFC encoded a number of states (six in this case) in which distinct profiles of their behavioral conditions 
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Rebuttal Figure 3: Reward competition behavior summary for recording vs no recording cohorts. a, Number of 
rewards, % port occupation during tone time, % pushing success during tone and total % pushing success, and time 
displaced from reward port across relative dominant and subordinate mice. Across cohorts % pushing success during 
tone and total % pushing success are higher for relative dominant mice. b, Rewards won as a function of bodyweight 
difference, % bodyweight and % competitions won by absolute rank, distribution of latency to pick up reward across 
trials and distribution of velocity across trials. Across cohorts rank 1 mice win the majority of competitions and relative 
dominant mice have higher velocities during the social competition. *p<.05,**p<.01,***p<.001 

 



were likely to emerge. They found that PFC decoding was more accurate using this latter model in comparison 
to their models where PFC encoded the behavioral conditions. 

First, we would like to clarify that the HMM-GLM model does indeed show that PFC distinctly encodes 9 
specific behavioral states, and it does so by assuming there is a hierarchical model wherein the animals hidden 
state contains probabilities of the behavioral states identified that are distinct from each other hidden state. 

Second, we would also like to clarify that the 9 behavioral conditions (or labels) analyzed in Figure 2 are 
indeed analyzed using AlphaTracker tracking data, but they are unrelated to the clusters of behavior shown for 
the arena behavior shown in Figure 1 which is a proof of principle use of the tool we have created and open 
sourced. We apologize for the confusion and have now added additional clarifying language in the methods 
section 17 “Decoding of behavior” under the first subsection titled “Dataset.” 

The results on the modeling are unusual, where gains between the autoregressive model compared to the 
SVM and the GLM are drastic. It is rare that you see such dramatic gains when moving to an HMM based 
model, and the manuscript would be much improved by explaining this outcome. In fact, the authors show that 
there are drastic gains by using 2 clusters in the HMM based model (noting that the 1 cluster case is 
equivalent to the GLM model in your formulation). In this case, they are now distinguishing between 9 classes 
based on a mixture of 2 GLMs, where the GLM is chosen through the historical information. Compared to the 
classes, this is really a minor gain in modeling complexity, and I‟m unclear from a mathematical perspective as 
to how such gains can be achieved. Additional justification and exploration would be warranted to ensure 
robustness of these findings. 

The purpose of the analyses in Figure 2 is to determine if this novel social competition task is prefrontal 
dependent. The literature of the tube test suggests that mPFC would be involved in this social competition 
assay, but since this is a novel assay we needed to confirm the role of mPFC. To do that, we proceeded to ask 
if mPFC population activity could predict the behavior of mice in this social competition assay. We compared 
multiple models and report the model that worked best. We see the best performance with a model that 
combines hidden Markov models with generalized linear models. This has interesting implications given that 
this model uses hidden states that may reflect different internal states of the animals during the social 
competition. In the revised version of the manuscript we have added some additional controls for increased 
rigor as the reviewer suggested and we now explain the model complexity better in lines 112-126 and the 
control comparisons we performed in the results lines 132-141, and the details on these new model 
comparisons are in the methods section 17 Decoding of behavior under subsection Dataset in pages 7-

8. We have now amended our main text in Lines 112-141 such that it now reads: 

“Once AlphaTracker facilitated the identification of 9 different behavioral states (Fig. 2a), we then wanted to 
determine how the mPFC may predict behavior during the reward competition assay. The mPFC is known to 
be important for a number of higher cognitive functions(Sawaguchi and Goldman-Rakic, 1991; Miller and 
Cohen, 2001; Wallis et al., 2001; Hornak et al., 2004; Ridderinkhof et al., 2004), and has been shown to used 
“mixed selectivity” to maximize computational power – which refers to the ability of mPFC neurons to be 
selective for different stimulus features under different contexts(Rigotti et al., 2013; Fusi et al., 2016). 

We posited that mPFC neural activity could be dynamic, representations may be hierarchical and may be 
influenced by internal hidden states. Therefore, we turned to a recently-developed unsupervised method to 
identify hidden states by combining a hidden Markov model (HMM) with generalized linear models 
(GLMs)(Escola et al., 2011a; Calhoun et al., 2019a) and adapted it to use mPFC neural activity to predict each 
of nine behavioral labels. We trained a set of multinomial GLMs to predict the transition probabilities between 
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hidden states. In addition, each hidden state is paired with another multinomial GLM that describes the 
relationship between neural activity and the behavior of that particular hidden state (Fig. 2a-b). 

To create a dynamical model of the temporal relationship between neural activity and behavior, each 
component of our model followed the first-order Markovian property, to help preserve information about past 
events when predicting the future (Fig. 2d). An HMM-GLM model with 6 hidden states decoded behavioral 
labels from neural activity with superior performance to static models (Fig. 2c-e, Extended Data Fig. 5j, 
Extended Data Fig. 6, and Supplementary Movie 2). Interestingly, the model performed equally well when 
training for one relative rank and testing on the other (Extended Data Fig. 5k-l), suggesting that mPFC 
encoding of social competition behavior is generalizable across relative ranks. 

However, we also wanted to consider the alternative hypothesis that mPFC neural representations are static or 
simple, so we next tested simple models to see if they too could predict social behavior. The simplest model 
that could predict behavior is to utilize the fixed probabilities of the behaviors occurring (frequency table) to try 
to predict behavior labels, but this model without neural information failed, suggesting the need of 
incorporating neural activity for the prediction (Fig. 2c-d). Next, we trained a multinomial support vector 
machine (SVM) classifier and a multinomial generalized linear model (GLM) to decode these behavioral labels 
using mPFC multi-unit activity (Fig. 2c-d). The SVM failed and the GLM performed above chance (Fig. 
2c-d). Next, we tested if the performance increased by utilizing an ensemble of GLMs, one per behavioral 
label, but there was no improvement in performance (Fig. 2c-d). The lack of improvement suggested that the 
static nature of the GLM did not fully capture the relationship between mPFC neural activity and behavior.” 

The dramatic gains of the HMM-GLM models are due to having multiple GLMs and incorporating a hidden 
Markov model that uses temporal information. This model incorporates one GLM per type of hidden transition 
state (hidden state 1 to 2, hidden state 1 to 3, etc.) and one GLM per type of behavior observation (hidden 
state 1 to behavior 1, hidden state 1 to behavior 2, etc.). For example, the 2-state GLM HMM consists of 22 
GLMs (4 for the hidden state transitions and 18 for the behavior emissions), leading to a significant increase in 
complexity. In addition, the HMM-GLM model has an autoregressive component of the model, i.e. the HMM, 
that improves the performance by incorporating temporal information of the previous timepoint using a Markov 
chain. These hidden states are meant to represent the internal states of the brain and each of them define 
distinct relationships between neural activity and behavior via the emission GLMs. 

For example, at time 't', we have a probability distribution for the 6 states. Using neural activity at this time, we 
can now define a probability of transition for each of the states at time 't+1' using the transition GLMs. Thus, 
we have 36 possible configurations. We then identify the most probable hidden state for time 't' as the one 
which produces the highest probability for the true behavior label at time 't. Thus, using the Markovian 
property, we reduce the number of possible configurations to 6. This is how the HMM uses the information of 
past events to narrow down probabilities for the future. Next, each hidden state (6 of them) can lead to each 
behavior (9 of them) using the corresponding emission GLM per behavior/hidden state. Thus, providing 54 
probabilities of behavioral outcomes coming from hidden state and behavior combinations. We concatenate 
the probabilities across these for each behavior to obtain one final value per behavior. For example, say the 
probability distribution for the hidden states (H) at time 't+1' is: P(H1) = 0.1, P(H2) = 0.3, P(H3) = 0.07, P(H4) = 
0.2, P(H5) 
= 0.3 & P(H6) = 0.03, and the conditional probabilities for behavior 1 (B1) given each hidden state are: 
P(B1|H1) = 0.01, P(B1|H2) = 0.05, P(B1|H3) = 0.002, P(B1|H4) = 0.12, P(B1|H5) = 0.17, P(B1|H6) = 0.2, then 
the probability of observing B1 (using the law of total probability) becomes: P(B1) = 0.1x0.01 + 0.3x0.05 + 
0.07x0.002 + 0.2x0.12 + 0.3x0.17 + 0.03x0.2 = 0.09714. Thus, we use this complex set of interconnected 
GLMs driven by neural activity to describe a diverse behavior distribution in conjunction with the Markovian 
property. The combination of GLMs and HMMs with the Markovian property is what gives such a good 
performance. Importantly, given the complexity of this model preventing overfitting was key. To control for 
overfitting we did two methods in which we always tested with held-out data: 10-fold cross validation in which 
we trained with 90% of the trials and tested on 10% held-out trials and leave one out method in which we 
trained with all animals except one, and tested the model on the held out animal. These details about how the 

 

 



HMM-GLM works are detailed in the methods section 17 subsections HMM-GLM and Model Architecture & 
Assumptions in pages 8-16. 

To be conservative, we refrain from making explicit claims in our manuscript, but the idea that a model with a 
hidden layer would perform better is consistent with the notion that the PFC uses a hierarchical representation, 
and is consistent with the notion that the PFC relies on mixed selectivity to exert its computational power. PFC 
neurons are known to encode different stimuli depending on context (Rigotti et al., 2013), and hidden states 
may be the neural representation of a given context. We can now add this speculative interpretation of the 
additional significance to the manuscript. 

In any case, if my understanding of their objective is correct, the authors should revise their text for clarity. The 
term „behavioral state‟ is used under too many different contexts. For example, the authors state “the 

proportion of time spent in each hidden state did not different by competitive success or by social rank, and the 
model performed equally well across ranks, suggesting that mPFC encoding of social competition behavior 
states is common across ranks.” It would be more appropriate to state that the encoding of social competition 
hidden states is common across ranks. Also, again, the authors should revise most statements regarding rank 

to read „relative rank‟. Assuming that my understanding is correct and that the authors clarify the text 
accordingly, I believe the data argues that PFC activity encodes behavioral states in which distinct profiles of 
behavioral are likely to emerge. There is plenty of evidence to support this interpretation including studies from 
the senior author and many of the works literature cited in this manuscript. Nevertheless, the relevance for this 

particular study remains unclear since these behavioral states (hidden states) 
do not show a relationship to rank. 

We thank the reviewer for pointing out that behavioral state is a confusing 
term given that we also have hidden states. We want to clarify that we were 
using behavioral states to mean the behaviors themselves, therefore now we 
are referring to them as behaviors or behavioral labels to avoid confusion with 
the hidden states, which although are determined based on the behavior and 
neural activity they are not the same. 

Regarding the point on hidden states not showing relationship to relative rank: 
That is indeed the case, we have now more extensively explored to what 

extent the HMM-GLM model predicts behavior differently across relative 
ranks and we show that if you train the HMM-GLM model on exclusively one 
group and testing on opposite group we can still predict behavior labels with 
high accuracy (Rebuttal Figure 4). Based on these analyses we conclude 
that mPFC has a common model of encoding social competition behaviors 
across relative ranks, even though the proportion of time performing different 
behaviors may differ across ranks. 

Next, the authors set out to determine if PFC unit activity predicted social 
rank and task relevant behaviors in their competition assay. My concern with 
this approach, in particularly analyzing winning and losing, is that the authors 
did not find that winning vs. losing was related to social rank in the cohort of 

mice used for their electrophysiological study. Specifically, the authors found that the dominant and submissive 
mice consumed the same amount of reward. Thus, I‟m not entirely convinced that decoding winning and losing 
is optimal. Imagine a situation where basal difference in PFC firing activity are related to relative social rank (a 
fair hypothesis). One would expect that a model using PFC activity could differentiate relative social rank 
irrespective of the behavioral condition as long as two mice were in the same arena. This appears the be the 
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Rebuttal Figure 4: The 6-
state HMM GLM was 
predictive of behavior with 
high performance regardless 
of which dataset was used 
for training or testing. 
Training on relative dominant 
(dom) or relative subordinate 
(sub) data and testing on the 
opposing dataset still resulted 
in high performance (n=9 
behavior labels using 482 trials 
for dom vs 478 trials for sub; 
Sign test performance vs 0.5 
(chance) p=0.004 for all tests). 

 



case, since the AUCs differentiate relative rank even prior to cue presentation. How then to interpret the trial 
by trial decoding of winning a losing? Would the PFC show this response in any area, even one in which 
resources were freely available? What if there were two poke holes, and the animals didn‟t have to compete? 
Here, again, N (number of mice) would be useful. Is winning vs. losing unrelated to social dominance due to a 
lower number of mice (and thus pairs). Does the assay not work in implanted mice? Is the assay simply not 
reproducible? The strategy for addressing each of these options is quite different. 

We thank Reviewer #1 for this deep and thoughtful line of questioning. Indeed, the reviewer helps to point out 
that we needed to more clearly articulate the advantages of this new task and these conditions. One of the 
most powerful advantages of our task is that, by having many trials, we can parse related information across 
different time scales. 

Specifically, wins and losses occur on a short time scale, to contribute to the longer time scale 
representation of rank. The Reviewer is concerned that our task does not have all the advantages of the Tube 
Test, yet we want to emphasize that our paradigm combines use of the Tube Test (as depicted in Figure 1a) 
with the Reward Competition Assay, and thereby combines the different strengths of these assays to allow us 
to make new insights. The Tube Test is more all-or-nothing (qualitative) and is designed to be robust, while 

the Reward Competition Assay is designed to reveal subtle gradations that 
can be quantified. We are not proposing that the Reward Competition 
Assay replace the Tube Test, but that the use of both paradigms in 
combination is more powerful. 

One exciting set of results is that although wins and losses are highly 
related to social rank (as rank would likely influence win/loss probability, and 
win/loss probability would also influence and define social rank), they are 
represented orthogonally and occupy distinct subspaces within the greater 
activity space (Figure 3a and b). We speculate that this could represent a 
strategy for ensembles to keep related information on different timescales 
separate. This central discovery (that wins and losses would be 
represented orthogonally and in segregated subspaces) would not have 
been possible without the trial structure and features of this task. 
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Main Fig. 3a: Neural trajectories of mPFC population firing rate differ for relative dominants (dom) and subordinates 
(sub) during the tone presentation for both win and lose trials in a lower dimensional common principal component (PC) 
sub-space (trajectories are the average across leave one out iterations leaving out one mouse at a time, total neurons 
recorded from dominants: n=507 and subordinates: n=490 units from 20 mice). Win and lose trials are aligned to the cue 

Main Fig. 1a: Schematic of reward competition behavioral paradigm. First, social rank was assayed using the 
tube test. Once ranks were stable, mice were trained individually to associate a tone with reward delivery of 
Ensure 2 s post tone onset. Finally, after training, mice competed for rewards during competition with cagemates 
of known social ranks. 

       
    

 



We hope that emphasizing the following 
points will provide clarity. First, we rely on a 
ground truth measure to validate ranks (tube 
test). Second, we provide a task wherein the 
degree of hierarchical despotism can be 
quantified (the degree to which there is a 
disparity in resources by rank), and ranks can 
still be represented and expressed when social 
hierarchies are more egalitarian (as opposed to 
being more despotic, at the opposite end of the 
spectrum) – while we do not explore that in this 
manuscript, this task would lend itself well to 
investigation of hierarchy structure, and we aim 
to establish paradigms that can propel the study 
of social rank forward. Third, a major confound 
of other dominance tasks is that subordinates 
do not have enough win trials and therefore it is 
difficult to compare the neural activity across 
ranks and wins/losses – so we view the similar 
number of wins and losses as a strength of our 
paradigm because it allows us to draw our 
conclusions with confidence (without concern of 
a sampling bias). Here, we continue to rely on 
the robust, well-validated Tube Test while also 
providing a strategy to examine competitive 
success on a shorter time scale that is 
optimized for rigorous statistical comparison of 

 parametric
 (an
   

potentially non-stationary) 

To ensure that our decoding of competitive 
success using mPFC population data was 
optimal we took two approaches: We explored 
how relative social rank and overall competition 
outcome (who won the majority of rewards) 
affected the decoding and we also added a new 
experiment in which we compared mPFC 
encoding of reward while alone vs during 
competition, a context that allows the 
dissociation between receiving the reward and 
winning. 

First, mPFC population activity was able to 
predict competitive success per trial (win/lose) 
even when training and testing within relative 
subordinates or dominants (Rebuttal Figure 
5a-b). These results suggest that mPFC is not 
exclusively using baseline rank differences 

 decode competitive success. Next, to 
understand if competitive success decoding generalized across relative ranks, we asked if a decoder trained 
on relative dominant (dominant model) data was sufficient to decode competitive success for subordinates, 
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Rebuttal Figure 5: Decoding performance for competitive 
success using different datasets. a, Decoding performance 
(area under the receiving operating curve; AUC) when training 
and testing on relative dominant data (left) or training on 
dominant and tested on relative subordinate data (right) was 
higher than chance (shuffled dataset indicated in gray). 
(Wilcoxon rank sum, dom/dom p=0.0002, dom/sub p=0.003). 
b, Decoding performance (area under the receiving operating 
curve; AUC) when training and testing on relative subordinate 
data (left) was higher than chance but not when testing on 
relative dominant data (shuffled dataset indicated in gray). 
(Wilcoxon rank sum, sub/sub p=0.0002, sub/dom p=0.14). c, 
Decoder performance for classifying competition outcome 
using training and testing data from loser data (e.g. mouse lost 
majority of trials) and using training and testing data from 
winner data (e.g. mouse won majority of trials) (Wilcoxon rank 
sum: loser baseline vs shuffle p=0.10, loser cue vs shuffle 
p=0.0002, winner baseline vs shuffle p=0.02, winner cue vs 
shuffle p=0.0002; Wilcoxon sign rank: loser base vs cue 
p=0.002, winner base vs cue p=0.004). 

 



and vice versa. When testing on data from the opposite relative rank the model trained on dominants was able 
to generalize and perform above chance, but the model trained on subordinates failed to decode outcome for 
dominant data sets (Rebuttal Figure 5a-b), suggesting an asymmetry associated with rank. It is of note that in 
both cross-group decoding tests the performance level decreased, suggesting that relative rank influences how 
competitive success is encoded in mPFC. Finally, to understand how much the outcome of the competition 
affects the trial by trial competitive success decoding we restricted our data to overall winner data (sessions 
during which the animal obtained the majority of rewards) or overall loser data (sessions during which the 
animal obtained a minority of rewards). In these extreme scenarios the mPFC could still decode trial by trial 
competitive success during the cue (Rebuttal Figure 5c). We have now included all these informative 
iterations of the decoder of competitive success in the manuscript Extended Data Fig. 8 and brief 
interpretation in these results lines 174-192. 

To rule out the possibility that the competitive success decoding was exclusively a result of responses to the 
reward and therefore was unrelated to social competition, we performed a new experiment in which the same 
neurons were recorded during trials alone followed by trials in social competition. To understand how similar or 
different the mPFC population response was to the reward alone vs winning we asked if an SVM could decode 
between these two conditions. Indeed, mPFC population activity could decode alone vs win trials with high 

accuracy, but early and late trials of the same condition were not decodable (Rebuttal Figure 6). These data 
are now included in Figure 3 and strengthen our claims that mPFC population dynamics encode competitive 
success during social competition. Altogether these new analyses and experiments support the robustness of 
our claim that mPFC population activity decodes competitive success. 

The authors could certainly strengthen their claims by comparing data within subject across trials. For 
example, mice ranked 2-4 could be tested in conditions where they were both the dominant and the 
submissive. Then they can ask whether decoding of the task relevant variables change within mouse based on 
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Rebuttal Figure 6: Decoding between winning and receiving reward alone. a, Left, the mice were left 
alone in the behavior cage for the first half with the auditory CS followed by introducing a competitor for the 
second half. Right, decoding performance for classifying alone trials vs competition win trials (shuffle 
performance indicated by gray line; mean AUC vs shuffled AUC Wilcoxon rank sum p=1.8x10-4). b, Decoding 
performance for classifying whether a trial came from the first half of the session vs the second half for (left) 
alone trials and (right) competition trials. 

 



the rank of the partner, or does the neural activity across reflect fixed rank (and not relevant rank). This 
analysis should require no additional data and it would really add a lot to this study. 

We thank the reviewer for this excellent suggestion, which provides a within-subject comparison for 
interactions with subordinates and dominants – though we did need to perform new experiments and collect 
substantially more new data to be able to make these comparisons rigorously and with confidence. We have 
now expanded our manuscript to include several new experiments and analyses to distinguish neural 
dynamics that are predictive of absolute rank and relative rank. Below is a list of the new analyses and 

conclusions contained in our revised manuscript. 

a) Given our previous reports that mPFC activity was predictive of relative rank (Figure 3 of manuscript) 
during the reward competition, we asked if this was also true for absolute rank (1,2,3,4 in our cages of 
4 mice). We see that mPFC population activity is highly predictive of absolute rank during the social 
competition (Rebuttal Figure 7a). 
To understand if the absolute rank code is also there at baseline, in a new experiment we recorded 
from mPFC single cells while socially ranked mice performed the reward task alone. We see that again 
mPFC population activity is highly predictive of absolute rank during the reward task alone (Rebuttal 
Figure 7b). 
Given that mPFC population activity is predictive of social rank at baseline, we considered how much 
the relative rank differences observed during social competition are driven by baseline rank differences 
independent of the competition. 

b) 

c) 

i. If all population dynamic differences seen during competition were driven by absolute rank 
differences, then decoding relative rank in intermediates would be impossible. However, we see 
that when training and testing an SVM decoder using exclusively intermediate rank animals 
(ranks 2 and 3) as relative dominants or subordinates the prediction of relative rank is highly 
accurate (Rebuttal Figure 7c). 
We explored the possibility that rank differences observed during the reward competition were 
due to baseline differences. For this, we recorded more than 400 mPFC neurons from 24 mice 
performing the task in the alone condition and compared single cell responses during the 
reward task alone in rank 1 vs rank 4 animals.   We did not observed any statistical differences 
in the number of responsive cells nor magnitude to the tone nor port entries (Rebuttal Figure 
8). This suggests that the relative rank differences that emerge during the social competition in 
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ii. 

Rebuttal Figure 7: mPFC population dynamics are predictive of absolute rank and relative rank. a, Absolute 
rank can be decoded from mPFC population activity during social competition (performance vs shuffled data; 
Wilcoxon rank-sum p=0.0002) and b, when performing reward task alone (performance vs shuffled data; Wilcoxon 
rank sum p=0.0002). c, Relative rank in intermediate mice (ranks 2 and 3) can be decoded from mPFC population 
activity during social competition (performance vs shuffled data; Wilcoxon rank sum p=1.8x10-4). 

 



response to winning and port entries are not due to baseline differences in how the mice 
respond to the reward task. These data are now included in the manuscript in figure 4 and 
strengthen our claims that the single cell 
differences during the social competition. 

differences observed are due to relative rank 

15 

Rebuttal Figure 8: mPFC neurons do not show rank-related differences in general population response profiles to 
task events when a mouse is performing the reward task alone. a, Number of responsive cells and response 
magnitude to tone does not differ across absolute dom (rank 1) vs sub (rank 4) mice (dom exc=8 dom inh=8 sub exc= 8 
sub inh=4; Fisher‟s exact test, total responsive per group p=0.16; Wilcoxon rank sum for firing rate across groups: exc 
p=0.87, inh p=1.0) b, Number of responsive cells and response magnitude to port entries during tone does not differ 
across dom (rank 1) vs sub (rank 4) mice (dom exc=5 dom inh=25 sub exc=9 sub inh=16; Fisher‟s exact test, total 
responsive per group p=0.09; Wilcoxon rank sum for firing rate across groups: exc p=0.23, inh p=0.62). c, Number of 
responsive cells and response magnitude to port entries during ITI does not differ across dom (rank 1) vs sub (rank 4) 
mice (dom exc=10, dom inh=23 sub exc=9 sub inh=49; Fisher‟s exact test, total responsive per group p=0.06; Wilcoxon 
rank sum for firing rate across groups: exc p=0.84, inh p=0.17). 

 



Next, the authors analyzed whether single unit data represented task relevant variables in a manner that was 
different across ranks. I‟m a huge fan of modeling, but the goal of models should be to make things 
explainable. Here, I worry that the authors models make their interpretations more complicated than they need 
to be. I have two suggestions. The authors apply an approach to cluster cells based on 6 response properties. 
However, the response properties appear to be different that the task variables used in other parts of the 
study. This analysis now includes responses to port entry during the inter-trial-interval, and I‟m unclear why this 
response property was included as an input to their joint clustering model. 

Our interest in reporting and quantifying single cell responses to these task events, specifically cue onset 
(separated for win vs lose trials) and port entries (during tone and during ITI, separated for self vs other), 
comes from observing that at the population level mPFC has significant relative rank differences during these 6 
task events (shown in Figure 3a-d and Extended Data Fig. 7d). 

1) Its important to address this issue since two cells which show identical response properties in a given 
condition (winning) and different responses to another condition could be clustered differently. To this point, 
the authors go on to compare how the distribution of cells within the clusters differ between submissive and 
dominant trials. I found the text describing the interpretation of this analysis to be confusing and I spent some 
significant time with Extended Data Fig.   9 trying to sort it out. Ultimately, I could only assume that reporting 
on the clustering analysis findings 182-185 was suboptimal and did not clearly describe that the model 
structure (and thus segregation of cells) was based on joint cellular properties. For example, in principle a 
cluster is defined by responses to condition A, B, and E, BUT NOT C, D and F. A cell that shows response to 
A, B, and F only could fall in a different cluster. Thus, 2) it is necessary to fully describe what is represented by 
a cluster, then one could perform post-hoc analysis. I found the subsequent analysis of individual response 
properties to be clearer. In fact, since the goal of the authors was to determine if single unit data represented 
task relevant variables in a manner that was different across ranks, I wondered why the complicated clustering 
model was even useful. As a general rule of thumb, a model should only be as complex as is necessary to 
explain the phenomenon of interest. Thus, in my opinion, the analysis in 4a-c should be removed. The analysis 
shown in 4f-I should expanded to include winning and losing (Extended Fig 9c). Discussion of these results 
should be simple and clear. If the authors choose to keep the analysis shown in 4a, a clearer description of the 
meaning of joint response properties and its importance in social rank should be discussed. For example, 
Clusters 2, 3, and 4 show strong excitation to winning. Though sub and dom show differences in % cluster 4 
(Fig. 4e), no differences are observed in % of cells showing winning or losing (Fig. E9c). Thus, the authors 
would need to explain all of this more clearly if they intended to keep the complicated model (which I, again, 
argue is unnecessary for the goal of their study). 

We appreciate the reviewer pointing out the unnecessary perceived complexity of doing the unsupervised 
clustering with the combined responses to these 6 task events. In response to that we have removed our 
claims regarding the comparison of clusters obtained with this unsupervised method and use the approach 
exclusively for visualization. As the reviewer suggested, we now report the number of significant cells and 
magnitude differences for these 6 events in the manuscript in main figure 4 together with new data of mPFC 
recordings during the reward task while mice are alone. 

However, we feel that the way we are performing our analysis is such that “two cells which show identical 
response properties in a given condition (winning) and different responses to another condition could be 
clustered differently”, which we would consider a strength, because it provides an additional layer of granularity 
(Figure 4a), as we also provide analyses to examine each task event in isolation (Figure 4b-g), which directly 
addresses the reviewer‟s concern. 

Next the authors explore whether PFC->LH neurons contributed to the code for social rank. The authors 
chosen analysis pathway could be simplified substantially. In 5c-d they show neural responses to the 6 
conditions outlined in their prior analysis. Then they show that a greater portion of PFC->LH neurons show 
responses to port entry during the inter trial interval. Did the authors test neural responses for all 6 behavioral 
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conditions? Did they compare the three cell types? I‟m assuming the answer is yes, but the authors didn‟t 
correct for multiple comparisons (where is the statistics. N for PFC->BLA seems to be missing for legend 5e). 
If not, why did they only choose a limited number of comparisons. Differences were only observed in the self- 
entry for the ITI. How should this be interpreted? 

The reviewer makes an excellent point about the difficulty of interpreting the specificity of this difference. We 
have removed our claims given the difficulty in interpreting the specificity. Originally, we tested only the 
proportion of cells responding to port entry behavior because those events are the only ones that showed rank- 
dependent differences in proportion of cells (manuscript Figure 4). Given that it is difficult to interpret the 
specificity of why only ITI self-entries are affected we removed the claims of that data reported. Now given that 
we have the new alone condition controls we focus the main analysis on tone responses vs win trials during 
competition – a comparison which provides social context specificity (Rebuttal Figure 9). 
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Manuscript Figure 4: Relative dominants have more reward seeking behavior cells while subordinates have larger 
responses to competitor behavior. a, Heatmaps (left=subordinate; right=dominant) for firing rate responses to the six task- 
relevant events during the reward competition. Color bar indicates functional clusters obtained by hierarchical agglomerative 
clustering. Clustering was performed with all cells, but only responsive cells are shown in the heatmap (mean firing rate was 
larger than 2 or smaller than -1 z-scores to any behavioral event). On the right, Percent difference between relative dominant 
(dom) and subordinate (sub) cells (% enrichment) in functional cluster membership showed differences across ranks. b, 
mPFC tone responsive cells when mice perform the reward task alone. Number of responsive cells and response magnitude to 
the tone does not differ across absolute dom (rank 1) vs sub (rank 4) mice (dom exc=8 dom inh=8 sub exc= 8 sub inh=4; 
Fisher‟s exact test, total responsive per group p=0.16; Wilcoxon rank sum across groups: exc p=0.87, inh p=1.0). c, mPFC 
tone port entries responsive cells when mice perform the reward task alone. Number of responsive cells and response 
magnitude to port entries during tone does not differ across dom (rank 1) vs sub (rank 4) mice (dom exc=5 dom inh=25 sub 
exc=9 sub inh=16; Fisher‟s exact test, total responsive per group p=0.09; Wilcoxon rank sum across groups: exc p=0.23, inh 
p=0.62). d, mPFC inter trial interval (ITI) port entries responsive cells when mice perform the reward task alone. Number of 
responsive cells and response magnitude to port entries during ITI does not differ across dom (rank 1) vs sub (rank 4) mice 
(dom exc=10, dom inh=23 sub exc=9 sub inh=49; Fisher‟s exact test, total responsive per group p=0.06; Wilcoxon rank sum 
across groups: exc p=0.84, inh p=0.17). e, mPFC tone responsive cells during win vs lose trials in the social competition task. 
Left, number of responsive cells did not differ by relative rank while response magnitude for win trials differed (dom exc=24 
dom inh=14 sub exc=12 sub inh=16; Fisher‟s exact test, total responsive cells per group p=0.30; Wilcoxon rank-sum across 
groups: excited p=0.01; inhibited p=0.06). Right, number of responsive cells and response magnitude for lose trials did not 
differ by relative rank (dom exc=4, dom inh=6, sub exc=3, sub inh=1; Fisher‟s exact test, total responsive per group p=0.17; 
Wilcoxon rank-sum: excited p=0.62; inhibited p=0.28). f, mPFC self vs other port entry responsive cells during tones in the 
social competition task. Left, number of responsive cells was higher for relative dominants while there was no firing rate 
magnitude difference (dom exc=40 dom inh=87, sub exc=33 sub inh 44; Fisher‟s exact test, total responsive cells per group 
p=0.0002; Wilcoxon rank-sum: excitation p=0.28 and inhibition p=0.99). Right, there was no relative rank difference in number 
of responsive cells to other port entries during the tone, while the excitation magnitude was higher for relative subordinates 
(dom exc=25 dom inh=37 sub exc=30 sub inh=29; Fisher‟s exact test, total responsive cells per group p=0.84; Wilcoxon rank- 
sum: excitation p=0.006, inhibition p=0.11). g, mPFC self vs other port entry responsive cells during ITI periods in the social 
competition task. Left, relative dominants had more responsive cells to self port entries during the ITI while relative 
subordinates had larger excitation magnitude (dom exc=45 dom inh=132 sub exc=38 sub inh=71, Fisher‟s exact test, 
p=9.8x10-6; Wilcoxon rank-sum: excitation p=0.006 and inhibition p=0.28). Right, relative dominants had more responsive cells 
to other port entries during ITI while subordinates had larger magnitudes (dom exc=25 dom inh=64 sub exc=13 sub inh=33; 
Fisher‟s exact test, p=0.00019; Wilcoxon rank-sum: excitation p=0.015 and inhibition p=0.04). Data presented comes from 
recordings from 10 mice (rank 1; n=5 and rank 4; n=5) for the alone condition and 20 mice for the competition condition. 

 



If the goal is to show that PFC->LH cells encode rank, why does it matter whether they respond to behavioral 
variables in the task. If the goal is to show that they carry unique information, why is the information in Fig 5e 
even necessary. Overall, the analysis in 5f-g seems more appropriate. Here, the strategy is to subtract the 
cells from the model, and determine if the model prediction improves. But several details are missing here. 
First of all, what is the classifier being trained on (i.e., what behavior condition)? Next, the comparison between 
the BLA and LH projecting neurons is not entirely warranted: a different number of cells are recorded for the 
two pathways, and it‟s unclear how many mice that cellular activity was acquired from (important information 
because only 10 BLA neurons were recorded). 

The reviewer makes a reasonable point that the number of BLA projector neurons is very low. In 8 new mice, 
we injected two viruses, implanted electrodes in mPFC, tube tested mice, trained them for the reward 
competition assay, recorded during competitions, spike sorted and analyzed the data, a process that took 3 
months, in an attempt to record from additional mPFC-BLA projectors. Unfortunately, despite our best efforts to 
perform this experiment (we added several new authors, working alongside original authors, for several 
months), and despite good histological expression of the virus (Rebuttal Figure 10) and high neuronal yield 
across mice, we failed to collect recordings from any neurons that qualified as mPFC-BLA projector cells given 
our rigorous criteria for classifying a neuron as “phototagged” or “photoidentified.” Given the remaining 
disparity in number of projector populations we agree that the comparison of removing 10 cells vs 43 cells is 
not warranted, so we removed this analysis from the manuscript and instead opted to report the firing rate and 
responsiveness of these subpopulations of cells in alone vs competition conditions (Rebuttal Figure 9). 
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Rebuttal Figure 9: mPFC-LH neurons are more responsive to the winning trials compared to mPFC-BLA 
neurons during reward competition. a, Right, firing rate of mPFC-LH is higher than mPFC-BLA during the 
reward delivery period in win trials in the competition (mPFC-BLA n=10 from 3 mice, mPFC-LH n=43 from 3 
mice, Wilcoxon rank sum p=0.045). Left, percent cells responding to tone during win trials in the social 
competition (mPFC-LH n= 3/43, mPFC-BLA n=1/10 and non-phototagged n=57/620). b, Left, firing rate for 
projector populations during tones while animals performed the reward task alone (alone vs comp mean zscore 
during tone; mPFC-LH p= 0.043, mPFC-BLA p=0.049). Right, percent cells responding to the reward predictive 
tone when animal is alone (LH=0/8 from 3 mice, BLA 4/5 from 3 mice, non phototagged=54/470). 

 



Minor comments: 

There is some unusual language in the methods description of the machine learning methods. In the Support 
Vector Machines, it is noted that the SVM generates a likelihood. It does not, as it is not a probabilistic model. 
Additionally, the terminology of a “one-hot encoding” is not the standard usage of that term (which usually 
means that each of L classes is encoded as a 1 on the lth entry of an L length vector), but the one-vs-all 
approach seems fine. However, details are lacking here: what parameters were tuned? How was the model 
selection run? What method was used to deal with class imbalance? The definition of the AUC metric should 
also be given, since there are differing definitions in the multi-class setup. I assume that this is the average of 
the one-vs-all AUCs, but that needs to be stated. Also, an SVM looks at all data points while choosing the 
support vectors, so that language is unclear. 

The reviewer is right to point out that an SVM is inherently not a probabilistic model. In order to make the SVM 
probabilistic we used an appropriate score-to-posterior-probability transformation function, as proposed by 
Platt in 1999, which is a widely adopted approach (Platt, 1999). If the classes are inseparable, the 
transformation function is a sigmoid function, and if they are perfectly separable, it‟s a step function. We thank 
the reviewer for catching the one-hot typo which we have now corrected. We utilized a one-vs-all approach to 
decode the 9 types of behavioral classes. For the SVM, we used a gaussian kernel and default model 
hyperparameters as defined in MATLAB 2019B. Since we‟re reporting the area under the receiver operating 
characteristic curve (AUC-ROC), the performance metric is already sensitive to class imbalance. We have also 
tried to balance class sizes wherever possible. This information is now reflected in the methods section 14 
Electrophysiology data analysis, under the subsection titled SVM classifier. 

The updates on the EM steps are complex, so the communication of this would be enhanced by the authors 
highlighting the differences in their EM algorithm in comparison to the Escola et al paper. 
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Rebuttal Figure 10: Example successful viral expression in BLA and mPFC for recording additional mPFC-BLA 
neurons. a, Three example animals showing successful expression of CAV-Cre mixed with eYFP in the BLA (images 
taken at 4x). Insets show closer look of the selected BLA image indicated with white square. b, Example images for 
mPFC for the corresponding animals shown in b. showing expression of DIO-Chrimson-tdTomato in mPFC neurons that 
project to BLA. 

 



The differences in the Expectation-Maximization (EM) algorithm when compared to the Escola paper (Escola 
et al., 2011b) are now reported in the methods section 17 “Decoding of behavior” under the subsection for 
HMM-GLM and added here for convenience: 

The model formulation and EM training algorithm are similar to Escola et al. The primary differences are: 1) the 
input to the transition and state GLMs for the current time point is neural activity from the immediately previous 
time point only and not further back, 2) the GLM link function being a sigmoid/softmax has different gradients 
and dynamics as compared to the Poisson, 3) The outputs are categorical behaviors in our case instead of the 
binned spike counts and 4) we utilize an iterative optimization technique since the second order derivatives in 
our case are highly complex and computationally inefficient to use. 

We also added the following language: Escola et al. first introduced the idea of using a Hidden Markov Model 
(HMM) for modeling the change in the internal state of the organism as transitions of „hidden states‟ and the 
neural spikes as emissions obtained from the hidden states. Escola and colleagues used Poisson GLMs for 
computing probabilities of each transition between hidden states as well as for determining emissions of neural 
spikes (Escola et al., 2011b). This approach provided a mechanism where both the state transition 
probabilities as well as neural spike emission probabilities varied with time. Calhoun and colleagues proposed 
a modification of the HMM-GLM in which both the input and output were behavioral states (Calhoun et al., 
2019b), using a logit GLM for the transition and emission probabilities instead of Poisson GLMs used by 
Escola. In our study, we use a similar model as Calhoun, where the input to the GLM layers is the mPFC 
neural activity and the emissions are the behaviors of the mice. 

The communication behind the figures can be improved by focusing on terminology. It was super hard to track 
at time. Winning/loosing seems to be event locked to the tone. Reward is event locked to port entry (but these 
trials are referred to as tone). ITI is event locked to port entry (but is referred to as ITI). Perhaps something 
simple like competition start (tone), competition end (port entry), and ITI for the blocks within trial. 

We appreciate the reviewer expressing the nomenclature and terminology is confusing. We have added some 
language in the results and figure legends to clarify the terminology. Indeed win and lose trials are aligned to 
the cue/tone onset. On the other hand self and other entry events are aligned to the port entry timepoint. Port 
entries occur either during the tone or during the ITI period, even in the absent of the tone as this is a strategic 
behavior, so we distinguish between tone port entries and ITI port entries. In lines 151-154 we now specify the 
alignment to cue vs port entry: “Neural trajectories during the cue for win or lose trials occupied segregated 
PCA subspaces – even before the cue onset (Fig. 3a; Extended Data Fig. 7c). Similarly, neural trajectories 
aligned to port entries of the self or other (i.e. competitor) were segregated in the PCA subspaces…” 

In the legends for Fig. 3a-b and Extended Data Fig. 7 we have added the following language respectively: 
“Win and lose trials are aligned to the cue onset” 
”Self entry events are aligned to port entries of the subject mouse while other entry events are aligned to the 
competitor‟s port entries” 
“Self entry events are aligned to port entries of the subject mouse while other entry events are aligned to the 
competitor‟s port entries. ITI port entries refer to port entries that occurred outside of the tone period.” 

In general, the authors show adjust their training and testing strategy such that testing is performed using a 
trials from a hold-out with N-1 fold cross validation. 

All of our models have a 10-fold cross-validation such that they are tested on data that was held out from the 
training set. We report this information in the corresponding figure subpanels and legends in Figures 2-3 and 
methods sections 14 and 17. 

In summary: The study by Padilla-Coreano explored the important question of the role of PFC in social 
hierarchy. A primary issue that needs to be addressed is whether the cohort of animals used for 
electrophysiological analysis actually show their primary competitive outcome measure based on rank. This 
may just be an issue of simply reporting experimental details (N, and needing a few more mice). Many 
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suggestions for improving communication/clarity are provided to the authors; nevertheless, it is important to 
clearly state that much of the presented results and undergirding ML analyses are unnecessary to support the 
main theme of the manuscript. My suggestion would be to simplify the manuscript, and to focus the 
presentation of the findings towards the unit encoding of social preference in PFC, and the role of the PFC-LH 
circuit in this behavior. Especially considering the prior discoveries outlined by Zhou et al, projection specific 
findings is the knowledge advance I found most exciting. If these broader contributions (AlphaTracker, 
HiddenStates, MUA modeling, single cell clustering analysis approach) remain in the manuscript, substantial 
revisions to the communication of these findings and the analyses methodology are warranted as noted above 
to enable a clearer evaluation of rigor and robustness. 
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Referee #2 (Remarks to the Author): 

In this study from Padilla-Coreano et al., in the Tye laboratory, the team presents research and computational 
efforts to examine the neurobiological basis for social dominance - a key feature of aggression behavior. They 
examine the role of the media prefrontal cortex (mPFC) because some prior evidence has suggested that in 
mammalian species this structure plays a critical role in determining social rank. They go on to develop a trial- 
based social competition assay, alongside using a custom machine learning approach they developed (Alpha- 
tracker). Using these two former approaches alongside electrophysiological measures (using a newer wireless 
method to better facilitate social interaction), they identify a unique behavioral states (9 in total, they claim), 
which can be decoded from mPFC ensemble activity - predicting social rank and competition winners and 
losers. Furthermore, they reveal that mPFC to LH projections are better predictions of behavior than an 
alternative circuit. Overall, this is a very thorough, elegant, and exciting development for the field of behavioral 
neuroscience, ethnologically relevant social behavior, and computational efforts in the field. It provides a 
potentially new (or perhaps just a bit better) method for identifying critical behavioral states in 
interacting/"socializing" mice , while also methods for decoding unique behavioral and neuronal ensembles in 
tandem within a specific circuit. 

We are gratified that this reviewer appreciates a number of the innovations and features of this study that we 
have efforted to establish. However, we do wish to clarify that this line of investigation is focused on social 
rank, rather than aggression (and in our hands, aggression and dominance do not always correlate). Here, we 
are examining how different ranks within a stable, established hierarchy are representing competitive success 
and both absolute and relative rank. 

However, in spite of this high enthusiasm for the provocative nature of the work, the potential for extensions of 
this work into other domains, behaviors, and neural circuits, there were some concerns. These primarily 
centered around controls and/or additional data analysis that would better substantiate their conclusions; along 
with some stronger rationale provided for particular experiments chosen over others, including the focus on 
mPFC to LH, vs a whole host of other possible PFC-related circuits which could have been examined. Below is 
a list of major concerns (those requiring new analysis, experimental data, or major text discussion/rationale), 
and then minor comments or concerns follow, that are of less consequence, and more suggestive in nature. 

Major: 

1) The biggest control that I see which is missing here, is to show data and the entire processing pipeline 
described (behavior, ensembles, and circuit specificity) in animals that engage in the task alone, and/or with 
the scent of more dominant animals nearby (the later not being as critical, just an interesting experiment). The 
"alone control" is important in particular for the trial-based task, that would allow for cross comparisons of 
activity while engaging in a social dominance bout from the activity and behavior which is independent and is 
reward - related or orthogonal to the social dominance behavior itself. 
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The reviewer makes an excellent point. To address these missing controls, we have now included data from 
several new experiments where animals engage in the reward task alone (Pavlovian approach conditioning). 
We see behavioral differences in the animals performing the task alone vs in social competition. Interestingly, 
our results suggest that the subordinate mice are more sensitive to the competition condition, as they show 
larger changes in latency to pick up reward, velocity and gazing towards the reward port (Rebuttal Figure 11). 
These behavioral metrics provide additional evidence for the social-context dependency of the animal‟s 
behavior during this novel task. 

Next, we explored the differences in mPFC population dynamics in the alone condition vs the social 
competition. We found that subordinates had the largest changes in population dynamics comparing tone 
responses alone vs in competition (Rebuttal Figure 12). These data are now included in figure 3 and 
strengthen our claims that the mPFC population changes we observe relate to relative rank differences during 
the social competition. 
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Rebuttal Figure 11: Behavioral 
differences between alone and 
competition condition. a, Left, while 
performing the reward task alone there was 
no difference in latency to pick up reward 
between dominant (rank 1) and subordinate 
(rank 4) mice across trials (rank 1 n=165, 
rank 4 n=122, Kolmogorov-Smirnov 2 
sample test p=0.46). Right, during the social 
competition relative subordinate animals 
increased the latency to pick up the reward 
(dom trials n=326, sub trials n=358, 
Two- sample Kolmogorov-Smirnov test, dom 
vs sub trials p=0.015; One way RM-ANOVA 
F(1,24)=2.06, p=0.002). b, In a subset of 
videos we corrected identity errors to 
quantify behavioral metrics through the 
session. Gazing to the reward during 
intertrial interval (ITI) periods increased 
during social competition most 
prominently in relative subordinate mice 
(alone trials: dom/rank 1= 27, int/ranks 
2&3=55, sub/rank 4=17; competition: 
relative dom=706 and relative sub=706; 
***p<.001 Wilcoxon rank sum comparison). 
c, Velocity during ITI periods decreased 
during social competition most prominently 
in relative subordinate mice (alone trials: 
dom/rank 1= 27, int/ranks 2&3=55, sub/rank 
4=17; competition: relative dom=706 and 
relative sub=706; 

 



To rule out the possibility that the competitive success decoding was exclusively a result of responses to the 
reward and not related to social competition, we performed a new experiment in which the same neurons were 
recorded during trials alone followed by trials in social competition. To understand how similar or different the 
mPFC population response was to the reward alone vs winning we asked if an SVM could decode between 
these two conditions. Indeed, mPFC population activity could decode alone vs win trials with high accuracy, 
but early and late trials within the same condition (early vs late tones during alone or early vs late win trials) 
were not decodable (Rebuttal Figure 6). These data are now included in figure 3 and strengthen our claims 
that mPFC population dynamics encode competitive success during social competition. 
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Rebuttal Figure 12: Subordinates mPFC population dynamics are most affect by the social competition. a, 
Neural trajectories of mPFC population firing rate by absolute ranks (dom=rank 1; int=ranks 2 & 3; sub=rank 4) when 
performing the reward task alone vs in competition in a lower dimensional common principal component (PC) sub- 
space (include neurons alone: dom=111, int=259, sub=140; competition dom=309, int=359, sub=330). b, Top, 
trajectory lengths (using PCs that captured 90% of variance) during the tone is higher for subordinates only during 
competition trials (2-way ANOVA main effect of rank F(2,38)=30.4, p=1x10-8, task F(1,38)=26.1, p=9x10-6 and interaction 
F(2,38)=70.1, p=1x10-13). Bottom, distances between alone and competition trajectories during the tone increases with 
rank (n reflects all possible combinations of trajectories across iterations;1-way ANOVA main effect of rank 
F(2,187)=536, p=3x10-78). 

 



Next, by comparing the mPFC ensemble dynamics when the mice perform the task alone vs in competition we 
addressed if any ensemble differences were due to baseline differences. For this, we recorded more than 400 
mPFC neurons from 23 mice performing the task alone and compared single cell responses during the reward 
task alone in rank 1 vs rank 4 animals. We did not observe any statistical differences in the number of 
responsive cells nor magnitude to the tone nor port entries (Rebuttal Figure 8). This suggests that the relative 
rank differences that emerge during the social competition in response to winning and port entries are not due 
to baseline differences in how the mice respond to the reward task. These data are now included in the 
manuscript in figure 4 and strengthen our claims that the single cell differences observed are due to relative 
rank differences during the social competition. 
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Rebuttal Figure 6: Decoding winning vs receiving the reward alone. a, Left, the mice were left alone in the 
behavior cage for the first half with the auditory CS followed by introducing a competitor for the second half. 
Right, decoding performance for classifying alone trials vs competition win trials (shuffle performance 
indicated by gray line; mean AUC vs shuffled AUC Wilcoxon rank sum p=1.8x10-4). b, Decoding performance for 
classifying whether a trial came from the first half of the session vs the second half for (left) alone trials and 
(right) competition trials. 
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Rebuttal Figure 8: mPFC neurons do not show social rank differences when the mouse is performing the reward 
task alone. a, Number of responsive cells and response magnitude to tone does not differ across absolute dom (rank 1) vs 
sub (rank 4) mice (dom exc=8 dom inh=8 sub exc= 8 sub inh=4; Fisher‟s exact test, total responsive per group p=0.16; 
Wilcoxon rank sum for firing rate across groups: exc p=0.87, inh p=1.0) b, Number of responsive cells and response 
magnitude to port entries during tone does not differ across dom (rank 1) vs sub (rank 4) mice (dom exc=5 dom inh=25 sub 
exc=9 sub inh=16; Fisher‟s exact test, total responsive per group p=0.09; Wilcoxon rank sum for firing rate across groups: 
exc p=0.23, inh p=0.62). c, Number of responsive cells and response magnitude to port entries during ITI does not differ 
across dom (rank 1) vs sub (rank 4) mice (dom exc=10, dom inh=23 sub exc=9 sub inh=49; Fisher‟s exact test, total 
responsive per group p=0.06; Wilcoxon rank sum for firing rate across groups: exc p=0.84, inh p=0.17). 

 



Finally, we have also added new phototagging data from mice performing the reward task alone. In a subset of 
animals we phototagged mPFC-LH or mPFC-BLA projector neurons after mice performed the reward task 
alone. We see that none of the mPFC-LH neurons significantly responded to the reward-signaling tone when 
mice are alone while mPFC-BLA neurons were highly responsive to the reward-signaling tone in the alone 
condition. On the other hand, during competition mPFC-BLA neurons were less responsive to the tone during 
win trials and mPFC-LH neurons firing rate was significantly higher that mPFC-BLA firing (Rebuttal Figure 9). 

Altogether these new experiments and analyses control for the reward processes that do not relate to social 
competition and strengthen the claims of our paper. 

1a) This is a sub-point of question 1, which can be more tightly controlled in the analysis, because the alone 
mouse can also account for starting positions and general posture of the animals in that regard. (which relates 
a bit to the point 2). The authors might just use their algorithms to look at other behaviors that would perhaps 
provide some clues to positioning (some ideas, approach, avoidance, orientation relative to mouse vs target 
reward, etc). 

As suggested by the reviewer, we have quantified position-associated behaviors using the AlphaTracker 
output. Doing so was laborious as it necessitated correcting social identity errors which albeit are very low 
(<1% of frames) require close and careful correction. We indeed observe several see rank related differences, 
with relative subordinates having 
competitors (Rebuttal Figure 13). 

lower velocities and gazing the reward port more than the dominant 

2) The rationale for the tube-test isn't well defined as currently presented. Is social dominance encoded at the 
neuronal level or is it just dictated by which mouse is bigger in the tube, and who's stronger? I know it is well 
established, but since it is used a priori here, it is a more germane to the conclusions drawn. Conceptually both 
make sense, but the tube model of identification in this case leaves one wondering if the data are preselected 
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Rebuttal Figure 13: Behavioral metrics during the social competition. Average velocity, time gazing to the port, 
time gazing to the other (competitor), time avoiding competitor (as defined by distance increasing and angles 
between mice being higher than 120 degrees) and time approaching competitor as defined by distance decreasing 
and angles between mice being lower than 60 degrees). Wilcoxon rank sum test ***p<.001, *p<0.05 n=359 trials. 

 



and therefore biased in some way because of it. Can they shuffle the data in a way that accounts for 
differences in rank that the tube test doesn't account for? There are multiple social defeat behaviors and 
postures that can be easily quantified in social aggression and dominance interactions. Why were none of 
those examined here? They are very granular in nature and would provide rich confirmation and validation in 
their behavior tracker machine learning algorithms. 

We now provide shuffled controls for our decoder models for competitive success and relative rank shown in 
Fig. 3i (also shown in Rebuttal Figure 14). In addition, in Extended Data Fig. 7h-k, to control for social 
identity we separated our data into two groups and quantified the differences in mPFC population dynamics 
and found that the trajectory 
(Rebuttal Figure 15). 

lengths, which were longer for subordinates, did not differ across groups 

However, social defeat models are used for inducing depressive like behavior in C57 mice (Golden et al., 

Rebuttal Figure 15: mPFC population dynamics are predictive of relative rank in intermediate mice. a, Neural 
trajectory lengths (using principal components that captured 90% of variance) for win (left) and lose trials (right) for 
intermediate mice (ranks 2&3) are higher for relative subordinates (n indicated on plots; win 2-way RM-ANOVA main 
effects of relative rank F(1,14)=165, p=2x10-6; lose 2-way RM-ANOVA effect of relative rank F(1,14)=262, p=6x10-7). b, 
SVM performance is higher than chance for decoding relative rank, specifically for intermediate mice (area under the29 
receiving operating curve: AUC, gray indicates performance when shuffling data; mean AUC vs shuffled AUC 
Wilcoxon rank sum: competitive success p=1.8x10-4 and relative rank for intermediates p=1.8x10-4). 

 

Rebuttal Figure 14: SVM performance is higher than chance for decoding (a) competitive success and (b) relative 
rank for all mice and specifically for (c) intermediate mice (area under the receiving operating curve: AUC, gray 
indicates performance when shuffling data; mean AUC vs shuffled AUC Wilcoxon rank sum: competitive success 
p=1.8x10-4, relative rank all mice p=1.8x10-4 and relative rank for intermediates p=1.8x10-4). 
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2011; Challis et al., 2013) so they are not a good alternative for what we want to study, which is the neural 
representation of stable, established ranks wherein cagemates are performing more affiliative behaviors than 
aggressive behaviors. We are not presently investigating social rank learning/establishment, but aim to do so 
in future studies. Our goal is to study the neural dynamics underlying social ranks of naturally forming 
hierarchies in groups living together. In C57 mice the tube test has been validated to reflect social dominance 
of co-housed mice (Wang et al., 2011). Other rodents, such as CD1 mice or Syrian Hamsters, are more 
aggressive at baseline and social aggression serves to quantify social dominance (CD1 mice: So et al., 2015; 
Williamson et al., 2016) (Syrian hamsters: Morrison et al., 2011, 2014). 

3) The authors may already have these data, but as presented their data sets are binarized into subordinates 
and dominants. Do they see any correlations or decoding properties in mice that are ranked in the middle of a 
cages social hierarchy? (If a group of 5 has 1 dominant and 4 submissive, which one is the subordinate in their 
analysis, and would there be differences in accuracy of the decoder based on that social rank within the group 
- that would be an exciting finding, and it would lend additional biological credence to their predictive 
algorithms). 

We thank the reviewer for this suggestion. We have now included several analyses that show that the neural 
dynamics we report reflect relative social rank, as we see changes in intermediate animals when they become 
relative subordinates vs dominants. First, when only analyzing the mPFC neural trajectories for intermediate 
mice, we see that when the mice are relative subordinates the trajectories are longer (Rebuttal Figure 15a), 
consistent with our previous findings in all mice. Furthermore, an SVM decoder predicted relative rank in 
intermediate animals with high accuracy (Rebuttal Figure 15b). This data is now included in Figure 3 and we 
agree with the reviewer that it is exciting and strengthens our findings. 

In addition, we now report the single cell responses to task events (tone onset for win or lose trials; port entries 
of self vs other) for intermediate animals in Extended Data Fig. 9. In intermediates, we also see that more 
neurons in relative dominant mice encode reward-seeking behavior (Rebuttal Figure 16), consistent with the 
conclusions from our main findings reported in Figure 4. 
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4) Did the authors try to present any reward omissions in the task? Does it impact the neural coding and 
behavior? It might be worth controlling for especially if position and posturing are important. 

We did not present any reward omissions during this task, as each animal is already only collecting ~50% of 
the rewards with a Fixed Ratio 1 Reinforcement Schedule, and we wanted to prioritize examination of 
motivation as modulated by rank, rather than reinforcement probability. For example, how would a recent 
reward omission following an effortful win impact the decision to actively compete (as opposed to passively 
take turns), given its non-stationary impact on cost/benefit ratio? While these questions are interesting future 
directions, this study first sought to reveal the neural representations of social rank and competitive success, 
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Rebuttal Figure 16: Single cell responses to task events 
during social competition in intermediates change with 
relative social rank. Total responsive cells and response 
magnitude to task-relevant event during social competition for 
intermediate rank mice (ranks 2 and 3) by relative rank (win 
trials: dom exc=4, dom inh=3, sub exc=5, sub inh=2, Fisher‟s 
exact test p=0.76, Wilcoxon rank sum exc p=0.11, inh p=0.80; 
lose trials: dom exc=1 dom inh=3, sub exc=3, sub inh=0, 
Fisher‟s exact test p=1, Wilcoxon rank sum exc p=1; self 
entries tone: dom exc=17, dom inh=30, sub exc=7, sub inh=14, 
Fisher‟s exact test p=0.01, Wilcoxon rank sum exc p=0.89, inh 
p=0.57; other entries tone: dom exc=10, dom inh 23, sub 
exc=3, sub inh=10, Fisher‟s exact test p=0.01, Wilcoxon rank 
sum exc p=0.46, inh p=0.79; self entries ITI dom exc=15, dom 
inh=42, sub exc=11, sub inh=21, Fisher‟s exact test p=0.06, 
Wilcoxon rank sum exc p=0.11, inh p=0.44; other entries ITI 
dom exc=9, dom inh=26, sub exc=1, sub inh=16, Fisher‟s exact 
test p=0.07, Wilcoxon rank sum exc p=0.20, inh p=0.91). 

 



and future investigations may broaden this task to probe the neural representations of reward contingency and 
its impact on competitive success. 

However, to control for the effects of position in neural activity we took several approaches. We verified that 
the distance to the reward port did not differ by relative rank in our main analysis window (-5 to 5 sec 
surrounding cue onset; Rebuttal Figure 17a). We quantified how correlated mPFC single units are with 
distance to the reward port across relative ranks and see no difference (Rebuttal Figure 17b). Finally, we also 
analyzed our data by dividing per location: trials in which mice are close to the reward port vs far from the 
reward port. In both cases we see that neural trajectories are longer for relative subordinates (Rebuttal Figure 
17c), demonstrating that the mPFC population dynamics we report are not driven by position differences in the 
reward chamber. 

5) The paper ends with an experiment which shows that the PFC to LH circuit is most critical for the encoding 
the dominance behavior and predicting it therein. Yet, it wasn't clear to me from the data presented and/or the 
discussion why one would predict this circuit in the first place, when many other circuits could be better 
candidates, particularly within the context of social interaction/dominance. Do the photo-stimulation parameters 
used for the circuit really align with the decoder predictions? How is it so selective? Panel K of figure 5 doesn't 
appear to show a difference between the control eYFP and the CHR2 group? Is this just underpowered or due 
to other pathways or circuits being more necessary and sufficient? 

We thank the reviewer for pointing out that our selection of PFC-LH was not clear. We have now added the 
following information to the manuscript which provides are rationale of why we selected to investigate this 
pathway: 

Lines 223-233 “Several mPFC subcortical pathways have been implicated in social behaviors(Ko, 
2017), including the mPFC projection to the lateral hypothalamus (LH) in social aggression(Biro et al., 2018). 
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Rebuttal Figure 17: Position related controls. a, Distance to reward port differed by trial-type but not by rank 
(trials: dom win=290, dom lose=349, sub win=349, sub lose=290; 2-way ANOVA, main effect of trial-type 
F(1,1274)=353, p=8.8x10-70, rank p=0.098 and interaction p=0.066). b, Distribution of the correlation coefficients for 
firing rate and distance to port for the population of mPFC single units did not differ by rank (dom=321, sub=479; 
KS test, p=0.48). c, To determine if distance to reward port affected the population dynamics during win and lose 
trials a subset of data with matched video conditions was split by distance to reward port. Neural trajectory lengths 
were higher for relative subordinates during win trials in which mice were close or far to the reward port during tone 
onset (dom n=19 sessions, sub n=18 sessions; win close to port: 2-way RM-ANOVA main effect of rank F(1,35)=738, 
p=5x10-21; win far from port: 2-way RM-ANOVA main effect of rank F(1,35)=588, p=3x10-20). d, Neural trajectory 
lengths were higher for relative subordinates during lose trials in which mice were close or far from reward port 
during tone onset (lose close to port: 2-way RM-ANOVA main effect of rank F(1,35)=588, p=3x10-20; lose far from 
port: 2-way RM-ANOVA main effect of rank F(1,35)=46.7, p=5x10-11). 

 



The LH is comprised of a diversity of cell types and has been shown to drive hypersocial behavior and 
social investigation(Nieh et al., 2016), modulate social defensive behaviors(Rangel et al., 2016; Li et al., 2018), 
and promote reward/aversion(Aston-Jones et al., 2009; Jennings et al., 2015; Nieh et al., 2015, 2016). Further, 
it has been shown to play a critical role that in energy balance homeostasis(Burton et al., 1976) that suggests it 
is capable of performing the computations of a homeostatic control center(Cannon, 1929). Based on the 
conceptual framework for social homeostasis, after social information is detected and evaluated in a rank- 
dependent manner, it would be sent to a control center for comparison to a social homeostatic set 
point(Matthews and Tye, 2019; Lee et al., 2021). Given the multiplicity of roles for the LH in modulating 
homeostatic functions as well as both reward and social behaviors, we hypothesized that the LH would be a 
prime target to integrate social rank information from the mPFC with other homeostatic needs of the animal, 
during social competition.” 

In addition to these motivations from the literature of the role of LH and this prefrontal-LH pathway, we also see 
that mPFC-LH neurons are more responsive to winning trials compared to mPFC-BLA neurons, but this is not 
the case when mice are alone in the reward task (Rebuttal Figure 9). This data is now included in the 
manuscript in Figure 5. 

Finally, we report the statistics for Fig. 5k (now Fig. 5i) in the legends showing that mPFC-LH cell stimulation 
significantly increased the number of trials won (ChR2 n=9, eYFP n=6; 2-way RM ANOVA interaction of virus 
and light F(1, 14)=5.82, p=0.03; Bonferroni corrected t-test ChR2 p=0.01). 

6) The authors use the AlphaTracker approach throughout the manuscript and make claims that this approach 
is superior to other methods. It very well may be, but as presented the authors should either tone down that 
claim, or substantiate it more with more stringent comparisons with benchmarked alternatives. Considering one 
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Rebuttal Figure 9: mPFC-LH neurons are more responsive to the wnning trials compared to mPFC-BLA 
neurons during reward competition. a, Right, firing rate of mPFC-LH is higher than mPFC-BLA during the 
reward delivery period in win trials in the competition (mPFC-BLA n=10 from 3 mice, mPFC-LH n=43 from 3 
mice, Wilcoxon rank sum p=0.045). Left, percent cells responding to tone during win trials in the social 
competition (mPFC-LH n= 3/43, mPFC-BLA n=1/10 and non-phototagged n=57/620). b, Left, firing rate for 
projector populations during tones while animals performed the reward task alone (alone vs comp mean zscore 
during tone; mPFC-LH p= 0.043, mPFC-BLA p=0.049). Right, percent cells responding to the reward predictive 
tone when animal is alone (LH=0/8 from 3 mice, BLA 4/5 from 3 mice, non phototagged=54/470). 

 



of the novelty selling points of the paper is the computational technology it brings to the field. More evidence, 
data they may already have, and/or discussion for why this is a superior algorithm to other methods would help 
solidify the novelty of the method and impact. 

We would like to clarify that we don‟t make claims that AlphaTracker is better than other methods. Here is 
what we say about AlphaTracker in the manuscript: 

Abstract: “With the development of a deep learning computer vision tool (AlphaTracker) and wireless 
electrophysiology recording devices, we have established a novel platform to facilitate quantitative examination 
of how the brain gives rise to social behaviors.” 

Results: “The development and application of AlphaTracker represents a new platform for the emerging field of 
computational neuroethology of social behaviors (Nilsson et al., 2020; Pereira et al., 2020)” 

Given that all tools have different architectures and require different training times they are difficult to compare. 
Instead we make our comparisons to human error levels calculated in the same datasets we are evaluating. 
We have now added to the manuscript in Extended Data Fig. 2 AlphaTracker‟s performance when tracking 4 
mice (Rebuttal Figure 2). 
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Rebuttal Figure 2: AlphaTracker performance for multiple animal tracking. Left, the root mean squared error 
(RMSE) in pixels for two animal tracking. Right, the RMSE in pixels for four animal tracking. In both cases identity 
tracking is more than 99% correct. Average RMSE error between two humans is indicated with a dashed line. 

 



We have also compared AlphaTracker to other tools that have been recently released as preprints or 
open source code, and see that when tracking two unmarked mice. Despite having a lower median, 
AlphaTracker has a similar error rate to the other tools, and there was no detectable difference (Rebuttal 
Figure 18). Given the vast differences in network architecture and that these tools are not yet peer reviewed, 
we feel uncomfortable including these comparisons in the manuscript and instead believe that the correct 
comparison is human tracking. 
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Rebuttal Figure 18: Error rate of tracking 2 mice across tools. Root mean square of the error (RMSE) is 
reported by body part for tracking 2 mice in the same frames across tools. Dash line indicates human level error, 
red lines in the box plot indicate median, and outliers are plotted. While AlphaTracker has a lower median, it has 
more outliers than DeepLabCut (DLC) and SLEAP. There was no difference in RMSE across tools. 56 frames were 
subsampled from a video and tested. AT produced all body points for 56/56, DLC 50/56 and SLEAP 48/56. For 
each tool, only frames with all tracked points were included in the analysis (2way ANOVA; no effect of body part 
F(3,604) =1.84 p=0.14; no effect of tool F(2,604) =0.68 p=0.51). 

 

 



Minor- 
Figure 1 A. The cartoons are somewhat helpful, but it would almost be better presented if the authors took 
actual photos of the mice in these positions. Presumably they used a high frame rate camera to capture the 
behavior for Alphatracker, so they should be available. It would be more powerful to see the behavior live in 
snap shots. 

This is more stylistics, but just a suggestion. Most of us aren't used to reading / or understanding the plots 
presented in Fig 3 panel a or c. The manuscript might benefit in this case from a cartoon of what these plots 
might look like (mock results) in various predictions followed by the plots presented here with the real data. 

Figure 3 panel f target plots are very hard to see. They should be increased in size, and/or de-pixelated 
(smoothened) to make a better case. 

Figure 4. The data in A and B are nice, and thorough, but difficult to see unless you are at 400X, it might make 
sense to zoom in on a few and simplify the figure and put the rest in supplemental. No one wants to part with 
all their data on main figures, but it'll help the reader digest the work in this dense paper. 

We appreciate all these suggestions and have made the following changes based on them: 
a) Now we have included example frames of the behavior in Extended Data Fig. 1. In addition, we 

include example video clips in supplementary video 3. 
We have superimposed a diagram of the PC space summary findings on the neural trajectory plots to 
facilitate the visual understanding of the data. 
We have moved panel Fig. 3f to Extended Data Fig. 7 and increased it in size 3x. 
We have simplified figure 4 which has allowed us to make the data larger. 

b) 

c) 
d) 
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Referee #3 (Remarks to the Author): 

This is a very impressive tour-de-force study involving diverse expertise from multiple laboratories combining 
neurobiological, behavioral, and computational approaches, as well as a novel behavioral tracking 
methodology in order to establish a causal function of the mPFC-to-LH pathways in social rank and related 
dominance behaviors. The uses of both the AlphaTracker as well as the HMM-GLM using neural activity for 
detecting unique behavioral and neural states are innovative for linking across complex social behavioral 
patterns and neural activity. The results of this study demonstrate the role of the mPFC in processing social 
rank and provide new knowledge on the mPFC-to-LH pathways in generating dominance behaviors. The 
authors also have used a wide array of behavioral assays in mice to better examine the selectivity of the 
findings. Overall, this new knowledge provides an important causal “bridge” between social rank representation 
in the mPFC and behavioral regulation by the LH. The use of the BLA as a control projection area (mPFC-- 
>BLA) was very helpful in supporting the specificity of the mPFC-->LH pathways. Additionally, these findings 
involving the LH nicely support the principle behind social homeostasis previously proposed by the authors, 
which I find it to be very exciting. For these reasons summarized above, I am very enthusiastic about this work. 

The reported findings and the ways that the authors have elegantly applied technical innovations should be 
highly interesting to both basic sciences and social sciences fields interested in social behaviors broadly, as 
well as clinical fields interested in regulating aggressive behaviors in social settings. All the statistical and data 
analytic approaches are sound, with appropriate displays of error bars and other useful information in the 
Extended Data for better understanding the data. 

I have the following specific comments for the authors to consider. 

1) The authors of the paper have developed a novel paradigm, combining wireless recording, automated 
tracking of behavior through computer vision, and a competitive reward gathering task aimed at investigating 
social ranks and dominance behavior. However, from the data presented, it requires more clarification with 
respect to how much of this task is measuring dominance and competitive behaviors on *every trial. On line 
76, the authors state that “Importantly, differences in winning were not driven by overall location in the arena or 
distance to port prior to tone onset” and reference Extended Data Fig. 1. However, data shown in Extended 
Data Fig. 1B and in Figure 3F/3G seem to suggest that the distance from the port during the baseline period is 
clearly predictive of which animal wins the trial, i.e., in Extended Data Fig. 1B, Figure 3F and 3G it is clear that 
even at –5 seconds before the cue, the winning animals (regardless of “dom win” and “sub win”) are both 
closer to the port. The 2-way ANOVA in the legend of Extended Data Fig. 1B found a main effect of trial type 
(presumably dominant win/subordinate lose vs. dominant lose/subordinate win), and no effect of rank 
(p=0.071) or interaction. It is unclear from the text what time period of the fifteen seconds shown this ANOVA 
is examining. 

We thank the reviewer for finding this mistake and apologize about this error. We have corrected our statement 
(in lines 83-84 of the manuscript) to say that differences in relative rank were not driven by differences in 
overall location and distance to port. Indeed, as the reviewer points out there is a very large effect of trial type 
(win vs lose) in distance to port. 

In the legend of Extended Data Fig. 1f (corresponding to Extended Data Fig. 1b in the previous version of the 
manuscript) we have now clarified the time period used for the statistics. For thoroughness, we now 

 

 



Rebuttal Figure 19: Distance to reward port differed by trial type 
but not by relative rank (trials n: dom win=68, dom lose=24, sub 
win=24, sub lose=68 from 12 dyads; early baseline -30 to -20 s 
prior to cue there is no effect of trial nor relative rank; 2-way 
ANOVA using the mean distance from -5 s to cue onset: main 
effect of trial type F(1,180)=44.4, p=3x10-10, rank p=0.94, 
interaction p=0.09; 2-way ANOVA using the mean distance 
from 
5 seconds prior to tone until 10 seconds post tone: main effect of 3  
trial type F(1,180)=68, p=2.5x10-14, rank p=0.071, interaction 
p=0 79)  Gray line indicates contact range for the reward port  

report the statistics for 3 different time periods and in all cases, there is no effect of relative rank. For early in 
the baseline period (from 30 sec to 20 sec prior to cue) there was no difference between trial type nor rank, 
while closer to the cue onset (from -5 to 0) and during tone time there was an effect of trial type (Rebuttal 
Figure 19). 

If distance from the port prior to the cue onset is strongly predictive of trial outcome, then not *all trials may be 
actually “competitive” or “measuring dominance”. An alternative explanation would be that during some trials 
the nearest mouse to the port can more easily gather the reward, and this trial is either weakly or not contested 
by the other mouse (could be due to dominance or motivation level, for example). If this is the case, then it 
would change the interpretation of mPFC population dynamics that track “competitive success”. To address 
this, we would suggest the authors do one of the following: 

a) Specifically examine if the winner of each trial and the neural activity predictive of winning were not simply 
determined by distance from the port during the baseline periods. 

b) Exclude any trials from the analyses that do not include pushing, resistance, or displacement behaviors to 
provide additional neural insights when specifically examining only those trials with clearly observable 
competition (pushing, resistance, displacement). 

c) Examine if prior behavioral dynamics and underlying neural activity between the mice prior to the cue 
determined their relative positioning during the baseline period (i.e., the competitive behaviors were occurring 
in advance of the cue presentation) to better understand what behavioral dynamics and neural processes 
occur that led to the better positioning to begin with that ultimately resulted in winning. 

For future directions (note: I am definitely not suggesting the authors to collect more data), I would recommend 
including a condition where pairs of mice in an experimental chamber with multiple reward ports, where the 
location of the upcoming cue cannot be predicted and where presumably the positioning during baseline 
between the dominant and subordinate would average out to being equivalent. 
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We thank the reviewer for these thoughtful suggestions. Indeed, understanding the contribution of behavioral 
differences to the decoding accuracy is important. Considering that earlier periods prior to the tone did not 
have a difference in distance to port for winning vs losing trials (Rebuttal Figure 19), we decided to modify our 
decoding analyses to include a much larger time window from -30 sec to 30 sec post cue onset. We see that 
decoding of competitive success is highly stable, including in times -30 to -20 and 20 to 30 s post cue onset 
(Rebuttal Figure 14). On the other hand, if we use distance to reward port to predict competitive success the 
decoder can only predict above chance for periods closer to the tone onset (Rebuttal Figure 20). Despite 
distance to reward port being predictive of competitive success, this is not as stable and, importantly, distance 
to reward port explains a small portion of the variance of mPFC firing rate, with most mPFC cells having and 
very low correlation coefficient between firing rate and distance to reward port (mean correlation coefficient 
across cells -0.004; Rebuttal Figure 21). Furthermore, when removing mPFC reward place cells (cells with 
significant correlation between distance to reward and firing rate) we still 
dynamics of subordinates having longer trajectories (Rebuttal Figure 22). 

observed the same population 
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Rebuttal Figure 21: Distribution of the correlation 
coefficients for mPFC firing rate and distance to 
port did not differ by relative rank (number of 
neurons: dom=321, sub=479; KS test, p=0.48). 

 

Rebuttal Figure 20: Decoding competitive success 
using distance from reward port. Performance of 
decoder when predicting win/lose from distance to 
reward port degrades as time to cue increases. 

 

Rebuttal Figure 14: SVM performance is higher than chance for decoding (a) competitive success and (b) relative 
rank for all mice and specifically for (c) intermediate mice (area under the receiving operating curve: AUC, gray 
indicates performance when shuffling data; mean AUC vs shuffled AUC Wilcoxon rank sum: competitive success 
p=1.8x10-4, relative rank all mice p=1.8x10-4 and relative rank for intermediates p=1.8x10-4). 

 



2) Similarly, further clarifications of the behavior would be 
useful in interpreting some of the data. For example, on line 
74 the authors state that “Dominant animals, as defined by 
the tube test, obtained more rewards, spent more time at the 
reward port, and were more successful at displacing the 
competitor from the port (Fig. 1c).” This seems to be in 
contrast to line 99 of the manuscript which states “When 
recording during the reward competition task, we did not 
detect a statistically significant difference in the number of 
rewards earned by dominant and subordinate mice, 

 us to make comparisons about dominance behavior 
competitive success without being confounded by 

volume of reward consumption.” Does this indicate 

and 
the 

two 
separate behavioral datasets were used, one during neural 
recording and one without neural recording? Related: please 
add the test and the number of observations used for “we 
did not detect a statistically significant difference”. 

We apologize for the lack of clarity in our previous version of 
the manuscript. Indeed, there were separate behavioral 
cohorts for the no recording vs recording experiments. Not 
surprisingly, when wearing 6 g headstages (25% body 
weight for many of the mice) there were changes in the 
behavior of the mice (Rebuttal Figure 3). We have now 
included the sample size for the animals used for mPFC 
recordings and behavioral dataset descriptions in the 
methods section 6 “Reward competition recording 
experiments” and in the relevant figure legends. For Figure 
2 we used 13 mice with similar video settings (resolution and camera angle) to allow for the automated 
behavioral analysis. For Figure 3 we used 20 mice for the reward competition recordings, 24 mice for the 
alone recordings and 15 mice for the experiment in which mice received alone and competition trials in the 
same recording session. For Figure 4 we used 10 mice for the alone recordings (5 rank 1 and 5 rank 4) and 
20 mice for the reward competition recordings. For Figure 5 we recorded 20 mice of which 
injections for mPFC-LH phototagging and 8 had viral injections for mPFC-BLA phototagging. 

9 had viral 
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Rebuttal Figure 22: To determine if reward “place 
cells” contributed to neural trajectory rank 
differences we calculated the neural trajectory 
lengths without cells that were correlated to 
distance to port in a subset of data with equivalent 
video settings (see methods). Left, neural 
trajectories for self entry during the tone are 
highest for relative subordinates without the 
distance correlated cells (dom n=19 sessions, sub 
n=18 sessions; 2-way RM-ANOVA main effect of 
rank F(1,35)=94.4, p=1x10-13). Right, neural 
trajectories are highest for relative subordinates 
without the distance correlated cells (excluding 
correlated cells: 2-way RM-ANOVA main effect of 
rank F(1,35)=100, p=1x10-13). 

 

 



3) In all population level neural analyses, the authors have pooled together activity from multiple subjects and 
use the total number of recorded units as the sample size. This approach is not necessarily unorthodox in the 
field of behavioral neurophysiology where collection of spiking activity during interactive social behaviors is 
extremely challenging and large pseudo-populations of units are sometimes requisite for advanced analyses 
such as hidden markov models. In some areas, the authors made specific efforts to address the potential 
shortcomings of pooling together activity from multiple subjects. For example, in (Extended Data Fig. 7k-n) the 
pooled data was split between two different randomly selected subsets over 50 bootstrapping iteration, or in 
Figure 3B/3D where the authors employed the “leave one out” method excluding neurons from a single animal 
in each iteration to control for an individual mouse from strongly biasing the results. In other analyses, 
however, there is no control for potential between-subject variations. Specifically, if it is not possible to 
construct a HMM-GLM for each subject, or to split individual mPFC cells by rank-dependent responses for 
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Rebuttal Figure 3: Reward competition behavior summary for recording vs no recording cohorts. a, Number of 
rewards, % port occupation during tone time, % pushing success during tone and total % pushing success, and time 
displaced from reward port across relative dominant and subordinate mice. Across cohorts % pushing success during 
tone and total % pushing success are higher for relative dominant mice. b, Rewards won as a function of bodyweight 
difference, % bodyweight and % competitions won by absolute rank, distribution of latency to pick up reward across 
trials and distribution of velocity across trials. Across cohorts rank 1 mice win the majority of competitions and relative 
dominant mice have higher velocities during the social competition. *p<.05,**p<.01,***p<.001 

 



each subject, then a good alternative would be to also show inter-subject correlation coefficient that assesses 
the homogeneity (or potential / interesting differences) of neural responses between mice. 

We have now validated that we have the same results with the GLM-HMM when using a leave-one-animal-out 
cross-validation method vs the originally used 10-fold CV (Rebuttal Figure 23a). In addition, to test the 
robustness of our HMM-GLM model we trained and tested on the relative dominant vs subordinate dataset and 
saw equivalent performances when trained on one dataset and tested in the other (Rebuttal Figure 23b). We 
believe that altogether these additional validations strengthen our manuscript and have now included these 
findings in Extended Data Fig. 5. 

4) In the comparison between PCA vector length, it is stated that subordinates had longer neural trajectories, 
speculated to be due to either higher or faster firing rate changes in the mPFC population activity. This result is 
quite intriguing, and although this is later addressed tangentially (Line 187; “subordinates had phasic 
responses of greater amplitude in response to events…”), the interpretation of this result would greatly improve 
if that question could be examined quantitatively with the existing data. 

We thank the reviewer for this great suggestion! We quantified single cell mPFC data to determine if either 
higher (larger amplitude) or faster firing rate changes underlie the group differences observed in trajectory 
lengths. To test whether the longer lengths are due to larger amplitude changes, we computed the variance of 
each neuron after mean-centering the trial-averaged activity. Subtracting the mean makes the variance a good 
approximation of the amplitude. To test whether the longer lengths are due to faster firing rate changes, we 
computed the mean rate of change of the z-scores of the firing rates of each neuron. We found that the longer 
trajectory lengths reflect higher firing rate changes as the variance was much higher for relative subordinates 
vs dominants (Rebuttal Figure 24). We have now included these analyses in Fig. 3e. These additional 
findings point to a biological explanation for the trajectory length difference, and also better connect the 
population dynamics observed with the individual cell analyses reported in Figure 4. 
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Rebuttal Figure 23: Additional controls for HMM-GLM decoding of behavior. a, Left, model selection 
for HMM-GLM state number using the leave one out method (LOO) results in a 6 states model being optimal. 
Right, HMM-GLM 6 states model performance predicts behavioral label regardless of training method utilized 
(AUC n=9, one per each behavior label; Sign test of model performance vs chance p=0.004 for both methods) 
b, HMM-GLM 6 states model predicted behavioral label regardless of which dataset was used for training or 
testing (n=9 behavior labels using 482 trials for dom vs 478 trials for sub; Sign test performance vs 0.5 
(chance) p=0.004 for all tests). 

 



5) In Figure 5J, the difference between cumulative rewards obtained by light OFF session vs light ON session 
appears to only emerges late in the experiment (past 15 trials). This is interesting. Do the authors have any 
interpretation for this time course? For example, the non-immediate effect of light delivery may suggest that the 
modulation of social dominance by the cortico-hypothalamic circuit is mediated through slower mechanisms, 
such as learning. 

We agree that this delayed effect is interesting, and we believe that it may reflect that there is plasticity in this 
pathway with the repeated stimulation that leads to the effect, or that the behavioral effect is mediated by slow 
acting neuropeptides released by LH subpopulations, such as orexin. In addition, as the reviewer mentioned, 
the late emergence could indicate learning being necessary for the behavioral effect to emerge. All of these 
possibilities are not mutually exclusive and could co-exist. We added the following line in the results to 
comment on this slow effect in lines 260-262: “Interestingly, the increases in rewards obtained were most 
notable towards the end of the session suggesting that experience and stimulation-dependent plasticity and/or 
neuromodulation in the mPFC-LH pathway may mediate this change in behavior.” 

6) Different analyses required using various sample sizes for good reasons. For example, both Figure 3B and 
3D use a sample size of thirteen (resulting from „leave one out‟ method). This is only explained in the 
supplemental text, and the accompanying figures (3A and 3C) use a different sample size (507 and 490 
neurons). Some other figures lack descriptions of sample size (e.g., Extended Data Fig. 7). Please add N 
information and also add how many total mice were used in these studies and which mice (if any) overlapped 
between different aspects of the manuscript (which can even be in the method section). 

We apologize for the complexity, the missing information and confusion. Since we have different methods of 
analysis the sample size varies per analysis. We have now indicated the number of mice utilized for recordings 
in Figures 2-5 legends and in the methods. For Figure 2 we used 13 mice with similar video settings 
(resolution and camera angle) to allow for the automated behavioral analysis. For Figure 3 we used 20 mice 
for the reward competition recordings, 24 mice for the alone recordings and 15 mice for the experiment in 
which mice received alone and competition trials in the same recording session.   For Figure 4 we used 10 
mice for the alone recordings (5 rank 1 and 5 rank 4) and 20 mice for the reward competition recordings. For 
Figure 5 we recorded 20 mice of which 9 had viral injections for mPFC-LH phototagging and 8 had viral 
injections for mPFC-BLA phototagging. In the methods section 6 “Reward competition and “alone” recording 
experiments” we indicate the overlap as follows: 
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Rebuttal Figure 24: Firing rate variance is higher for relative subordinates in both win and lose trials, while rate of 
change is higher for relative dominants only in win trials (number of neurons indicated in plots, inset plot has 
average across groups; win trials rate of change: Kolmogorov-Smirnov (KS) test p=0.009, Wilcoxon rank sum 
p=0.01; win trials variance: KS test p=0.01, Wilcoxon rank sum p=0.19; lose trials rate of change: KS test p=0.40, 
Wilcoxon rank sum p=0.19; lose trials variance KS test p=5x10-7 , Wilcoxon rank sum p=2x10-9). 

 



For the mPFC recordings during the reward competition 24 new mice were implanted with electrodes. Out of 
those 24 mice only 20 mice had cells but the remaining 4 were still used for behavioral purposes as 
competitors. Additional animals were implanted (7 mice) and together with a subset of the mice used for 
competition (17 mice), had recording sessions after reaching training criteria while performing the task alone 
before ever having a social competition session (24 mice in total). Finally, 12 out of the 20 mice used for 
competition recording we performed an additional experiment consisting in alone trials followed by competition 
trials (Fig. 3l) in the same recording session. For those recording sessions, the mouse started the reward task 
alone and the experimenter opened the chamber and added a competitor midway through the session. For all 
experiments, several times recording sessions were excluded because of battery failures. Competition 
sessions during recording experiments consistent of 30 trials to maximize the amount of data obtained, both 
mice always wore loggers to match conditions across competitors. However, in 6 mice we utilized first 
generation loggers that had shorter battery life and therefore sessions for those animals consisted in 20 trials. 
Electrode-implanted mice were trained to wear a weight matched dummy headstage (mimicking the wireless 
logger weight) during their individual reward training. Individual reward training continued until mice reached 
the mean 5 sec latency criteria. 

We have also added the following 
experiments. 

venn diagram in our methods to depict the  overlap of mice across 

7) In several figures (Figure 1G, Extended Data Fig. 3A and 3B) output from UMAP (Uniform Manifold 
Approximation and Projection) clustering is presented without any explanation in the main, or supplemental, 
text. Although this visualization is informative and appropriate, this technique is still relatively novel, and some 
readers may not be able to interpret the output (i.e., non-labelled axes) without some explanation or reference 
to McInnes Et al. 2018. (McInnes, Leland & Healy, John & Saul, Nathaniel & Grossberger, Lukas. (2018). 
UMAP: Uniform Manifold Approximation and Projection. Journal of Open Source Software. 3. 861. 
10.21105/joss.00861.) 

Thanks so much for noticing we forgot to include an explanation of UMAP in our methods. We have now 
added a short explanation of this method and the suggested reference in the methods section 15 
AlphaTracker under the heading unsupervised clustering for behavioral motifs. 
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Rebuttal Figure 25: Schematic of workflow for subjects across cohorts. Venn Diagram indicating overlap of 
mice recorded across experiments. The majority of the mice were used in all experiments, however, to consider 
absolute rank differences we added additional animals to the alone experiments. 

 



Signed below to opt in for Nature‟s new transparent peer review scheme: Reviewed by Steve W. C. Chang 
with assistance from Philip T. Putnam, a postdoctoral associate in his lab. 
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Reviewer Reports on the First Revision: 

Referee #1 (Remarks to the Author): 

I am a behavioral neurophysiologist, and I re-reviewed this paper in conjunction with a 
computational neuroscientist/neurotheorist. Comments reflect our pooled suggestions to primarily 
aid the authors in improving the rigor and reproducibility of their work and enhancing 
communication of their findings for a broad scientific audience, and to secondarily aid in editorial 
consideration of this work for publication. 

I am highly supportive of this work, and I believe that it provides an important advance that is of 
broad interest to the field. In my original review, I provided a rich feedback that I believed would 
enhance the reproducibility of this outstanding work. The authors were incredibly responsive. I also 
suggested that the authors simplify the work, because I believed that even a simplified version 
would still provide an important advance that is of broad interest to the field. The authors generally 
chose to take the opposite approach, which was the provide substantially more experimental details 
and evidence to support their work. It was a great choice on their part. They have addressed nearly 
all of my concerns. However, a major concern remains unaddressed. 

Major Concern: I previously commented that “The results on the modeling are unusual, where gains 
between the autoregressive model compared to the SVM and the GLM are drastic. It is rare that you 
see such dramatic gains when moving to an HMM based model, and the manuscript would be much 
improved by explaining this outcome. In fact, the authors show that there are drastic gains by using 
2 clusters in the HMM based model (noting that the 1 cluster case is equivalent to the GLM model in 
your formulation). In this case, they are now distinguishing between 9 classes based on a mixture of 
2 GLMs, where the GLM is chosen through the historical information. Compared to the classes, this 
is really a minor gain in modeling complexity, and I’m unclear from a mathematical perspective as to 
how such gains can be achieved. Additional justification and exploration would be warranted to 
ensure robustness of these findings.” 

In response the authors provided additional background and reference to supplementary materials. 
But it is important to clearly articulate why my concern regarding their approach remains. While I 
appreciate the extra information on the model description, the problem remains in the log- 
likelihoods of Figure 2(c) persists. First, as they have described it, the authors are modeling discrete 
behaviors. It is well-known that loglikelihoods of discrete outcomes MUST be negative, but the 
reported log-likelihoods for the HMM are positive for more than 2 states. Second, it is not explicitly 
stated what normalization is used in the log-likelihoods, or at least I could not find it. The typical 
normalization used in machine learning is to normalize by the number of instances. As such, a 
baseline random guess with probability 1/9 for each outcome would give a loglikelihood of -log(9)~=- 
2.2. Hence, I would expect all the reported loglikelihoods to be in the range of -2.2 to 0 (since 
a perfect model would give 0). In contrast, the reported normalized log-likelihoods are -12000 
to positive 60. The GLM gives a likelihood that is close to infinitely worse than random 

 

 



whereas Figure 2(d) shows that the GLM is clearly above chance. Thus, the loglikelihoods must be 
properly explained in order to evaluate to robustness of the result. I can believe that the temporal 
history helps to make predictions, so the AUC performances seem believable by themselves; 
however, given the issues in the loglikelihoods I remain concerned that another group would not be 
able to effectively reproduce the findings. 

As a minor detail, an HMM-GLM with one state is identical to the GLM. I also would like to 
understand why those two models do not give the same log-likelihoods despite being 
mathematically the same model. 

Finally, the comparison approach on the mixture of GLMs isn’t particularly relevant. A typical trick in 
time series predictions is just to aggregate the last few time steps to form the predictors for a 
GLM, which would be a much more relevant comparison model. I am not too concerned about this, 
since the major issue is the reported loglikelihoods. 

Another minor issue is in the response on counting the GLMs. The authors state that a 2-state GLM 
HMM consists of 22 GLMs, which is inconsistent with typical statistics and machine learning 
definitions. The multinomial logistic model is considered a single GLM, so in typical nomenclature 
there are only 2 behavior emissions GLMS (one for each state). 

I do hope that additional description of the methods utilized here will be sufficient to alleviate all of 
these concerns. 

Minor concerns: 

1) The authors responded, “We thank the reviewer for pointing out that behavioral state is a 
confusing term given that we also have hidden states. We want to clarify that we were using 
behavioral states to mean the behaviors themselves, therefore now we are referring to them as 
behaviors or behavioral labels” However, the text still refers to ‘Behavioral states’ in multiple places 
instead of behaviors (line 112 and throughout Fig 2 legend). 

2) Line 257: ‘5 ms pulses at 100 Hz every 200 ms.’ This should say FOUR 5 ms pulses… consistent 
with the legend. Otherwise, its confusing given the duty cycle. 

3) The authors have further clarified the utility of AlphaTracker demonstrating that it ‘surpasses 
human accuracy and has lower error rate.’ Note, in the context of this manuscript, it is sufficient to 
just say that it surpasses human accuracy. 

 



Finally, massaging the term 'YOLO' into a scientific manuscript is pure genius. Congrats to the 
authors on this brilliant work, and I do hope that they can rapidly address the remaining issues 
regarding the modeling description so this important work can be rapidly shared with the field. 

Referee #2 (Remarks to the Author): 

The authors have provided an outstanding, complete, and scholarly rebuttal, with a substantial 
effort to address each and every concern. The authors have done a commendable job addressing 
all of my concerns. I only have minor concerns remaining or comments, I do not need to see the 
paper again, until publication. 

Minor- 

-The authors claim that the wireless device for recording is 6 grams? Is this correct. Generally a 
mouse can tolerate and move freely with no more than 10% body weight on their head. Assuming 
these are about 25g mice, this seems like an incorrect measurement? Perhaps it isn't, but it might be 
explained how the mice were habituated (if it hasn't been already, and I missed it), and/or they 
should check the weight to be certain, as it might cause some confusion for readers. 

-Extended Fig 6, is difficult to digest as labeled. Perhaps more of a "heat map" approach for the top 
figures, and/or more labels and/or a key would help, since the legend is sparse. Minor style issue, up 
to the authors and editors discretion. 

-The authors should double check all figures, particularly in the extended for typos and errors. There 
seem to be some stylistic (font tilts or stretching during conversions, etc), and typos that appear in 
the supplemental. 

 



Referee #3 (Remarks to the Author): 

The authors have thoroughly addressed all of my original comments with direct data analyses, data 
visualizations, and amending the manuscript’s texts and figures. I very much look forward to seeing 
this work published and seeing new exciting future studies from the broader field encouraged by this 
work. 

Signed below to opt in for Nature’s new transparent peer review scheme: Reviewed by Steve W. C. 
Chang with assistance from Philip T. Putnam, a postdoctoral associate in his lab. 

Author Rebuttals to First Revision: 

 



We thank all three reviewers for their very helpful, thoughtful and constructive comments, 
and want to say a special thank you to Referee #1 who caught a very important error in one 
of our plots, and we are exceedingly grateful for this catch! 

Referees' comments: 

Referee #1 (Remarks to the Author): 

I am a behavioral neurophysiologist, and I re-reviewed this paper in conjunction with a 
computational neuroscientist/neurotheorist. Comments reflect our pooled suggestions to 
primarily aid the authors in improving the rigor and reproducibility of their work and 
enhancing communication of their findings for a broad scientific audience, and to 
secondarily aid in editorial consideration of this work for publication. 

I am highly supportive of this work, and I believe that it provides an important advance that 
is of broad interest to the field. In my original review, I provided a rich feedback that I 
believed would enhance the reproducibility of this outstanding work. The authors were 
incredibly responsive. I also suggested that the authors simplify the work, because I believed 
that even a simplified version would still provide an important advance that is of broad 
interest to the field. The authors generally chose to take the opposite approach, which was 
the provide substantially more experimental details and evidence to support their work. It 
was a great choice on their part. They have addressed nearly all of my concerns. However, a 
major concern remains unaddressed. 

Major Concern: I previously commented that “The results on the modeling are unusual, 
where gains between the autoregressive model compared to the SVM and the GLM are 
drastic. It is rare that you see such dramatic gains when moving to an HMM based model, 
and the manuscript would be much improved by explaining this outcome. In fact, the 
authors show that there are drastic gains by using 2 clusters in the HMM based model 
(noting that the 1 cluster case is equivalent to the GLM model in your formulation). In this 
case, they are now distinguishing between 9 classes based on a mixture of 2 GLMs, where 
the GLM is chosen through the historical information. Compared to the classes, this is really 
a minor gain in modeling complexity, and I‟m unclear from a mathematical perspective as to 
how such gains can be achieved. Additional justification and exploration would be 
warranted to ensure robustness of these findings.” 
In response the authors provided additional background and reference to supplementary 
materials. But it is important to clearly articulate why my concern regarding their approach 
remains. While I appreciate the extra information on the model description, the problem 
remains in the log-likelihoods of Figure 2(c) persists. First, as they have described it, the 
authors are modeling discrete behaviors. It is well-known that loglikelihoods of discrete 

 



outcomes MUST be negative, but the reported log-likelihoods for the HMM are positive for 
more than 2 states. Second, it is not explicitly stated what normalization is used in the log- 
likelihoods, or at least I could not find it. The typical normalization used in machine learning 
is to normalize by the number of instances. As such, a baseline random guess with 
probability 1/9 for each outcome would give a loglikelihood of -log(9)~=-2.2. Hence, I 
would expect all the reported loglikelihoods to be in the range of -2.2 to 0 (since a 
perfect model would give 0). In contrast, the reported normalized log-likelihoods are -12000 
to positive 60. The GLM gives a likelihood that is close to infinitely worse than random 
guessing, whereas Figure 2(d) shows that the GLM is clearly above chance. Thus, the 
loglikelihoods must be properly explained in order to evaluate to robustness of the result. I 
can believe that the temporal history helps to make predictions, so the AUC performances 
seem believable by themselves; however, given the issues in the loglikelihoods I remain 
concerned that another group would not be able to effectively reproduce the findings. 

I want to commend Reviewer #1 for their exceptionally careful and thoughtful review, and to 
express our deep appreciation for the level of scrutiny they applied to this critical issue. 

We thank reviewer#1 for asking for further clarification on this important point, and for 
their very careful eye. Going back to the calculations, we realized that the way we plotted 
the static models and HMM-GLM data together was misleading. For the static models we 
were reporting the sum of the likelihoods across trials while for the HMM GLM we were 
reporting the average across trials because for the static models, we compute it for each 
timepoint (bin-by-bin) and then combine them at the end, whereas for the HMM-GLM, we 
use a special dynamic programming algorithm because of the nature of the model that has 
dependency on time (Markovian property) and hidden state(s). In contrast, the static 
models assume every time bin is independent, making it impossible to calculate the 
likelihoods in an equivalent way. Erring on the side of caution with these insurmountable 
differences, we removed the likelihood values for the static models given that the main 
purpose of the likelihood calculations is to select the optimal number of hidden states. 

It is worth mentioning that once we corrected that, the values were above chance, as the 
reviewer #1 expected. However, given the very different techniques for computing the 
likelihoods for the static model vs the HMM-GLM we decided not to report that 
comparison. 

Also, a clarification note about the normalization process: it was done with respect to a 
chance model for which, the likelihood of a trial would be:      ( 

    
) (9 behaviors and 70 

  
bins) which is equal to                   and we normalized by subtraction of this number. So, all 
the previously reported log likelihoods should be in the range of negative infinity to 
+153.8057. Cases with positive loglikelihoods values meant that the performance was better 
than chance. However, since the theoretical chance value assumes that each behavior is 

 



equally likely, it does not account for the class imbalance in the data. Therefore, we have 
decided to forgo the normalization. 

We apologize for the confusion, thank you for your careful eye. Now Extended Figure Data 
5j only shows the likelihood values for the HMM-GLM model without normalization and 
without directly comparing it to the static model likelihoods (see plots below for before and 
after comparison). We thank the reviewer very much for pointing out this crucial detail. This 
has been a learning opportunity for how to deal with likelihood computations of models 
that are very different. 

As a minor detail, an HMM-GLM with one state is identical to the GLM. I also would like to 
understand why those two models do not give the same log-likelihoods despite being 
mathematically the same model. 

We accidentally labeled the SVM likelihood as HMM-GLM state 1. This was a typo. We did 
not run an HMM-GLM assuming only 1 state because (as Reviewer #1 correctly points out) 
by definition an HMM must have multiple states. However, in general if you were to run a 
single GLM multiple times they might not give identical log-likelihoods because of the 
stochasticity in the individual runs such as random initialization of weights. We thank the 
reviewer catching this oversight. 

Finally, the comparison approach on the mixture of GLMs isn‟t particularly relevant. A typical 
trick in time series predictions is just to aggregate the last few time steps to form the 
predictors for a GLM, which would be a much more relevant comparison model. I am not 
too concerned about this, since the major issue is the reported loglikelihoods. 

Another minor issue is in the response on counting the GLMs. The authors state that a 2- 
state GLM HMM consists of 22 GLMs, which is inconsistent with typical statistics and 

 



machine learning definitions. The multinomial logistic model is considered a single GLM, so 
in typical nomenclature there are only 2 behavior emissions GLMS (one for each state). 

Thank you for this comment! We have now clarified in the methods whether a GLM is 
binomial or multinomial to prevent any confusions. 

I do hope that additional description of the methods utilized here will be sufficient to 
alleviate all of these concerns. 

Minor concerns: 
1) The authors responded, “We thank the reviewer for pointing out that behavioral state is a 
confusing term given that we also have hidden states. We want to clarify that we were 
using behavioral states to mean the behaviors themselves, therefore now we are referring to 
them as behaviors or behavioral labels” However, the text still refers to „Behavioral states‟ in 
multiple places instead of behaviors (line 112 and throughout Fig 2 legend). 
2) Line 257: „5 ms pulses at 100 Hz every 200 ms.‟ This should say FOUR 5 ms pulses… 
consistent with the legend. Otherwise, its confusing given the duty cycle. 
3) The authors have further clarified the utility of AlphaTracker demonstrating that it 
„surpasses human accuracy and has lower error rate.‟ Note, in the context of this manuscript, 
it is sufficient to just say that it surpasses human accuracy. 

Thank you we have fixed these minor details 

Finally, massaging the term 'YOLO' into a scientific manuscript is pure genius. Congrats to 
the authors on this brilliant work, and I do hope that they can rapidly address the remaining 
issues regarding the modeling description so this important work can be rapidly shared with 
the field. 

Thank you for the compliment, but we cannot claim credit for this bit of genius! Redmon 
and colleagues came up with YOLO in this original research paper, 
https://arxiv.org/abs/1506.02640, which is now widely-used as a tool in computer vision. 

 

https://arxiv.org/abs/1506.02640


Referee #2 (Remarks to the Author): 

The authors have provided an outstanding, complete, and scholarly rebuttal, with a 
substantial effort to address each and every concern. The authors have done a 
commendable job addressing all of my concerns. I only have minor concerns remaining or 
comments, I do not need to see the paper again, until publication. 

Minor- 

-The authors claim that the wireless device for recording is 6 grams? Is this correct. 
Generally a mouse can tolerate and move freely with no more than 10% body weight on 
their head. Assuming these are about 25g mice, this seems like an incorrect measurement? 
Perhaps it isn't, but it might be explained how the mice were habituated (if it hasn't been 
already, and I missed it), and/or they should check the weight to be certain, as it might 
cause some confusion for readers. 

We have added details about the habituation of wearing the device in the methods. Mice 
were closer to ~30g and as discussed in ample detail in the first round of revision, wearing 
the recording devices did alter the behavioral patterns of mice. 

-Extended Fig 6, is difficult to digest as labeled. Perhaps more of a "heat map" approach for 
the top figures, and/or more labels and/or a key would help, since the legend is sparse. 
Minor style issue, up to the authors and editors discretion. 

In the current version of this manuscript we chose to remove these plots. 

-The authors should double check all figures, particularly in the extended for typos and 
errors. There seem to be some stylistic (font tilts or stretching during conversions, etc), and 
typos that appear in the supplemental. 

 



Referee #3 (Remarks to the Author): 

The authors have thoroughly addressed all of my original comments with direct data 
analyses, data visualizations, and amending the manuscript‟s texts and figures. I very much 
look forward to seeing this work published and seeing new exciting future studies from the 
broader field encouraged by this work. 
Signed below to opt in for Nature‟s new transparent peer review scheme: Reviewed by Steve 
W. C. Chang with assistance from Philip T. Putnam, a postdoctoral associate in his lab. 

Thank you both very much for your very helpful constructive feedback! 

 


